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Abstract

Complete and restricted active space self-consistent field (CAS- / RAS-SCF) wavefunc-
tion methods are applied for the calculation of circular dichroism (CD) and circularly polar-
ized luminescence (CPL) of a series of molecules comprising four organic ketones, the chiral
Cobalt(III) complex Λ-[Co(en)3]3+ and the Europium(III) complex [Eu(DPA)3]3 – . The ab-
initio results are in good agreement with the experimental data and previous results obtained
with Kohn-Sham density functional theory in the case of the spin-allowed transitions. CD
and CPL properties are calculated ab-initio for the first time for the spin-forbidden transitions
of both a transition metal and a lanthanide complex.

1 Introduction

The interest in chiral systems is tremendous because of their potential applications in a wide range
of domains such as biochemistry,1 catalysis,2 pharmacology,3 nanotechnology4, 5 or in the develop-
ment of new photonic materials.6, 7 The two enantiomers of a chiral molecule have many identical
properties, but they also differ crucially in some aspects. For instance, the enantiomers interact
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differently with linearly and circularly polarized light, and they may absorb or emit photons pref-
erentially with one sense of circular polarization. These are manifestations of the natural optical
activity, i.e. the chiroptical properties exhibited by chiral compounds.

The enantiomers of a chiral molecule also interact differently with other chiral molecules and
environments. The latter aspect is extremely important for drug design. For example, one enan-
tiomer may exhibit the desired therapeutic behavior, while the other one may be inactive or even
toxic.8, 9 Therefore, it is important to have access to methods that are able to provide reliable struc-
tural information and to characterize the absolute configuration of enantiomers. Here, chiroptical
spectroscopic methods are the prime tools.10–13 For instance, the circular dichroism (CD) and cir-
cularly polarized luminescence (CPL) of electronic transitions can be used to obtain stereochem-
ical information. CD is the difference in absorption between left- and right-circularly polarized
light. CPL is the analog of CD in emission. Therefore, CD spectroscopy is well designed to
provide structural information on the stereochemistry of the ground state, whereas CPL is better
suited for the characterization of the excited states.

CD and CPL properties are often characterized experimentally by the dimensionless absorp-
tion and luminescence dissymmetry factors gabs and glum, respectively, which are defined as fol-
lows:

gabs =
Δ�

�
=

�L − �R
1

2
(�L + �R)

and glum =
ΔI

I
=

IL − IR
1

2
(IL + IR)

(1)

Here, �L and �R are the molar absorption coefficients for left- and right-circularly polarized light,
respectively, and IL and IR are the corresponding luminescence intensities. From these defini-
tions, it follows that the dissymmetry factors are within the range +2 and −2, with the limits
corresponding to an absolute preference of one circular polarization over the other. Typically,
however, the CD and CPL of a transition is only a small fraction of the total absorption and emis-
sion intensity, respectively. Accordingly, solutions of organic molecules usually exhibit |g| values
on the order of 10−2 – 10−5.14, 15 Values of one order of magnitude larger are typical for transition
metal complexes.16–21 The largest dissymmetry factors, within the range 0.1 – 1, have been ob-
served for transitions within the 4f manifold of lanthanide (Ln) complexes.22–27 Due to the weak
crystal-field (CF), these transitions are nearly electric-dipole (ED) forbidden, but comparatively
strongly magnetic-dipole (MD) allowed, reinforcing the magnitude of the g values. For instance,
a glum value of +1.38 was reported for the 7F1 ←

5D0 transition of the Europium(III) complex
CsEu[(+)-hfbc]4.

28, 29 It corresponds to the largest |g| value measured to date for non-interacting
molecules. Despite the widespread experimental use of these chiroptical spectroscopic techniques,
the assignment and the interpretation of CD and CPL spectra in terms of individual transitions is
rarely easy. Moreover, the magnitude and the sign of the g values can be sensitive to the pres-
ence of a solvent and to conformational changes. Theoretical support is therefore highly needed
in order to ascertain the mechanisms responsible for the optical activity of the studied systems.

From an ab-initio point of view, the calculation of the chiroptical parameters gabs and glum re-
quires the determination of the electronic spectrum and the ED and MD transition moments in the
ground and excited state geometries, respectively. Kohn-Sham time-dependent density functional
theory (TDDFT, usually with hybrid functionals), coupled-cluster theory (CC) with singles and
doubles (CCSD), and other coupled-cluster variants, have so far been the methods of choice for
this type of calculations.30–35 These methods have been thoroughly tested over the last two decades
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on a large set of organic compounds and on the spin-allowed transitions of some transition metal
complexes. For instance, the experimental CD and CPL spectra of d-camphorquinone and (S,S)-
trans-�-hydrindanone were nicely reproduced when using TDDFT calculations with inclusion of
the vibronic effects.36 The results revealed that in both cases, the chiroptical properties arise from
transitions between the n and �∗ orbitals of the carbonyl groups. Subsequently, Pecul and Ruud37

applied TDDFT to a set of bicyclic ketones38 and showed that the differences in sign and magni-
tude between gabs and glum are essentially related to the structural differences between the ground
and excited states. Based on a similar set of compounds, it was shown that equation-of-motion
CCSD (EOM-CCSD) and TDDFT with the CAM-B3LYP functional provided similar accuracy
for gabs and glum,39 while the popular B3LYP functional led to incorrect results in some of the
emission properties.

There is also a substantial body of research on the calculation of spin-allowed electronic CD
spectra of transition metal complexes, where TDDFT remains the main computational tool. See,
e.g., References 33, 40 and 41 for reviews and References 19,42–50 for selected original studies.
CPL calculations for transition metal complexes are scarce in comparison. A first attempt was
made in 2008 by Coughlin et al.21 with the use of TDDFT in combination with an approximate
formulation of glum, in order to determine the chiroptical properties associated to the S0 ← T1

emission in a series of Iridium(III) complexes. Another attempt was made in 2013 with the use of
multi-reference perturbative methods (CASSCF and CASPT2) on a cycloplatinated-[6]helicene
compound.19 Despite the ability of lanthanide complexes to exhibit the largest dissymmetry fac-
tors, no ab-initio calculations of CD or CPL properties have been performed yet. Theoretical
work on lanthanide complexes has so far relied on CF models51, 52 in combination with the semi-
empirical Judd-Ofelt theory.53, 54 Recently, such CF based models were used to simulate the CD
spectrum55 and the Raman optical activity56 of Ln-based compounds. TDDFT has been also used
to calculate the CD spectrum of some Eu(III) and Yb(III) complexes,57–59 but these studies focused
on the UV-Vis part of the energy spectrum which corresponds mostly to intra-ligand excitations.
The lack of ab-initio data for the optical activity of metal-centered transitions arises from the added
difficulty to take into account the effects from the spin-orbit coupling (SOC). For spin-forbidden
transitions, the SOC is essential in bringing about the intensities, and for lanthanides, the SOC in
the 4f and 5d shells is sufficiently strong to alter the character of the transitions qualitatively.

