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Untargeted metabolomics unveil 
alterations of biomembranes 
permeability in human HaCaT 
keratinocytes upon 60 GHz 
millimeter-wave exposure
Pierre Le Pogam1, Yann Le Page2, Denis Habauzit   2, Mickael Doué1, Maxim Zhadobov1, 
Ronan Sauleau1, Yves Le Dréan2 & David Rondeau   1,3

A joint metabolomic and lipidomic workflow is used to account for a potential effect of millimeter 
waves (MMW) around 60 GHz on biological tissues. For this purpose, HaCaT human keratinocytes 
were exposed at 60.4 GHz with an incident power density of 20 mW/cm², this value corresponding to 
the upper local exposure limit for general public in the context of a wide scale deployment of MMW 
technologies and devices. After a 24h-exposure, endo- and extracellular extracts were recovered to 
be submitted to an integrative UPLC-Q-Exactive metabolomic and lipidomic workflow. R-XCMS data 
processing and subsequent statistical treatment led to emphasize a limited number of altered features 
in lipidomic sequences and in intracellular metabolomic analyses, whatever the ionization mode (i.e 0 
to 6 dysregulated features). Conversely, important dysregulations could be reported in extracellular 
metabolomic profiles with 111 and 99 frames being altered upon MMW exposure in positive and 
negative polarities, respectively. This unexpected extent of modifications can hardly stem from the 
mild changes that could be reported throughout transcriptomics studies, leading us to hypothesize that 
MMW might alter the permeability of cell membranes, as reported elsewhere.

Owing to the saturation of the lower part of the microwave spectrum and to the growing demand for higher data 
rates, the millimeter waves (MMW) are increasingly used for wireless communications, i.e. for Wireless Local/
Personal/Body Area Networks (WLAN, PAN, BAN) or in the context of the upcoming 5 G mobile standard1. 
These electromagnetic radiations correspond to frequencies ranging from 30 to 300 GHz (free-space wavelengths 
spanning from 10 to 1 mm). Interestingly, MMW have been used for therapeutic purposes indicating that physi-
ological processes might be altered upon exposure to these radiations2. Accordingly, the assessment of the poten-
tial effects of MMW on human health is thus of paramount importance prior to the wide scale deployment of 
technologies exploiting this band. MMW are known for their shallow penetration of human tissues (between a 
few tenth of millimeter to a millimeter), making skin keratinocytes and free nerve endings the primary targets for 
MMW3. It is assumed that some general effects of MMW may be initiated by the release of skin-secreted factors 
into the blood stream or through the stimulation of superficial free nerve endings4,5.

The shallow penetration depth of MMW in skin, results in elevated levels of Specific Absorption Rates (SAR) 
compared to lower microwave frequencies with the same Incident Power Density (IPD). As a consequence, this 
leads to a noticeable local heating for IPD exceeding typically 5 mW/cm2 6. Accordingly, one of the main safety 
concerns regarding these frequencies is the local heating of skin caused by the absorption of MMW energy in the 
human body7. Whether electromagnetic-field specific effects occur upon exposure to MMW8–12 or not13–17 has 
been a matter of debate for a long period of time. Besides the warm-up effect, the mechanisms accounting for 
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non-thermal effects occurring at low-power exposure have not been fully demonstrated yet so that their under-
standing remains an open challenge18. Consequently, the guidelines established by the International Commission 
on Non Ionizing Radiation Protection (ICNIRP) aim at circumventing thermal hazards associated with MMW 
exposure. This led to define two exposure scenarios. For far-field exposure, the IPD is limited to 1 mW/cm². For 
body-centric wireless networks that are related to very limited exposition area, the IPD limit is set at 20 mW/cm² 
(averaged over 1 cm²). While such exposure scenarios may trigger a heat-shock response, it is assumed that the 
thermoregulation due to blood flow effect might be efficient to avoid any thermal damage.