Additionally, transition metal complexes with high symmetry, as well as most lanthanide
complexes, afford degenerate electronic states that pose significant challenges for the aforemen-
tioned single-reference based methods that are mainly used for theoretical chiroptical studies.
For instance, it is well known that the partially filled 4f shells in the Ln(III) complexes leads to
large static and dynamic electronic correlation effects that only multi-configurational approaches
can tackle.60 Therefore, as an alternative to TDDFT and CC methods, we decided to perform
CD and CPL calculations within the complete and restricted active space (CAS / RAS)61 self-
consistent field (SCF) multi-reference wavefunction framework, with SOC treated via state inter-
action (RASSI).62 In order to demonstrate that the approach is able to treat closed-shell organic
molecules, transition metal complexes, and open-shell Ln-based systems with comparable accu-
racy, we performed calculations for representatives from each group, namely, four bicyclic ke-
tones, the Cobalt(III) complex Λ-[Co(en)3]3+ (en = ethylenediamine), and the Eu(III) compounds
Δ-, Λ-[Eu(DPA)3]3 – (DPA = (2,6)-pyridine-dicarboxylate).
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2 Theoretical and Computational Details

2.1 Kohn-Sham Density Functional Theory Calculations

The Gaussian 0963 software package was used to perform structural optimizations of the inves-
tigated complexes. The ground state (GS) geometries were obtained using Kohn-Sham Density
Functional Theory (DFT), whereas the structures of the corresponding excited states (ES) were
optimized using the time-dependent DFT (TDDFT) response calculations. The GEDIIS/GDIIS
algorithms were used for the geometry optimizations.64 The optimizations of the organic ketones
employed either the Becke three-parameters exchange function in combination with the Lee-Yang-
Parr correlation functional (B3LYP65, 66) with 20 % of exact exchange or its Coulomb-attenuated
version CAM-B3LYP.67 The basis set used for these optimizations was the correlation consistent
basis set developed by Dunning and corresponded to a double-� contraction for the valence shell
plus a polarization and diffuse functions (Aug-cc-pVDZ68). Starting from the X-ray diffraction
structure,69 the GS structure of the Cobalt(III) tris-ethylenediamine complex Λ-[Co(en)3]3+ was
obtained from a DFT optimization using the B3LYP functional in combination with a triple-� plus
polarization (TZVP) basis sets from the Ahlrichs group.70 In keeping with prior TDDFT studies
of this complex42, 43, 45 the (lel)3 conformer of the complex was used for all calculations. In the case
of the [Eu(DPA)3]3 – complexes, the B3LYP functional was used for the optimization of the GS.
In these calculations, a 28-electron quasi-relativistic effective core potential (ECP)71 along with
a matching ECP28MWB-SEG valence basis set72 were used to replace the Eu core and mimic
relativistic valence-shell effects. For the ligand atoms, the double-� basis sets with a polarization
and diffuse functions from Dunning and Hay73 were used.

The CD and CPL dissymmetry factors were determined using TDDFT with the Amsterdam
Density Functional software package (ADF2017).74–76 In these calculations, the influence of the
functional was investigated by comparing the PBE77, 78 (Perdew-Burke-Ernzrhof) generalized gra-
dient approximation with its hybrid variant PBE079, 80 with 25 % exact exchange (eX) as well as
with the functionals B3LYP65, 66 and CAM-B3LYP67 (range-separated exchange with eX vary-
ing from 19 to 65% with increasing interelectronic distance). The basis set corresponded to
the quadruple-� STO all-electron basis sets with four sets of polarization functions for all atoms
(QZ4P).81 The rotatory strengths as well as the ED moments were obtained within the Excitations
module implemented in ADF.82, 83 In the case of the organic compounds we used the nonrelativis-
tic TDDFT module,84 while for the Cobalt complex we included scalar relativistic effects via the
Zeroth-Order Relativistic Approximation (ZORA).85, 86 Solvent effects were taken into account
by using the Conductor-Like Screening Model (COSMO) with the dielectric constant of 78.4
to model water.87 The rotatory strengths were calculated using the dipole-length representation,
which is known to be origin dependent.88 In order to evaluate the impact of the origin dependence
with the chosen basis sets on the results, additional rotatory strength calculations were performed
using the dipole-velocity representation.89 The comparison between the two formalisms (See Ta-
bles S2 and S3 of the SI) revealed very similar results between the two approaches, with calculated
dissymmetry factors that only differ to the fourth digit in the case of the ketones. Therefore, only
the results obtained with the dipole-length representation are provided in the article. The nature
of the transitions involved in the CD and CPL spectra was analyzed with the help of the Natural
Transition Orbitals (NTOs).90 The NTOs were then visualized with the graphical user interface
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of ADF.

2.2 Wavefunction Calculations

The multi-configurational and multi-reference calculations were carried out with the Molcas 8.0
software package.91 The calculations without spin-orbit coupling (denoted SR for ‘scalar relativis-
tic’ in the following) employed the second-order Douglas-Kroll-Hess scalar relativistic Hamilto-
nian,92–95 in combination with the all-electron atomic natural orbital relativistically contracted
(ANO-RCC) basis set from the Molcas library.96–98 The basis sets were contracted to the triple-�
plus polarization (TZP) quality (Eu = 25s22p15d11f4g2h/8s7p4d3f2g1h ; Co = 21s15p10d6f4g2h/6s5p3d2f1g
; C, N, O, = 14s9p5d3f2g/4s3p2d1f ; H = 8s4p3d1f/2s1p). State-averages calculations were per-
formed either with the complete active space self-consistent field (CASSCF) approach or with the
restricted active space self-consistent field (RASSCF) variant.61 Additionally, the dynamic corre-
lation effects were treated using the complete active space perturbation theory at the second order
(CASPT2).99 Solvent effects were included via the Conductor Polarizable Continuum Model (C-
PCM) as implemented in Molcas with the dielectric constant of water.100, 101 The SOC was then
introduced within a state interaction among the basis of calculated spin-orbit free states using the
restricted active space state interaction (RASSI) approach.62 A local modification of the Molcas
code was used to gain access to the different transition dipole moments calculated after treatment
of the SOC interaction.102 The nature of the active spaces was confirmed by the visualization of
the SR natural orbitals (NOs), using the graphical user interface of the ADF suite.

For the organic set of bicyclic ketones investigated here, the choice of the active space (AS)
was driven by the NTO analysis performed at the TDDFT level on the same molecules. Depend-
ing on the nature of the ketones investigated, two different AS were used, namely CAS(2,2) and
CAS(4,3). The CAS(2,2) corresponds to two electrons in the oxygen lone pair (n) and the C=O �∗

orbital, whereas the CAS(4,3) corresponds to the CAS(2,2) space augmented by the doubly occu-
pied � orbital centered on the carbon double bond. The calculations employed the state-averaged
formalism at the SR level by taking into account the three lowest singlet spin states in energy. For
the CASPT2 calculations, an imaginary shift of 0.5 au in combination with the standard IPEA
shift value of 0.25 au were used in order to avoid the presence of intruder states in the wavefunc-
tion. For the PT2-SO calculations, both the wave-functions and the energies from the SR CASPT2
calculations were employed.

For the Λ-[Co(en)3]3+ complex, the state-average calculations were performed by taking into
account 7 singlet, 6 triplet and 5 quintet spin states. The AS used for the CASSCF and CASPT2
calculations corresponded to a CAS(10,12). It contains the five 3d orbitals of the Co(III) center,
plus the five pseudo-4d orbitals in order to take into account the double shell effect.103 Addi-
tionally, two doubly occupied ligand-based orbitals that can form a covalent �-bond with the 3d

orbitals of formally eg symmetry in the Oℎ parent symmetry were added in the AS. The actual
symmetry of the complex is D3, but it is often more convenient to refer to the parent symmetry
instead.41 Additional ligand based orbitals were also included in the AS via RASCI calculations
(i.e. RAS without orbital optimizations) on top of the CASSCF wavefunctions by allowing sin-
gle and double excitations from an additional RAS1 space into the principal RAS2 space. This
RAS1 space was formed by the m highest-energy doubly occupied ligand-based orbitals, and the
resulting AS are labelled as follows: RAS[n,2,0,m,12,0]CI, with n corresponding to the number

Page 5 of 33

5
 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
man

us
cri

pt



of active electrons and equal to 10+m × 2. The dynamic correlation effects were treated at the
CASPT2 and RASPT2 level with an imaginary shift of 0.5 au. in combination with a modified
IPEA shift of 0.5. The use of a larger value for the IPEA shift was found more appropriate to
describe the relative energies of the different SR spin states in the case of transition metal com-
plexes.104, 105 For the PT2-SO calculations, the energies from the SR CASPT2 calculations and
the wave-functions from the corresponding CASSCF / RASSCF calculations were employed in
order to avoid symmetry breaking.