Notwithstanding decades of investigations and a significant number of studies dedicated at unravelling the 
effects of MMW on biosystems, the number of reliable and reproducible experimental data remains scarce, 
most likely stemming for difficulties in dissociating thermal and electromagnetically pure effects. Our group 
aimed at evaluating the biological effects of MMW in the 60 GHz band. Previous in vitro studies revealed that 
MMW at 57–64 GHz exert no influence on protein homeostasis for IPD low enough to prevent any temperature 
increase19–21. Moreover, transcriptomic studies highlighted no, or very weak, effect of MMW on keratinocyte gene 
expression under athermal conditions22–24. By contrast, it must be mentioned that some authors have pointed out 
the MMW effects on cell membranes, indicating that permeability changes could be induced by a direct effect on 
membrane proteins or phospholipids domain organization25. The possibility of permeation across the lipid bilayer 
led us to consider the metabolomic profiling of human keratinocytes as a pertinent next step to better understand 
the interactions between MMW radiation and cell membrane in the context of human body exposure to 60 GHz 
waves. The goal of the present study is to apply an untargeted metabolomic strategy based on UHPLC-HRMS 
assessment of metabolic changes appearing upon exposure to MMW in human HaCaT keratinocytes cell lines. 
Cells were exposed at 60.4 GHz with an IPD of 20 mW/cm² with the temperature being artificially maintained 
constant between non-exposed and exposed samples26. As metabolites represent the sharp end of systems biology, 
including multiple up-stream steps, the keratinocytes were exposed for 24 hours to enable possible changes. Then, 
to afford as wide a coverage of HaCaT keratinocytes chemistry as possible, lipidomic and metabolomic profilings 
were performed in both intra- and extracellular fractions in positive and negative polarities using a metabolomic 
workflow that we had previously validated27.

Results and Discussion
Data quality assurance.  The analytical strategy adopted herein was based on two different chromato-
graphic separation methods (HILIC and RPLC, see experimental section) coupled to detection in mass spectrom-
etry involving both positive and negative-ion modes. This strategy was applied by distinguishing the endo- and 
exocellular fractions as well to deepen the coverage of the metabolome. As a result, this led to analyze each bio-
logical sample 8 times, in distinct sessions of analyses.

Prior to any data processing or analysis, several quality checks were adopted (i.e column pressure checking, 
variations of internal standards in QC/study samples and instrumental stability in terms of retention time and 
accurate masses) along the whole batch. Accordingly, internal standards were spiked into each sample prior to 
LC-HRMS analyses to assess retention time stability, the consistency of signal intensities and mass accuracy along 
the whole batch. No significant drift in retention time could be evidenced. Likewise, standard accurate mass 
measurements errors always remained below 5 ppm. For metabolomic analyses, the selected external standards 
were leucine-d3 (RT 5.97 min), tryptophan-d3 (RT 6.10 min), indole acetic acid-d5 (RT, 1.81 min) and tetrade-
canedioic acid-d24 (RT 1.38 min). Creatine-d3 (RT 8.22 min) and L-lysine-d4 (RT 14.31 min) were selected as 
internal standards. As to lipidomic sequences, phosphatidylcholine (15:0) (RT 8.37 min), lysophosphatidylcho-
line (15:0) (RT 1.75 min), ceramide (d18:1) (RT 17.95 min), C15:0 (RT 3.19 min) and C23:0 (RT 9.27 min) were 
used as external standards, whereas C17:0 (RT 4.30 min) served as an internal standard. All these standards 
revealed a coefficient of variation below 30% except in the case of C17:0 which displayed a slightly higher value in 
negative-ion mode of the exo-lipidomics sequence (33.7%) (Tables S1 and S2).

The analysis of QC samples served as a further criterion to establish both the quality of the generated data and 
the stability of the instrumental platform. For this purpose, it is highly recommended that QC peak tables should 
pass pre-determined criteria, a widely admitted one being that a majority of features (i.e. 70%) shows a coefficient 
of variation less than 30%28. With respect to this parameter, most sequences displayed satisfying values, with only 
negative-ion mode exo-lipidomics sequence exhibiting a slightly lower value of 56.3% (Table 1). The stability of 

Metabolome Fraction Ion mode Ions
Ions with CV QC < 30% 
(% of total ions)

Ions with both CV 
QC < 30% and FC > 2

Exo

Lipido
Positive 3081 2161 (70.82) 289

Negative 1920 1126 (56.25) 126

Metabo
Positive 2750 2076 (75.42) 662

Negative 1632 1263 (77.37) 506

Endo

Lipido
Positive 4295 3920 (91.27) 540

Negative 2468 2164 (87.68) 264

Metabo
Positive 1910 1525 (79.84) 210

Negative 1017 843 (83.00) 58

Table 1.  Validation of the generated data set using R-XCMS data processing.
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the analytical instrumentation could also be assessed based on the clustering of the QC samples in a Principal 
Component Analysis (PCA) score plot of all tested sequences.

Altogether, these parameters underscore both the robustness of the LC-HRMS system operating conditions 
and the validity of the retrieved metabolomic data, paving the way for their statistical processing.

Lipidomic RPLC-MS analyses.  As to intracellular fractions, the filtered data subsets were represented by 
540 and 264 features, for positive and negative ionization polarities respectively. Non-exposed and exposed sam-
ples clustered separately, being discriminated along PC1 component in these two sequences (Fig. 1).

In positive and negative polarities, univariate analyses respectively identified six and four masses as the 
main discriminators between the two sample groups (Figs S1 and S2). Regarding positive-ion mode, tenta-
tive hits could be retrieved for two out of five species, which might correspond to ceramide derivatives and/or 
N-palmitoylsphingosine derivatives (Table S3). Putative matches could be proposed for two ions appearing as 
dysregulated in negative-ion mode, tentatively corresponding to a further ceramide derivative (Cer (d18:0/16:0)) 
and to a diglyceride derivative DG (36:3) (Table S4). Besides the very limited number of features appearing as 
dysregulated, one should note that their corresponding Fold-Change indices display modest values remaining 
below 5 for all features identified in the course of negative-ion mode and below 10 for those pinpointed through-
out positive-ion mode analyses. The only exception was M453T283 in this latter group, for which no putative 
identification could be retrieved.

Filtered RPLC datasets related to extracellular fractions consisted of 289 and 126 features in positive and 
negative-ion modes, respectively. In both ionization modes, PCA plots accounted for roughly 60% of the total 
variance between the two groups. However, whatever the considered ionization mode, these plots did not lead to 
a clear-cut discrimination of the samples according to their exposure status (Fig. 2).

While no discriminating feature could be highlighted during the course of negative-ion mode data process-
ing, two ions of interest could however be evidenced in positive polarity, i.e. M627T51 and M783T478 (Fig. S3). 
Putative hits could only be retrieved for this latter feature that displayed an important FC of 764, which corre-
sponds to a phosphatidylcholine derivative with a sum composition of (36:4) (Table S5).

Metabolomic HILIC analyses.  Endocellular data subset with features satisfying both FC > 2 and ANOVA 
p-value < 0.05 were respectively represented by 210 and 58 features in positive and negative-ion modes. 
Generated PCA plots roughly represented 75% of the total variance and could discriminate between non-exposed 
and exposed samples along PC2 component in both ion modes (Fig. 3).

Notwithstanding this discrimination, the statistical processing workflow did not lead to emphasize any rele-
vant biomarker in the negative-ion mode data set. Positive-ion mode endometabolomics only resulted in high-
lighting one biomarker with a moderate FC value of 2.8 for which two putative identifications could be retrieved 
from HMDB database (i.e. either 2-aminoheptanedioic acid or N-carboxyethyl-γ-aminobutyric acid) (Fig. S4 
and Table S6).

PCA plots related to exometabolomic sequences revealed clear-cut discriminations according to millime-
ter wave exposure status in both polarities. Owing to the large number of features in the filtered data subset 

Figure 1.  PCA plots generated from endocellular lipidomic sequences from the features displaying both a Fold-
Change ≥2 and a p-value < 0.05 upon R-XCMS data processing performed from UHPLC-HRMS sequences 
recorded in (A) Positive-Ion Mode and (B) Negative-Ion Mode. Note that SHi (with i = 1 to 4) and MMWj (with 
j = 1 to 4) are related to the non-exposed and exposed samples, respectively; QC represents the overall of the 
quality control samples.
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in positive-ion mode (662), the frames were split into two halves prior to generating the PCA plots after being 
ordered by increasing masses. For both these data subsets, PCA plots roughly accounted for 70% of the total var-
iance (ca. 60% for PC1 and ~ 9% for PC2). In these two groups, the samples could be discriminated in a straight-
forward manner along PC1 component (Fig. 4A,B). Regarding negative-ion mode, the PCA plot (engulfing 506 
features) accounted for 74.1% of the total variance among the two groups, where PC1 and PC2 had respective 
contributions of 62.7 and 8.4%. Control and exposed samples also exhibited an obvious separation along PC1 
dimension (Fig. 4C).