In the case of the Λ- and Δ-[Eu(DPA)3]3 – complexes, several AS were investigated. Firstly, a
CAS(6,7) was used with the 6 electrons of the Eu(III) ion spanning the seven 4f orbitals. Here,
the state-average was performed on 7 septet, 5 quintet and 3 triplet spin states. The influence
of the 5d orbitals was investigated with a combination of RASSCF and RASCI calculations. A
RAS[6,0,1,0,7,5]SCF calculation, including 112 septet spin states, was performed on top of the
CAS(6,7)SCF wavefunction to optimize the 5d orbitals. This RASSCF calculation allowed to
create one particle in the RAS3 space containing the five 5d orbitals of the Eu(III) ion. From these
optimized orbitals, RAS[6,0,1,0,7,5]CI calculations were then performed for the 7 septet, 5 quintet
and 3 triplet spin states. Using a similar strategy, we also investigated the influence of the � −

�∗ ligand-centered excitations. On top of the CAS(6,7) wave-function, a RAS[12,1,1,3,7,3]SCF
calculation was performed in which the RAS1 space was formed by three doubly occupied �-
type orbitals centered on the ligands and the RAS3 space was formed with the corresponding
three empty �∗ orbitals. From these optimized orbitals, RAS[12,1,1,3,7,3]CI calculations were
then performed for 7 septet, 5 quintet and 3 triplet spin states. For the PT2-SO calculations,
the energies from the SR CASPT2 calculations and the wave-functions from the corresponding
CASSCF / RASSCF calculations were employed in order to avoid symmetry breaking.

2.3 CD and CPL Theory

The theory behind first-principles calculations of CD and CPL has been already extensively dis-
cussed,30, 32, 33 and therefore, only a few key points are discussed here. The probability of absorbing
(or emitting) a photon with left vs. right circular polarization in a transition from an initial state i

to a final state f is proportional to the rotatory strength Rif . In the case of an isotropic sample,
Rif corresponds to the imaginary part of the scalar product between the ED transition moments
�if and the MD transition moments mfi, and is expressed in the length-dipole representation as
follows:

Rif = Im
[
�if ⋅mfi

]

= Im
[
⟨i|e

∑

n

rn|f⟩ ⋅ ⟨i|
e

2me ⋅ c

∑

n

Ln + geSn|f ⟩
]

(2)

Here, the summations are over the Cartesian directions n, ge ≃ 2 is the free electron g-factor, and
L and S are the one-electron operators for the orbital and spin angular momentum, respectively.
The spin contribution in Eq. 2 is zero if the states are spin-eigenfunctions. When the SOC becomes
non negligible, the different states cannot anymore be described by pure spin-eigenfunctions and
therefore, the transition matrix elements of the spin angular momentum operator may become non
null. Moreover, the orbital angular momentum component in the magnetic transition dipole also
generates intensity for a transition that is formally spin forbidden. The use of the dipole-length
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representation in Eq. 2 leads to origin-dependent results. However, our own test calculations
(vide supra), as well as other works (e.g. recently in Refs. 106 and 107 in the context of X-ray
absorption spectroscopy), have shown that the origin dependence is not pronounced with the use
of a good quality basis sets and the centering of mass or centering of nuclear charge coordinates.
For the metal-centered transitions in a metal complex, placing the (gauge) origin at the metal
center is a straightforward choice. Additionally, we verified that a small displacement of the gauge
origin does not drastically modify the results (see Table S8). The electric- and magnetic-transition
dipole moments (TDMs) were obtained in atomic units and then converted to cgs units using a
conversion factor � = 471.44 × 1040 as explained in Reference 108. The calculated Rif with Eq.
2 are therefore reported herein in cgs units of 10−40 esu2 cm2. If the calculations of the TDMs
are performed in the GS geometry, one obtains the CD of the absorption, whereas evaluation of
the TDMs using the ES structures gives the CPL. It is worth reiterating that Eq. 2 assumes no
contributions from the coupling between the ED and the electric quadrupole (EQ) because of an
orientational average of this contribution. Such assumption is valid for an isotropic sample such
as in solution, but does not hold in the case of a crystal. From there, the dissymmetry factor gif
for an isotropic sample is given by

gif =
4 ⋅ Rif

Dif

(3)

Here, Dif is a generalized ‘dipole’ strength and corresponds to the sum of the squared values of
the ED (|�if |2), MD (|mif |2) and EQ (|Qif |2) transition moments as defined in Ref. 109. The
reader is reminded that the magnitude of the MD and EQ moments are often found few order of
magnitude smaller than the ED moment in organic compounds. Therefore, Eq. 3 is often seen in
the literature with only the ED contribution in the denominator.

Using expressions from References 36 and 110, the absolute emission (I) and CPL (ΔI) in-
tensities are given by

I =
4 ⋅ E4

3 ⋅ c3 ⋅ ℏ4
(|�if |2 + |mif |2 + |Qif |2) (4)

ΔI =
16 ⋅ E4

3 ⋅ c3 ⋅ ℏ4
(Rif ) (5)

where ℏ is the reduced Planck’s constant, c the speed of light and E the energy of the given
transition expressed in cgs units. In that case, the emission and CPL intensities are expressed in
energy unit per time unit per molecule. Experimentally, it is difficult to know how many molecules
emit. Therefore, the calculated emission and CPL intensities were normalized to arbitrary relative
units after Gaussian-broadening with a � of 0.02 eV (ca. 160 cm−1) in order to produce spectra
for the [Eu(DPA)3]3 – complex.
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Figure 1: The set of organic molecules investigated here: Mol-1 (S,S)-trans-�-hydrindanone,
Mol-2 (1R,4R)-norbornenone, Mol-3 (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and Mol-4

(1S)-2-methylenebicyclo[2.2.1]heptan-7-one.

3 Results and Discussion

3.1 Chiroptical Properties of Organic Systems

3.1.1 Circular Dichroism of bicyclic Ketones

The calculations of chiroptical properties were first performed on a series of four bicyclic chiral
ketones (Mol-1 - Mol-4) depicted in Figure 1. The calculated CD for these systems are given in
Table 1 and are compared to the experimental values available and previous theoretical values.
Overall, the rotatory strengths (R) and the ED moments obtained at the CAS level were found in
reasonable agreement with the data obtained using other methods. In both compounds, the CAS
calculations were able to reproduce the sign and the correct order of magnitude of the chiroptical
properties. The largest discrepancies between the different methods are observed in the case of
Mol-1, where the gabs calculated at the CASSCF and CASPT2 level are 2 to 3 times larger than
those obtained at the TDDFT level (Table 1). Such differences can be explained by the degree
of delocalization error present in the transition orbitals.111 Indeed, the CAS calculations tend
to produce too localized n and �∗orbitals (see Figure S2), which leads to a decrease of the ED

moment and hence, an overestimation of gabs. By comparison, the occupied NTOs from TDDFT
calculations are less localized on the carbonyl bond, but the degree of delocalization error strongly
depends on the amount of exact exchange (Table S1), and more generally on the functional used
(Tables 1 and S2).