The careful validation of both extracted ion chromatograms and box-and-whisker plot as described in the 
Data Processing section led applied to retainment of 111 and 99 features as dysregulated in positive and negative 
polarities, respectively (Figs S5 and S6). The current study was performed using a single HRMS analyser, so that 

Figure 2.  PCA plots yielded by exocellular lipidomic analyses from the ions having a Fold-Change ≥2 with 
a p-value < 0.05 upon R-XCMS data processing performed from UHPLC-HRMS sequences recorded in (A) 
Positive-Ion Mode and (B) Negative-Ion Mode. Note that SHi (with i = 1 to 4) and MMWj (with j = 1 to 4) are 
related to the non-exposed and exposed samples, respectively; QC represents the overall of the quality control 
samples.

Figure 3.  PCA plots obtained from endocellular metabolomic analyses from the features displaying both 
a Fold-Change ≥2 and a p-value < 0.05 upon R-XCMS data processing performed from UHPLC-HRMS 
sequences recorded in (A) Positive-Ion Mode and (B) Negative-Ion Mode. Note that SHi (with i = 1 to 4) and 
MMWj (with j = 1 to 4) are related to the non-exposed and exposed samples, respectively; QC represents the 
overall of the quality control samples.
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the identification of the dysregulated features could only rely on exact mass data, including any limitation coming 
along with it in terms of structural resolution. Resultantly, the structural assignments remain tentative and most 
often do not lead to reach unambiguous metabolites. From a practical viewpoint, handling an array of references 
covering the structural diversity of candidate biomarkers is not a realistic purpose in the frame of a metab-
olomic study pinpointing such an elevated number of features of interest. Despite this structural uncertainty, 
these putative identifications reveal that dysregulated features encompass an array of structurally diverse metab-
olites (Tables S7 and S8). Emphasizing such a large extent of dysregulations, especially in the exo-metabolomic 
sequences, appears as an intriguing outcome. Indeed, as upstream transcriptomics analyses did not highlight 
significant alterations in gene expression23, such dramatic changes would not have been expected. This led us to 
assume that these modifications might not be related to modifications of enzyme expression but rather stem from 
alterations in membrane permeability. Cell membranes are regarded as major targets for the interactions between 
millimeter waves and biological systems since a variety of bioeffects were reported upon exposure to these radi-
ofrequencies25. As an example, 60 GHz exposure with an incident power density of 0.9 mW/cm² (i.e. in the typ-
ical range of values expected from wireless communications) was proved to induce structural modifications of 
artificial biomembranes. Consequently, MMW exposure was demonstrated to increase the lateral pressure of 
phospholipid monolayers although not strongly enough to disturb phospholipid microdomain organization in 
biomembranes29. Further biochemical processes could be evidenced such as the externalization of phosphati-
dylserine, even though the biological relevance of this event remains to be determined30. Likewise, 53-GHz 

Figure 4.  PCA plots of exocellular metabolomics sequences, selecting ions having both a FC > 2 and a 
p-value < 0.05 upon R-XCMS data processing performed from UHPLC-HRMS sequences recorded in (A,B) 
Positive-Ion Mode and (C) Negative-Ion Mode. Note that SHi (with i = 1 to 4) and MMWj (with j = 1 to 4) are 
related to the non-exposed and exposed samples, respectively; QC represents the overall of the quality control 
samples.
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radiations and 130-GHz pulse modulated exposures were shown to alter the permeability of phospholipid ves-
icles31–33. MMW action on the orientation of charged and dipolar molecules in the region located between the 
aqueous phase and the hydrocarbon interior of the membrane has been hypothesized to represent the driving 
force to rearrange phospholipids bilayers, resulting in an increase of small molecules permeability across the 
membrane33. This new organization of the bilayer presumably displays a higher curvature which would elicit 
metabolites leakage. It can also be assumed that electromagnetic radiations of specific frequencies might excite 
components of cell membrane, depending on their electric dipoles and possibly leading to form Bose-condensed 
phonons34. Such assumptions are consistent with structural changes observed in cells upon MMW exposure, with 
different deformations being reported in bacteria35.

Likewise, it can be assumed that a similar phenomenon might trigger the leakage of intracellular metabo-
lites into the extracellular medium shown in this manuscript. This inference is further strengthened by the huge 
majority of dysregulated features which are found to be upregulated in the treated group (107/111 and 98/99 in 
positive and negative-ion modes, respectively. It is interesting to note that under different exposure conditions, 
membrane permeabilization upon electric pulses of nanosecond duration were previously reported to occur in 
mammalian cells36,37.

Conclusion
As far as can be ascertained, this report represents the first metabolomic investigation focusing on the effects of 
MMW. To get as wide an insight into cellular processes as possible, a joint metabolomic and lipidomic profiling 
strategy was designed and the extra and intracellular contents were discriminated. It appeared that all lipid-
omic sequences and intracellular metabolomic profiles were slightly affected by MMW but drastic changes in 
extracellular metabolomic sequences could be evidenced. During these experiments, we put great emphasis on 
controlling cell culture parameters (temperature, pH, incubator humidity). Much attention has been paid to tem-
perature control, however, it cannot be ruled out that unexpected changes at subcellular scale have occurred 
and could be responsible for the differences found. Moreover, by making the choice to put the non-exposed 
control in the same place in our exposure system, we ensure that these cells are in the same growing conditions 
that those that are exposed. Nevertheless, it should be noted that this strategy has the disadvantage of inducing 
a shift of one day of culture between the control and the exposed samples. While the unusually high number 
of dysregulated features makes of their unambiguous structural assignment an unrealistic purpose, the current 
study enables drawing significant and unprecedented conclusions as to the effects of MMW exposure on cellular 
systems, especially when combining them with former studies carried out by our group. Accordingly, as upstream 
pan-transcriptomic studies in this cellular system did not led to emphasize any significant change upon 60-GHz 
MMW exposure, it is reasonable to assume that the vast amount of dysregulations reported in these sequences do 
not stem from alterations of gene expression but rather from alterations in membrane permeability, consistently 
with previous reports on acellular phospholipidic systems. The tentative metabolites identified throughout the 
current workflow might serve as a ground to focus on subsets of metabolites through the so-called target-based 
metabolomics. For this purpose, multiplex LC-MS-MRM pipelines proved useful for the quantitative profiling of 
some of the hundreds of expected metabolites in complex biological samples with no structural/identity ambi-
guity. Based on the current findings, such follow-up studies could be limited to the exocellular compartment. 
Finally, we can conclude that our model, purely in vitro, haven’t to be lead to a direct extrapolation of our results 
at the organism level. In the future, further studies will be necessary to assess MMW bioeffects on animal models 
and to investigate potential dysregulations induced by lower IPD values prior to the wide-scale deployment of 
technologies based on these specific frequencies.

Methods
Chemicals, reagents and materials.  LC-MS grade water, methanol (MeOH), methyl tert-butyl ether 
(MTBE), chloroform (CHCl3), acetonitrile (MeCN), 2-propanol (IPA), ammonium acetate and acetic acid were 
purchased from Sigma-Aldrich (St. Louis, MO, USA). The standard mixtures Calmix-positive (i.e. caffeine, 
L-methionyl-arginyl-phenylalanylalanine acetate and Ultramark 1621) and Calmix-negative (i.e. acetic acid, 
sodium dodecyl sulfate, taurocholic acid sodium salt hydrate and Ultramark 1621), were purchased from Thermo 
Fisher Scientific (Waltham, MA, USA).