The amount of delocalization was also found crucial to properly reproduce the dissymmetry
factors in Mol-2, Mol-3 and Mol-4. As previously noted successively by Autschbach and by
Caricato with calculations of the optical activity in Mol-2,33, 115, 116 the magnitude of the CD pa-
rameters is strongly connected to the partial charge transfer that occurs in the GS between the
carbonyl group and the (C=C) bond and vice versa. This charge transfer is characterized by the
NTO analyses which revealed that the transitions corresponded to an admixture of n → �∗ and
�(C=C) → �∗ excitations (Table S6). The �(C=C) → �∗ contribution is also visible in Figure
2 and in Figures S3 - S5, where both the occupied and vacant NTOs exhibit lobes on the (C=C)
bond. The reader is reminded that using the same iso-surface value, the carbonyl transition of
Mol-1 appeared perfectly localized. In agreement with Pecul et al.,37 the dissymmetry factors
obtained with the B3LYP functional were found closer to experiment than those obtained with
CAM-B3LYP. This agreement is however only due to an overestimation of the ED moments with
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the former functional because of a too small delocalization. Interestingly, the CAS calculations
lied in between the TDDFT results. Indeed, the CAS ED moments were found in better agree-
ment with the experimental values than the TDDFT ones. This is particularly true when using
the PT2 corrected wave-funtions and energies, which increase the �(C=C) character of the wave-
function. Indeed, if the transition is mainly of n → �∗ character (≈ 85%) at the TDDFT level, the

Table 1: Principal calculated CD parameters for the lowest n → �∗ transition in Mol-1, Mol-2,
Mol-3 and Mol-4. The calculated vertical transition energies (ΔE in eV), rotatory strengths (R
in esu2 cm2), electric dipole moments (ED in esu2 cm2) and absorption dissymmetry factors (gabs)
are compared to previous calculated values and experimental data when available.a

Compd Level of Theory ΔE R(×10−40) ED(×10−40) gabs(×10
−3) Ref.b

Mol-1 B3LYP 4.21 15.89 217 292.8
CAM-B3LYP 4.29 12.27 123 397.7
CAS(2,2)SCF 4.39 7.86 44 708.8
CAS(2,2)PT2 4.16 7.84 45 698.2
CAM-B3LYP 4.23 12.10 123 394.2 [39]
CCSD 4.27 11.32 116 390.7 [39]
Expt. - - - ≈ 200 [112], [113]

Mol-2 B3LYP 4.09 57.68 4481 51.5
CAM-B3LYP 4.24 45.26 2690 67.3
CAS(4,3)SCF 4.64 59.13 4842 48.8
CAS(4,3)PT2 3.91 49.07 3423 57.3
CAM-B3LYP 4.18 45.57 2612 69.8 [37]
CCSD 4.26 34.06 1716 79.4 [39]
CC2 4.30 42.50 - - [114]
Expt. ≈ 4.1 51.10 3600 56.8 [38]

Mol-3 B3LYP 4.19 30.91 3003 41.2
CAM-B3LYP 4.30 22.28 1551 57.4
CAS(4,3)SCF 4.69 36.28 2259 64.2
CAS(4,3)PT2 3.93 33.42 1814 73.7
CAM-B3LYP 4.24 21.92 1527 57.4 [37], [39]
CCSD 4.31 18.74 1149 65.2 [39]
CC2 4.17 23.40 - - [114]
Expt. ≈ 4.1 20.50 1790 45.8 [38]

Mol-4 B3LYP 4.16 -26.91 3207 -33.5
CAM-B3LYP 4.30 -19.11 1480 -51.6
CAS(4,3)SCF 4.73 -26.90 1620 -66.4
CAS(4,3)PT2 3.93 -24.51 1256 -78.0
CAM-B3LYP 4.23 -18.61 1415 -52.6 [37], [39]
CCSD 4.34 -15.26 974 -64.4 [39]
CC2 4.37 -20.30 - - [114]
Expt. ≈ 4.1 -15.20 1870 -32.5 [38]

a additional data with other functionals and using the dipole-velocity representation for the calculation of
R are available in Supporting Information. b present calculations where no reference is given.
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Figure 2: (Top) Iso-surface (± 0.03 a.u.) of the principal TDDFT (CAM-B3LYP) occupied (Occ.)
and virtual (Virt.) natural transition orbitals (NTOs) for the GS→ES1 transition in Mol-2. (Bot-
tom) Iso-surface (± 0.03 a.u.) of the state-averaged natural orbitals (NOs) of Mol-2 from the
CAS(4,3)SCF calculations.

�(C=C) → �∗ character increases up to ca. 40 % for the CASPT2 results. This strong admixture
of configurations leads to an increase of the charge transfer toward the C=C bond, and hence a
decrease of the calculated ED moments. On the other hand, larger transition MD moments are
calculated at the CAS level than at the DFT level, counterbalancing the reduction of the calculated
ED moments.

3.1.2 Circularly Polarized Luminescence of bicyclic Ketones

The calculated CPL dissymmetry factors of the four ketones are given in Table 2. A relatively good
agreement is obtained between the different levels of theory and with the experimental value in
the case of Mol-1. A glum of 47 × 10−3 was calculated when using the CAM-B3LYP functional,
while CCSD calculations gave a calculated dissymmetry factor of 35 × 10−3 cgs.39 The difference
between the two approaches results principally from an increase of the calculated ED moment at
the CCSD level. In comparison, the CAS calculations gave the largest ED moment for this tran-
sition, leading to a theoretical glum of 29 × 10−3 in perfect agreement with the experiment. More
interestingly, the CAS calculations were also able to reproduce the large decrease in magnitude
between the CD and CPL dissymmetry factors. This behavior is explained principally by the large
increase in magnitude of the ED moments associated to the n ← �∗ transitions. Indeed, in the ES
the C=O bond is lengthened due to the population of an antibonding �∗ orbital, and the carbonyl
group looses its planar configuration in favor of a pyramidal one. This lowering of symmetry in
the ES leads to a stronger localization of the electron density on the carbonyl bond that reinforces
the ED moment.

A fairly good agreement was found between the different calculated glum of Mol-2 and the
experimental value. The Kohn-Sham results slightly overestimated the experimental value of 29
× 10−3 with calculated glum of 32 and 40 × 10−3 using the B3LYP and CAM-B3LYP functionals,
respectively. On the other hand, the CAS calculations slightly underestimated the experimental
dissymmetry factor with calculated values of 16 and 22 × 10−3 at the CASSCF and CASPT2
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Table 2: Principal calculated CPL parameters for the lowest n ← �∗ transition in Mol-1, Mol-2,
Mol-3 and Mol-4. The calculated vertical transition energies (ΔE in eV), rotatory strengths (R in
esu2 cm2), electric dipole moments (ED in esu2 cm2) and absorption dissymmetry factors (glum)
are compared to previous calculated values and experimental data when available.a

Compd Level of Theory Transition ΔE R(×10−40) ED(×10−40) glum(×10
−3) Refb

Mol-1 B3LYP GS←ES1 3.19 11.40 826 55.2
CAM-B3LYP GS←ES1 3.27 8.95 755 47.4
CAS(2,2)SCF GS←ES1 3.10 7.22 968 29.8
CAS(2,2)PT2 GS←ES1 3.11 7.09 989 28.7
CAM-B3LYP GS←ES1 3.21 8.85 749 47.2 [39]
CCSD GS←ES1 3.20 7.74 887 34.8 [39]
Expt. GS←ES1 - - - ≈ 27 [112], [113]

Mol-2 B3LYP GS←ES1 2.80 32.02 4009 31.9
CAM-B3LYP GS←ES1 2.92 27.59 2746 40.2
CAS(4,3)SCF GS←ES1 2.79 28.58 7239 15.8
CAS(4,3)PT2 GS←ES1 2.42 30.26 5474 22.1
CAM-B3LYP GS←ES1 2.86 30.96 2699 45.9 [37]
CCSD GS←ES1 2.85 12.52 1338 37.4 [39]
CC2 GS←ES1 2.54 12.6 - - [114]
Expt. GS←ES1 - - - 29.4 [38]

Mol-3 B3LYP GS←ES1 2.93 18.59 1210 61.4
GS←ES2 2.94 0.04 4203 0.4

CAM-B3LYP GS←ES1 3.01 12.91 1116 46.3
GS←ES2 3.02 -1.32 3068 -1.7

CAS(2,2)SCF GS←ES1 2.96 17.75 1914 37.1
GS←ES2 2.99 -1.66 4377 -1.5

CAS(2,2)PT2 GS←ES1 2.77 16.86 1899 35.5
GS←ES2 2.77 0.75 4166 0.7

CCSD GS←ES1 2.99 9.36 1311 28.5 [39]
GS←ES2 3.01 -0.87 2884 -1.2 [39]