1,2-Dipentadecanoyl-sn-glycero-3-phosphocholine (PC(15:0/15:0)) ,  1-pentadecanoyl-2
-hydroxy-sn-glycero-3-phosphocholine (Lyso PC(15:0)), 1,2-diheptadecanoyl-sn-glycero-3-p
hosphoethanolamine (PE(17:0/17:0)) and N-heptadecanoyl-D-erythro-sphingosine (Cer(d18:1/17:0)) 
were obtained from Coger (Paris, France). L-Tryptophan-2,3,3-d3 (Trypto-d3), indole-2,4,5,6,7-d5-3-acetic 
acid (Ind-AA-d5), 1,14-tetradecanedioic-d24 acid (Tetra-A-d24) were purchased from Cluzeau Info Labo 
(Sainte-Foy-La-Grande, France). 1,2,3-triheptadecanoyl-glycerol (TG (17:0)), pentadecanoic acid (C15:0), tri-
cosanoic acid (C23:0), heptadecanoic acid (C17:0), leucine-5,5,5-d3 (Leu-d3), creatine-(methyl-d3) (Crea-d3) and 
lysine-4,4,5,5-d4 (Lys-d4) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Stock standard solutions (1 mg/L) were prepared in CHCl3 (for lipidic compounds) or in MeOH and kept at 
−20 °C. The internal standard (IS) solution contains C17:0, Crea-d3 and Lys-d4 at 10 ng/µL in a MeOH/H2O mix-
ture (4/1). Lipidomic external standard (ES) solution containing (PC (15:0/15:0), Lyso PC (15:0), PE (17:0/17:0), 
TG (17:0), Cer (d18:1/17:0), C15:0 and C23:0 at 0.5 ng/µL and metabolomic (ES) solution containing Leu-d3, 
Trypto-d3, Ind-AA-d5 and Tetra-A-d24 at 1 ng/µL were subsequently prepared in CHCl3 (lipidomics ES) or in 
MeOH (metabolomics ES).

Cell culture.  A human keratinocyte cell line (HaCaT) was cultured as described elsewhere22. In an attempt 
to circumvent any senescence or drift of the cellular populations, keratinocytes were exposed at early passages 
(between 10 and 16). To enable proper cross-sample comparison, the quantity of cellular material was estimated 
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through the evaluation of total ERK protein amount (Western Blot using anti ERK1 (K-23) antibody (Santa Cruz 
Biotechnology, Dallas, Texas, USA))38. The exposure medium designed to keep pH buffering in the non-gassed 
incubator of the exposure system as described elsewhere39. Briefly, it consists in powder reconstituted DMEM 
medium, completed with fetal calf serum, 4-(2-hydroxyethyl)-1- piperazineethanesulfonic acid (HEPES) and 
antibiotics.

Experimental setup for sample exposition.  Sample irradiation was performed as previously reported24. 
A thorough description of the exposure system can be found in Zhadobov et al.19. Briefly, a 6-well culture 
plate was positioned in a MEMMERT UE400 incubator to be exposed from the bottom by a standard pyram-
idal horn antenna. Cells were then irradiated or not by this antenna with an average incident power density 
(IPD) of 20 mW/cm² for 24 hours, according to the guidelines established by the International Commission on 
Non-Ionizing Radiation Protection (ICNIRP) for MMW with limited exposition area40. Both MMW-exposures 
and non-exposed samples were performed inside the same incubator, on different days. To mitigate exposure 
variability between sample groups, the non-exposed and MMW-Exposed cell samples were located in the same 
position within the same incubator39. To avoid a thermal effect associated with MMW exposure, the temperature 
increase was counteracted by lowering the incubator set point by the predicted increment. Consistently with 
literature23, MMW exposure at such IPD resulted in an elevation of 8 °C leading to set the temperature of the 
incubator at 28 °C in the MMW group to reach 36 °C, as in non-exposed cells. Assuming that thermal convection 
currents occurring in the radiofrequency-exposed groups may lead to a differential condensation of the culture 
medium, the consistency of the pH value was monitored in both non-exposed and exposed sample groups. An 
identical pH value of 7.7 could be measured from the different culture media, irrespective of their exposure status. 
HaCaT keratinocytes cell viability was formerly reported to be of 100% for pH values spanning across the 7.0–8.2 
range41.