Expt. - - - 15.7 [38]
Mol-4 B3LYP GS←ES1 2.20 -13.49 1163 -46.4

GS←ES2 2.49 2.42 3992 2.4
CAM-B3LYP GS←ES1 2.35 -9.48 1372 -27.6

GS←ES2 2.57 3.20 3047 4.2
CAS(2,2)SCF GS←ES1 2.36 -14.12 4249 -13.3

GS←ES2 2.56 2.12 4069 2.1
CAS(2,2)PT2 GS←ES1 1.96 -14.93 3392 -17.6

GS←ES2 2.10 1.27 4107 1.2
CCSD GS←ES1 2.42 -6.82 1788 -15.2 [39]

GS←ES2 2.60 3.41 2995 4.5 [39]
Expt. - - - < 3 [38]

a additional data with other functionals and using the dipole-velocity representation for the calculation of
R are available in Supporting Information. b present calculations where no reference is given.
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level, respectively. Interestingly, CCSD produced a glum of similar magnitude,39 but with calcu-
lated R and ED moment much smaller than those obtained with the TDDFT or CAS calculations.
Similarly to Mol-1, the dissymmetry factor of Mol-2 decreases when going from absorption to
emission. In that case, the reduction is less pronounced in magnitude and follows the reduction of
R. As explained by Caricato,117 the magnitude of R depends on the angle formed by the ED and
MD moments, which is related to the dihedral angle formed by the C=O and C=C bonds. The
rotatory strength is maximized when the two groups are coplanar, whereas R becomes null when
they are out-of-plane. In Mol-2, the dihedral angle between the two fragments decreases from
142 to 120◦ when going from the GS to the ES. This decrease of co-planarity goes along with a
decrease of charge transfer in the ES. Indeed, the �(C=C) → �∗ character decreases from 40 to
28 % when going from the GS to the ES at the CASPT2 level.

Previous TDDFT and CCSD calculations performed on Mol-3 and Mol-4 have shown that
for these two compounds the potential energy surface of the ES has two minima that exhibit very
different chiroptical properties.37, 39 These two minima are labelled ES1 and ES2 in the following
discussion and correspond respectively to structures in which the carbonyl bond has bent away
and toward the C=C bond upon the n → �∗ excitation (see Figures S4 and S5). In Mol-3, ES1
exhibits a relatively large and positive calculated glum, whereas the dissymmetry factor associated
to ES2 is small and even negative. The best agreement with the experimental value was obtained
at the CCSD level with a calculated glum of 28 × 10−3 with the ES1 structure.39 On the other hand,
the TDDFT method gave much larger values with glum = 46 and 61 × 10−3 when using the CAM-
B3LYP and B3LYP functionals, respectively. The CAS calculations were found lying in between
these two methods with calculated dissymmetry factors of 37 and 35 × 10−3 at the CASSCF
and CASPT2 level, respectively. In Mol-4, ES1 exhibits a sizable negative dissymmetry factor
that ranges from -13 to -46 × 10−3 when going from CASSCF to B3LYP results, respectively,
strongly overestimating the experimental value. Despite much larger vertical transition energies,
the calculated glum associated to the ES2 structure were found closer to the experiment with glum =

2 and 1 × 10−3 at the CASSCF and CASPT2 level, respectively. As explained originally by Pecul
et al.,37 the CPL properties in Mol-3 and Mol-4 are related to the excited state ordering and to this
purpose, the adiabatic transition energies must be taken into account. The ES1 structure is favored
with the B3LYP functional for both Mol-3 and Mol-4 (see Table S5), however, the ES2 structure
in Mol-4 becomes almost iso-energetic to ES1 using the CAM-B3LYP functional, and hence,
increasing the population of the ES2 structure. It is worth mentioning that previous adiabatic
CAM-B3LYP and CC calculations have found the ES2 structure more stable than ES1.37, 39

3.2 CD parameters in a Cobalt(III) Complex

The CD spectrum of the Cobalt(III) complex Λ-[Co(en)3]3+ has been extensively studied both ex-
perimentally and theoretically since the early work of Kobayashi and Mathieu.118, 119 The rotatory
strengths for the low-energetic part of the spectrum were characterized with measurements per-
formed on the crystal structure at 80 K and in aqueous solution at room temperature.16, 120 A first
characteristic of the spectrum is the two CD bands around 21000 cm−1 that exhibit surprisingly
large R with opposite sign (R ≈ ± 55 × 10−40 cgs). These bands were assigned to transitions
into the excited singlet states spanning the E and A2 irreducible representations (“irreps”) of the
D3 point group.121–124 In order to rationalize the magnitude and the sign of these R, several mod-
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Figure 3: (left) Energy state diagram for the lowest states of Λ-[Co(en)3]3+ extracted from
CAS(10,12)SCF-SR/SO calculations performed on the experimental structure taken from Ref 69.
The scalar (SR) and spin-orbit (SO) states of Λ-[Co(en)3]3+ are labelled in the D3 and D∗

3
sym-

metry point groups, respectively. The parent SR states of Oℎ symmetry are given for comparison.
(right) Plot of the iso-surfaces (± 0.03 au.) of the state-averaged natural orbitals.

els based on CF or ligand-field (LF) theory were developed during the 1960s and 1970s.125–129

Despite the large amount of analysis, none of these models were able to fully reproduce the exper-
imental data as they were designed to describe only metal-centered 3d transitions. The importance
of the metal-ligand interactions on the CD spectrum were then demonstrated by using restricted
Hartree-Fock theory in the early 1990s,130 and fully rationalized by Ziegler and coworkers with the
use of TDDFT calculations.42–45, 131 Another important feature in the CD spectrum is the presence
of weakly intense CD bands corresponding to formally spin-forbidden transitions into the lowest
excited triplet states.120 To the best of our knowledge, the intensities of these transitions have
not been studied yet with the help of ab-initio calculations, principally because of the necessity
to include the SOC effects. This work represents therefore a first attempt to calculate the optical
activity of these spin-forbidden 3d transitions.

3.2.1 Electronic Structure of Λ-[Co(en)
3
]3+

The electronic structure of Λ-[Co(en)3]3+ has been already described using CF theory,121–124 and
different flavors of DFT and TDDFT calculations.42–45, 131 Its principal features are summarized
in Figure 3 with a state energy diagram obtained from the CAS(10,12)SCF-SR/SO calculations
and plots of the iso-surfaces of the natural orbitals generated in this active space. At the SR
level, the GS corresponds to the non-degenerate singlet 1A1 in the D3 symmetry point group.
This state derives from an 1A1g singlet in the parent Oℎ symmetry point group and corresponds
formally to a t6

2g
e0
g

electronic configuration. As shown in Figure 3, a strong covalent interaction of
� character takes place between the metal-centered orbitals spanning the eg irreps and two ligand-
centered orbitals of same symmetry. The bonding combinations of this interaction are doubly
occupied and are labelled �, whereas the antibonding combinations (labelled �∗) are vacant and
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destabilized in energy. On the other hand, the 3d orbitals of formally t2g symmetry remain non-
bonding in character, and are therefore doubly occupied in the GS. The first set of ESs is found
lying around 11500 cm−1 above the GS and corresponds to a doubly degenerate triplet state 3E

and a non-degenerate triplet 3A2. These SR triplet states derive from the splitting by the trigonal
field of the parent 3T1g state and correspond to a t5

2g
e1
g

electronic configuration. The next triplet
states are calculated at 16000 cm−1 above the GS and derive from the parent 3T2g state. Here, the
triplet states span the 3E and 3A1 irreps of the D3 point group. Finally, the lowest singlet states are
localized around 20000 and 31000 cm1 above the GS and derive from the parent triply degenerate
singlet states 1T1g and 1T2g, respectively. Introduction of the SOC does not drastically change the
electronic structure. The energy of the SR singlet states is barely affected by the SOC, whereas
the components of the SR triplets 3E and 3A1 on one side, and the components of 3E and 3A2 on
the other side, are allowed to mix with each others, leading to a small energetic splitting of the
triplet states.

3.2.2 CD parameters of Λ-[Co(en)
3
]3+

The calculated energies, ED moments andR associated to the lowest spin-allowed transitions ofΛ-
[Co(en)3]3+ are given in Table 3. Experimentally, the lowest spin-allowed transitions, measured
at ca. 21000 cm−1, correspond to excitations into the excited singlet states E and A2, with R

values for the crystal structure of +59.9 and -55.7 × 10−40 cgs,132 respectively. A relatively good
agreement with the experimental data was obtained at the TDDFT level. For instance, the use of
the CAM-B3LYP functional leads to calculated R of +42.79 and -33.17 × 10−40 cgs for the E and
A2 transitions, respectively. As shown in Tables S11 and S12, the magnitude of the calculated R

is strongly functional and solvent dependent, while the energy of the transitions is always slightly
overestimated. Nevertheless, our calculated values are of the same order of magnitude with those
previously calculated with a similar approach.42, 45 At the CASPT2 level, the E and A2 bands are
calculated at 19950 and 20867 cm−1, respectively, in good agreement with the crystal structure
data. However, the R associated to these bands are relatively small with calculated values of 8.50

Table 3: Calculated energies (ΔE, cm−1), electric dipole moment (ED, × 10−40 esu2 cm2) and
rotatory strengths (R, × 10−40 esu2 cm2) for the formally lowest spin-allowed transitions in Λ-
[Co(en)3]3+. The CAS and RAS results are compared to the TDDFT and experimental data when
available.a

CAS(10,12)PT2 RAS[18,2,0,4,12,0]CI-PT2 CAM-B3LYP Expt.
ΔE ED R ΔE ED R ΔE ED R ΔE R

E 19950 15 8.50 19549 111 28.46 22643 323 42.79 20760b +59.9b

21300c +4.80c

A2 20867 22 -9.04 20546 176 -25.13 22598 382 -33.17 20990b -55.7b

23700c -0.4c

A1 29007 0 0.00 28653 0 0.00 29117 0 0
E 29862 0 -0.01 29441 91 -0.08 29526 295 -0.24 29400c +0.70c

a The state labels correspond to those of the D∗
3

double point group as used in Figure 3 and derive from the
scalar 1T1g and 1T2g state of Oℎ parentage. b Experimental data on crystal structure at 80 K extracted from
Ref 45. c Experimental data in solution at room temperature extracted from Ref 120.
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and -9.01 × 10−40 cgs for E and A2, respectively. Such small calculated values can be explained
by the too localized character of the orbitals included in the active space. Indeed, as originally
described by Mason and Richardson,123, 133 the rotatory strengths of the d-d transitions may gain in
magnitude via a dynamic coupling that involves a metal-ligand polarization mechanism. Similarly,
Fan and Ziegler have shown more recently that the intensity of the calculated R at TDDFT level
is related to the metal-ligand mixing in the valence orbitals.45 To this purpose, we increased the
size of our active space by including m doubly occupied orbitals that are principally localized on
the diamine ligands (see Section 2 for more details). The results are presented in Table 3 for the
RAS[18,2,0,4,12,0] active space, while additional results can be found in Tables S7 - S10 of the SI.
It is clearly visible in Table 3 that the introduction of the ligand based orbitals in the active space
leads to a large increase of the calculated R associated to the A1 → E and A1 → A2 transitions,
with calculated values of +28.46 and -25.13 × 10−40 cgs. The ligand-based orbitals responsible
for this increase in magnitude of R are shown in Figure S6 and correspond to �-type bonding
metal-ligand orbitals with some 4p Cobalt character. The excitations from these orbitals into the
valence metal-centered orbitals leads to a mixing of gerade and ungerade configurations in the
wavefunction that strongly increases the magnitude of the ED transition moments, and hence the
rotatory strengths (see Tables S7 and S10).

The second set of excited singlet states is calculated around ca. 29000 cm−1 above the GS from
the CASPT2 calculations. As expected from the selection rules of group theory, the A1 → A1 does
not exhibit any optical activity as it is both formally ED and MD forbidden. On the other hand,
the A1 → E transition is permitted and an extremely small and negative R is obtained at the CAS
level. The increase of the active space leads again to a sizable increase in magnitude of the ED

moment and for the largest RAS space investigated here, aR of -0.08× 10−40 cgs is calculated. For
comparison, a better agreement is obtained at the TDDFT level for the excitation energies, while
a slightly more negative R is calculated (see Tables S11 and S12). The difference of sign with
the experimental data is attributed to structural changes between the fully characterized crystal
structure used for the calculations and the admixture of structures present in solution. For instance,
the RAS calculations performed on the optimized structure of Λ-[Co(en)3]3+ gave a small and
positive R of 0.33 × 10−40 cgs (see Table S10), in good agreement with the 0.70 × 10−40 cgs
measured in solutions.

The calculated CD parameters for the spin-forbidden transitions are given in Table 4 and are
compared to the experimental data. The magnitude of the calculated R is a direct consequence
of the SOC and is proportional to the triplet-singlet energy gaps Δ1 and Δ2 shown on Figure 3.
Indeed, in the Oℎ symmetry point group the 3T1g triplets are allowed to mix with the 1T2g states,
whereas the 3T2g states couple with the 1T1g states. At the CAS(10,12)PT2-SO level, the calcu-
lated R for the states with 3T1g parentage are almost null, while very small R are calculated for
some of the states with 3T2g parentage. Introduction of ligand-to-metal excited configurations in
the wavefunction via the RASCI calculations leads to a slight improvement in the magnitude of the
calculated transition moments. This is particularly true for the excited states of 3T2g parentage,
where a sizable increase of the ED moment is obtained at the RASCI level. Numerical agree-
ment with the experimental data is not achieved, but the calculations reproduce the difference in
magnitude of R between the two sets of transitions.

The origin of the small calculated R for these transitions are threefold. Firstly, the CAS and
RAS calculations overestimate the SR Δ1 and Δ2 energy gaps, which reduce the admixture of
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singlet states in the triplet wavefunctions via the SOC, and hence reduce the magnitude of the
transition dipole moments. This argument is particularly true for the transitions involving the
state of 3T2g parentage, as the 1T1g states are closely lying above (see Figure 3). Indeed, if one re-
calculates the CD parameters of Λ-[Co(en)3]3+ by using the RAS[18,2,0,4,12,0]CI wavefunctions
in combination with the experimental excitation energies, the calculated R for the first two tran-
sition in 3T2g increases from ca. |0.4| to |2.1| × 10−40 cgs, respectively (see Table S9). Secondly,
the use of the effective one-electron Atomic Mean Field Spin-Orbit (AMFI) operator for the treat-
ment of the SOC can lead to a lost of accuracy in the calculations of the transition dipole moments
for spin-forbidden transitions. For instance, the calculated ED moments and R of singlet-triplet
transitions in a set of ketones were found almost twice smaller when using the AMFI operator
compared to a full two-electron spin-orbit operator.134 Finally, it is worth mentioning that a more
accurate calculation of the R should require to take into account the influence of the vibronic
and Jahn-Teller effects which in both cases, by lowering the symmetry, would bring additional
intensity in the ED transition moments.