Metabolomics workflow.  As MMW exposure might result in evidencing little to no biological effect, it was 
very important to validate the ability of the retained metabolomic workflow to emphasize the dysregulations trig-
gered by a known interfering agent. This preliminary study, carried out using the cytotoxic drug 2-deoxyglucose, 
demonstrated the adequacy of the proposed workflow for metabolomics purposes27. The whole sample prepara-
tion workflow is summarized in Fig. 5.

Metabolomic analyses were carried out on 4 independent biological samples for both non-exposed and 
MMW-exposed groups. As to extracellular profiling, a 100-µL aliquot of the culture medium was recovered for 
further sample processing. Regarding intracellular metabolite assessment, the cells were washed with 1 mL of 
phosphate buffer solution after having discarded the remaining culture medium. The cells were subsequently 
detached by scraping within 1250 µL of PBS solution. A 250 µL-aliquot was recovered to evaluate the amount of 
total ERK, a ubiquitous protein, by western blotting. Both the endo- and exo-cellular fractions were spiked with 
400 µL of Internal Standard solution dissolved in MeOH/H2O (4/1, v/v). Endocellular fractions were frozen at 
−80 °C for 20 minutes to facilitate cell membrane disruption. Solutions were then added with 550 µL of MTBE 
and vortexed three times for ten seconds (separated by one minute breaks in ice), 200 µL of cold water were 
then added with the same vortexing sequence being repeated. After centrifugation of the solutions (12,000 g, 
4 °C, 15 min), a 300 µL-aliquot of the upper organic phase was transferred to a vial to be spiked with 40 µL of the 
lipidomics ES solution (0.5 ng/µL) in CHCl3 prior to being dried under N2 flux. The dry extract was dissolved in 
200 µL of MeCN/IPA/H2O solution (65:30:5, v/v/v). Likewise, a 300 µL-aliquot of the lower aqueous phase was 
recovered and centrifugally filtered through a Millipore 10 kDa cutoff filter (12,000 g, 4 °C, 20 min). The solution 
was evaporated to dryness under N2 and later resuspended in 200 µL of a MeCN/H2O (9/1, v/v) solution.

Figure 5.  Schematic workflow of the sample preparation procedure27.
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QC samples were obtained by pooling 20 µL aliquots from the test samples to represent a bulk control sample. 
The samples were stored at −80 °C pending UHPLC-HRMS analysis.

UHPLC/HRMS analyses.  Analyses were performed using an ultrahigh performance liquid chromatogra-
phy (Waters Acquity), hyphenated with a Thermo QExactive mass spectrometer. Samples were injected (5 µL) 
onto either an Acquity CSH C18 column (1.7 µm, 2.1 × 100 mm; Waters) for lipidomic sequences or a SeQuant 
ZIC-HILIC column (3.5 µm, 2.1 × 100 mm; Merck) for metabolomic HILIC analyses. The standard mobile 
phases for RPLC (lipidomic sequences) were A = MeCN/H2O/ammonium acetate 1 M/acetic acid (600/390/10/1, 
v/v/v/v) and B = IPA/MeCN/H2O/ammonium acetate 1 M/acetic acid (880/100/10/10/1, v/v/v/v/v). For 
HILIC conditions, the mobile phases were A = H2O/ammonium acetate 1 M/acetic acid (980/10/1, v/v/v) and 
B = MeCN/solvent A (950/50, v/v). The column oven temperature was kept constant at 35 °C for metabolomic 
HILIC runs and at 45 °C for lipidomic RPLC analyses. RPLC analyses were performed by gradient elution as 
follows: T, 0 min, 40% B; 0–2 min, 50% B linear; 2–12 min, 70% B linear; 12–17 min, 99% B linear; 17–25 min, 
99% B; 25–29 min, 40% B. HILIC acquisitions were obtained using the following gradient program: T, 0–2 min, 
95% B; 2–5 min, 80% B; 5–12 min, 60% B linear; 12–14 min, 40% B linear; 14–16 min, 40% B; 16–26 min, 95% B.