3.3 CPL parameters of an Europium(III) Complex

The [Eu(DPA)3]3 – complex represents a good model compound for the calculation of CPL pa-
rameters in Ln-based systems. Chemically, the main interest of this system resides in the fact that
the DPA ligands, which generate the Λ or Δ helical arrangement, are easily substituted in order to
take advantage of the antenna effect, and hence, tune the chiroptical properties.135 Therefore, the
[Eu(DPA)3]3 – complex is often seen as the molecular backbone for the design of chiral biological

Table 4: Calculated energies (ΔE, cm−1), electric dipole moment (ED, × 10−40 esu2 cm2), ro-
tatory strengths (R, × 10−40 esu2 cm2) for the formally lowest spin-forbidden transitions in Λ-
[Co(en)3]3+. The CAS and RAS results are compared to the TDDFT and experimental data when
available.a

CAS(10,12)PT2 RAS[18,2,0,4,12,0]CI-PT2 Expt.
ΔE ED R ΔE ED R ΔE R

(3T1g) E 12010 0.65 0.01 11610 0.48 0.01 13500 -0.005b

A2 12119 0.24 0.04 11722 0.36 0.04 +0.068c

E 12226 0.77 0.05 11825 0.98 0.06
A2 12458 0.08 -0.02 12057 0.08 -0.04
E 12793 0.15 -0.07 12396 0.069 -0.05
A2 13001 0.07 0.00 12605 0.06 0.00

(3T2g) A1 16048 0.27 -0.13 15649 2.00 -0.35 17000 +0.07b

E 16122 1.29 0.23 15722 2.24 0.32 +0.32c

E 16622 0.34 -0.18 16166 0.20 0.13
A1 16831 0.39 0.03 16363 0.30 0.02
A1 17109 0.41 0.06 16827 0.28 -0.04
E 17178 0.12 -0.03 16765 0.69 0.09

a The state labels correspond to those of the D∗
3

double point group as used in Figure 3 and derives from the
scalar 3T1g and 3T2g state of Oℎ parentage. b Experimental data in solution at room temperature extracted
from Ref 120. c Experimental data on crystal structure at 80 K extracted from Ref 120.
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Figure 4: (left) Energy state diagram for the lowest states of Λ-[Eu(DPA)3]3 – extract from
CAS(6,7)PT2-SO calculations performed on the optimized structure. The SO states of Λ-
[Eu(DPA)3]3 – are labelled using the D∗

3
double point group of symmetry. (right) Plot of the iso-

surfaces (± 0.03 au.) of the state-averaged natural orbitals included in the RAS[6,0,2,0,7,5] space.

sensors.24, 136 Theoretically, the principal difficulty in the CPL calculations of Ln complexes arises
in the correct estimation of the ED TDMs associated to the 4f transitions. It has been shown re-
cently that the use of the CASSCF approach, with an AS containing the seven 4f orbitals, is able
to recover at least some parts of the ED moments.137, 138 To obtain qualitative agreement with the
experiment, one must also take into account the different mechanisms that drive the intensity of
the chiroptical activity, namely the static and dynamic coupling.27 The former corresponds to the
mixing of the 4f n electronic configurations with the excited configurations 4f (n−1)5d1 in order
to break the parity rule. This mechanism is strongly related to potential covalent effects between
the Ln center and the coordinating ligands. On the other hand, the dynamic coupling mechanism
corresponds to the coupling between the quadrupole moment of the Ln center with the induced
dipole moment of the ligands generated by the oscillating light.139 This mechanism corresponds
to the mixing of the 4f n wavefunction with additional configurations resulting from intra-ligand
excitations.
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3.3.1 Electronic Structure of [Eu(DPA)
3
]3 –

The electronic structure of [Eu(DPA)3]3 – has been already extensively studied both theoretically
and experimentally,56, 140–143 and therefore, is only briefly reminded. As described on the left
hand side of Figure 4, the 4f 6 electronic configuration of the Eu(III) free ion gives rise via the
Coulomb repulsion to a septet ground term 7F that is well separated from the lowest excited term
5D. Introduction of the SOC leads to a splitting of these terms into the Russel-Saunders levels
characterized by their total angular momentum J . For the free ion, the ground level corresponds
to the non-degenerate 7F0, and the excited levels ordering goes with the increasing value of J .
Similarly, the excited quintet term 5D is split into five 5DJ levels with J = 0 being the lowest in
energy. The trigonal CF generated by the DPA ligands then lifts the degeneracy of these levels
and mixes the different mJ states. In Figure 4, the states of [Eu(DPA)3]3 – are labelled using the
irreps of the D∗

3
symmetry double point group. The free ion 7F0 gives the non-degenerate A1 state

as the GS in the complex. The trigonal environment splits the 7F1 level into 3 states spanning the
E and A2 irreps, whereas the degeneracy of the 7F2 level is lifted into 2E ⊕A1 states.

The optical activity in Eu(III)-based complexes is principally due to transitions from the ex-
cited 5D0 state into the different CF states of the 7FJ levels.135, 143 In [Eu(DPA)3]3 – , the excited
A1 state of 5D0 parentage is calculated at 20690 and 17760 cm−1 above the GS at the SCF-SO
and PT2-SO level, respectively. For comparison, this emitting state was characterized experimen-
tally between 17180 and 17300 cm−1 above the GS,144–146 revealing the importance to take into
account the dynamic correlation effects in the calculations to properly reproduce the electronic
spectra. At the CASPT2-SO level, the calculated energies for the 7F1 ←

5D0,
7F2 ←

5D0 and
7F3 ←

5D0 emissions are of ca. 17375, 16610 and 15597 cm−1, respectively. These calculated
values slightly overestimate the experimental emission energies that were characterized with CPL
measurements.147 Indeed, the experimental CPL spectrum of Λ–Eu(DPA) 3 –

3 exhibits positive
CPL bands at 16949 and 15455 cm−1, corresponding to the emissions into the 7F1 and 7F3 states,
respectively, whereas a negative CPL band, assigned to the 7F2 ←

5D0 transitions, was measured
at 16260 cm−1. The calculated 7F4 ←

5D0 transition energy is of ca. 14494 cm−1 in perfect agree-
ment with experimental the positive and negative CPL bands measured at ca. 14400 cm−1.

3.3.2 CPL parameters of Λ- and Δ-Eu(DPA) 3 –

3

The calculated emission and CPL spectra of Λ-[Eu(DPA)3]3 – with the different active spaces
investigated are shown in Figure 5, while the corresponding spectra for the Δ enantiomer are
shown in Figure S8 of the SI. The reader is reminded that the emission (I) and the CPL (ΔI)
intensities are proportional to the calculated dipole moments and rotatory strengths, respectively,
via the Equations 4 and 5 given in Section 2.3. At the CAS(6,7)PT2-SO level, only two bands
are visible in the emission spectrum. The strongest band in emission is calculated around 17500
cm−1 and corresponds to the 7F1 ←

5D0 transitions. These transitions are intense due to their
predominant MD character. A weaker band is calculated at ca. 14500 cm−1 and corresponds to the
7F4 ←

5D0 transitions, which contain enough ED character to be visible in the spectrum. As shown
in Table S14, the 7F2,3 ←

5D0 transitions have too small transition moments to be characterized
in the calculated emission spectrum. The corresponding calculated CPL spectrum reveal a more
complex structure with the presence of additional bands. The most intense band in emission
(7F1 ←

5D0) is now split into two bands with a very intense and positive one, corresponding to
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Figure 5: Normalized emission (I) and CPL (ΔI) spectra in Λ-[Eu(DPA)3]3 – for the 7FJ ←

5D0 (J = 0 - 4) transitions obtained at the CAS(6,7)PT2-SO, RAS[12,2,2,3,7,3]CI/PT2-SO and
RAS[6,0,2,0,7,5]CI/PT2-SO levels. The numerical values used for these spectra are given in Table
S13. The dipole moments used for the emission plots take into account the ED, MD and EQ

transition moments.

E ← A1 transitions, and a negative band corresponding to the A2 ← A1 transition. A second band
in CPL appears at 16610 cm−1 and corresponds to an emission into one of the E states of the
7F2 level. Similarly, emissions into the E and A2 states of the 7F4 level generate a negative and
positive signal, respectively in the CPL spectrum. It is important to note that both the calculated
dipole moments and rotatory strengths of the 7F3 ←

5D0 transitions are extremely small (Table
S14), but the associated dissymmetry factors are excessively large. This behavior only results
from the definition of g in Equation 3 and a division by almost zero.

Introduction of the ligand-based� and�∗ orbitals at the RAS[12,2,2,3,7,3]CI/PT2 level strongly
affects the shape of the calculated spectra. In the emission spectrum, an additional band appears at
ca. 17100 cm−1 and corresponds to emissions into the E states of the 7F2 level. The increase of the
emission intensity is characterized in Table S14 by the large increase in magnitude of the calcu-
lated dipole moments. For instance, the calculated dipole moment of the firstE ← A1 emission in-
creases from 18 to 317 10−44 cgs when going from CAS(6,7)PT2-SO to RAS[12,2,2,3,7,3]CI/PT2-
SO, respectively. It is important to mention that this increase in magnitude results only from the
ED contributions and not from the MD ones. This is in good agreement with the experimental
observations and the hypersensitivity of the 7F2 ←

5D0 emissions to the environment. Overall, the
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emission intensities of the other transitions are not affected by the presence of the ligand orbitals.
The shape of the CPL spectrum is also strongly modified when the ligand � orbitals are included
in the active space with an inversion of sign of the two strongest CPL bands. Indeed, at the RAS
level the 7F1 ←

5D0 transitions afford a negative CPL band whereas the 7F2 ←
5D0 transitions

leads to a positive CPL band.
The presence of the Eu(III) 5d orbitals in the RAS[6,0,2,0,7,5] space also modify the shape

of the calculated spectra. Similarly to the introduction of the ligand-based � orbitals, the mixing
of the 4f 6 CFs with the 4f 65d1 CFs leads to a strong increase in magnitude of the 7F2 ←

5D0

emission band, and in a lesser extent of the 7F4 ←
5D0 one, when compared to the CAS spec-

trum. This increase in magnitude is found much more pronounced than the one calculated with
the ligand � orbitals. For instance, the calculated dipole moment of the excitation into the lowest
E state of the 7F2 level increases from 317 to 1076 10−44 cgs when using the RAS[12,2,2,3,7,3]
and RAS[6,0,2,0,7,5] spaces, respectively (see Table S14). On the other hand, the magnitude
of the calculated dipole moment for the emissions into the 7F1 and 7F3 levels is much less af-
fected by the 5d orbitals because of their ED forbidden character. The CPL spectrum calcu-
lated at the RAS[6,0,2,0,7,5]CI/PT2-SO level is comparatively similar to the one obtained at the
CAS(6,7)PT2-SO level. The 7F1 ←

5D0 and 7F2 ←
5D0 transitions afford positive and negative

CPL bands, respectively. The large increase of the ED moment for these transitions leads to a
strong increase of the calculated R, and hence of the CPL intensities. The bands associated to
emissions into the 7F3 and 7F4 levels afford in both cases positive CPL bands of similar intensities
to the one calculated at the CAS level.

The comparison with the CPL measurements performed in solution by Riehl and coworker,147

reveals that the best agreement in term of energy and sign of the CPL bands is obtained when the
Eu(III) 5d orbitals are included in the active space. Indeed, CPL bands with positive, negative
and positive sign were experimentally assigned to the 7F1 ←

5D0,
7F2 ←

5D0 and 7F3 ←
5D0

transitions, respectively, whereas the 7F4 ←
5D0 transitions exhibited two CPL bands with posi-

tive and negative ΔI . Introduction of the ligand � orbitals in the active space does not allow to
produce the correct signs of the CPL bands and has a much smaller influence on the magnitude of
the calculated dipole moments. These results suggest, surprisingly, that the effects from the static

coupling are more important in [Eu(DPA)3]3 – than those from the dynamic coupling. However,
in order to achieve quantitative numerical agreement with the experimental data, it is likely nec-
essary to combine the two strategies and design much larger active spaces. Active spaces of the
envisioned size are out of reach when using the RAS method used in this work, but will likely be
feasible with spin-orbit matrix product state (MPS-SO) techniques.148

4 Conclusions and Perspectives

The CD and CPL properties of four organic ketones, the Λ-[Co(en)3]3+ complex, and of the
[Eu(DPA)3]3 – enantiomers were investigated using CASSCF/PT2 and RASSCF/PT2 wavefunc-
tions. The use of these multi-reference approaches, in combination with a treatment of the spin-
orbit coupling a posteriori via the RASSI method, allowed us to characterize the chiroptical prop-
erties for both the spin-allowed and spin-forbidden transitions of the systems investigated.

The study of the organic ketones have shown that our WFT approach performs in comparable
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agreement with the mono-determinental methods (TDDFT or CC) that are usually used in the case
of spin-allowed transitions. In that case, the reduction of the dissymmetry factors associated to
the n ↔ �∗ transitions between absorption and emission was properly reproduced by our calcula-
tions and explained by the large increase in magnitude of the ED moment in emission. Secondly,
a satisfactory agreement was obtained between the TDDFT and WFT results for the calculated
rotatory strengths of the spin-allowed 3d − 3d transitions in Λ-[Co(en)3]3+. This agreement was
achieved at the RAS level by including in the wavefunction additional configurations correspond-
ing to excitations from the two highest occupied ligand-based orbitals into the Cobalt centered 3d

orbitals. This mixing of configurations led to a large increase of the calculated ED moments, and
hence, of the rotatory strengths. At our best level of calculations, the calculated R were found
slightly underestimating the magnitude of the experimental values characterized for the crystal
structure. Using the same approach, the CD properties of the spin-forbidden transitions were also
investigated. At the RAS level, the numerical agreement was not achieved but the calculated R

were found in the right order of magnitude. Additionally, it was shown that the magnitude of the
calculated R is strongly dependent from the SOC between the SR excited triplet and singlet spin
states and the energy gap between these states.

Finally, the emission and CPL properties associated to the 4f−4f excitations in the [Eu(DPA)3]3 –

complex were also calculated using WFT. The magnitude of the calculated emission and CPL
spectra was found to be very sensitive to the nature of the chosen active space. The introduction
of the ligand based � − �∗ excitations led to an expected increase of the emission intensities of
the ED-allowed 7F2 ←

5D0 transitions because of a large increase of the calculated ED moments.
However, introduction of these ligand configurations led to drastic changes in the CPL spectrum
with an inversion of sign for the two largest bands in opposition with the experimental characteri-
zations. The introduction of the 4f 55d1 configurations in the wavefunction also led to a very large
increase in magnitude of the calculated ED moments, and hence of the emission intensities. Addi-
tionally, the signs and the energies of the calculated CPL bands were found in good agreement with
the experimental data. These results indicate that the introduction of the 4f 55d1 configurations in
the wavefunction are necessary in order to calculate CPL spectra that qualitatively reproduce the
experimental ones. However, in order to reach quantitative agreement, introduction of both the
5d and ligand � orbitals in the active space would also be necessary. For this purpose, the density
matrix renormalization group-based MPS-SO approach,148, 149 is a method of choice and will be
investigated in follow-up work.
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Supporting Information

Additional data regarding the KS-TDDFT and WFT CD and CPL parameters for Mol-1 - Mol-

4, natural transition orbitals, WFT and TDDFT CD parameters of Λ-[Co(en)3]3+ and emission
and CPL spectra of Δ-[Eu(DPA)3]3 – . This material is available free of charge via the Internet at
http://pubs.acs.org.
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The absorption CD and emission CPL properties of a series of four bicyclic ketones, the Λ-
[Co(en)3]3+ complex, and of the Δ- and Λ-[Eu(DPA)3]3 – enantiomers are calculated with the
help of multi-reference wavefunction calculations including spin-orbit coupling that allow to treat
both spin-allowed and spin-forbidden transitions.
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