ESI source conditions were set as follows: sheath gas flow, 55 Arbitrary Units (AU); auxiliary gas flow, 10 AU; 
capillary temperature, 300 °C; spray voltage, either 3.5 kV (lipidomics) or 3.0 kV (metabolomics); S-lens radiofre-
quency, 50 AU. Mass spectra were either acquired over the m/z range 150–1500 (lipidomics) or 65–975 (metabo-
lomics) at a resolving power of 35000 Full Width Half Maximum (FWHM) measured at m/z 200. The Automatic 
Gain Control (AGC target) was set at high dynamic range (5 × 105) with a maximum injection time of 100 ms. 
External calibrations of the MS instrument were performed using the Calmix-positive and Calmix-negative 
standard solution for the positive and the negative ionization modes, respectively. Exact mass measurements did 
not take into account the mass of the electron.

The analytical run was initiated by a number of injections of QC samples to ensure that LC and MS systems 
had time to equilibrate and perform satisfactorily. Irrespective of their exposed or non-exposed sample status, 
the study samples were randomized to limit the effect of time trends and thus minimize bias introduced by 
non-biological parameters (e.g. instrumental drifts). Each sample was analyzed six times.

Statistical processing.  The statistical processing of the metabolomic data considered all exposed and unex-
posed samples independently of one another. LC/MS data were further processed by R package XCMS (ver-
sion 3.2). The preprocessing results generated a data matrix as a feature list table comprising their integrated 
intensities (reconstructed ion chromatogram peak areas), along with the observed fold-changes and associated 
p-values42. Applied peak picking parameters were prefilter = c(5,25), snthresh = 6, mzdiff = 0.01 and ppm = 15. 
Initial alignment (bw = 20, minfrac = 0.66, minsamp = 4, mzvid = 0.008) and retention time correction (standard 
loess, plottype = c(deviation) were then applied. Further alignment steps were performed using the same process-
ing parameters with decreasing bw values (lowered to bw = 9 for the second round and to 5 for the final stage). 
Subsequently, R-package CAMERA was used for peak annotation after XCMS data processing43. Consistently 
with reported guidelines, features found in less than 20% of the analyzed samples were removed according to the 
so-called 80% rule44.

As to univariate analyses, the coefficient of variation (CV) within QC samples was calculated by dividing the 
standard deviation by the mean intensity of each feature, leading to a histogram of the resulting CV distribu-
tion. Subsequently, computation of the Fold-Change (FC, ratio of abundance between non-exposed and exposed 
samples) along with the corresponding p-value (statistical significance from a Student t-test) streamlined the 
selection of metabolites of interest. Features selection was based on the following criteria: CV QC < 30%, FC > 2 
and ANOVA p-value < 0.05. Extracted Ion Chromatograms (EICs) were individually monitored to exclude 
potential artifacts from the ion list. Later on, Box and Whiskers Plot related to all metabolites of potential inter-
est were also individually checked to retain the features for which no overlap existed between values obtained 
from non-exposed and exposed samples. Such features were tentatively identified against databases as described 
later on. The top and bottom of each box represent the 25th and 75th percentiles, the center line indicates the 
median and the extent of the whiskers depicts the 5th and 95th percentiles. Regarding multivariate analyses, 
Principal Component Analyses (PCA) were performed to get a general overview of the interrelationship between 
study samples as well as QC. Statistical graphs were prepared using SigmaPlot 13.0® (Systat Software, Inc., USA). 
Filtered data sets related to each sequence (only retaining features displaying FC > 2 and p-value < 0.05) were 
then analyzed by PCA to explore samples’ relationship and grouping. For this purpose, PCA retrieves a small 
number of principal components that summarize the measured data to visualize trends and emphasize possible 
outliers.

Metabolite identification.  [M + H]+, [M-H2O + H]+, [M + Na]+ and [M-H2O + Na]+ were selected 
as possible adducts for positive polarity. Regarding negative-ion mode, [M-H]−, [M-H2O-H]− and 
[M-H2O + HCOOH-H]− were considered. Putative identifications were carried out against the freely available 
database Human Metabolome Data Base (HMDB). Whenever possible, efforts were made to narrow down iden-
tification possibilities among isobaric compounds according to elution order, matrix of occurrence.

Data Availability
The datasets generated and analysed during the current study are available from the corresponding author 
on reasonable request. The accession number for the metabolomics data reported in this paper are Massive 
MSV000083829.
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