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ESSENTIALS 

 

 

 Data on interindividual rivaroxaban variability assessed with thrombin generation are

scarce 

 We assessed thrombin generation (3 conditions) in 60 healthy volunteers after

rivaroxaban intake 

 The relationships between peak height and rivaroxaban concentrations were sigmoidal

(models). 

 The low rivaroxaban PD variability contrasts with the substantial PK variability

 

 

ABSTRACT 

Background: Rivaroxaban is a direct factor Xa inhibitor with substantial inter-individual 

pharmacokinetic (PK) variability. Pharmacodynamic (PD) variability, especially assessed 

with thrombin generation (TG), has been less documented. 

Objectives: i/to assess TG parameter time-profiles in healthy volunteers, TG being studied 

under different conditions; ii/to model the relationship between rivaroxaban concentrations 

and TG parameters, and subsequently estimate inter-individual variability 
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Methods: Sixty healthy male volunteers (DRIVING-NCT01627665) received a single 40-mg 

rivaroxaban dose. Blood sampling was performed at baseline and 10 pre-defined time-points 

over 24-hours. TG was investigated with the fully automated ST-Genesia system (Stago), 

using two tissue-factor (TF) concentrations, in absence (-), or presence (+) of 

thrombomodulin (TM) for the lowest one. PD-models were built to characterize the 

relationships between plasma rivaroxaban concentrations and endogenous thrombin potential 

(ETP) or peak-height induced by the lowest TF concentration. 

Results: TG parameter time-profiles with the lowest TF concentration showed a good 

sensitivity to rivaroxaban, especially +TM (active protein C negative feed-back). The 

relationship between rivaroxaban concentrations and TG parameters was modeled with a 

sigmoidal relation. Mean rivaroxaban concentrations halving the baseline value of ETP and 

peak-height (-TM) (C50) were of 284 and 33.2 ng/mL, respectively: +TM, C50 declined to 

19.4 and 13.8 ng/mL, reflecting a powerful inhibitory effect. The estimated C50 population 

coefficients of variation were of 12.2% (-TM) and 31.3% (+TM) with the peak-height 

models, 34.8% (+TM) with the ETP-model. 

Conclusions: This low-to-moderate rivaroxaban PD variability in healthy volunteers 

contrasts with the substantial PK variability, and deserves to be studied in different patient 

settings. 
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INTRODUCTION 

Rivaroxaban was the first oral direct factor Xa (FXa) inhibitor to be developed and approved 

for the prevention and treatment of thromboembolic disease. Rivaroxaban competitively and 

selectively inhibits free, prothrombinase and clot-associated FXa [1,2]. FXa plays a central 

role in the physiological coagulation process, at the crossroad between tissue factor and 

contact phase coagulation pathways. Thrombin generated by FXa is first produced in small 

amounts at the initiation phase of the coagulation cascade, but in much greater amounts 

during the propagation and amplification phases, and then down regulated by natural 

inhibitors [3]. 

In contrast to traditional vitamin K antagonists (VKA), direct oral anticoagulant (DOAC) 

pharmacokinetics (PK) and pharmacodynamics (PD) are predictable. Given their wide 

therapeutic margin, DOACs are administered at fixed doses without laboratory monitoring 

except in specific situations [2,4]. Rivaroxaban bioavailability is approximately 80 % after 

oral intake, and the maximal plasma concentration is rapidly reached. It is metabolized by 

cytochrome P450 3A4 and is a substrate of P-glycoprotein (P-gp). About 66 % of 

rivaroxaban quantities are eliminated by the kidney, half of which is eliminated unchanged 

[1,2]. However, substantial rivaroxaban PK inter- and intra-individual variability has been 

documented in different settings, including healthy volunteers, patients enrolled in clinical 

trials, or in real world cohorts, with variability not fully explained [5–14]. In the DRIVING 

study conducted in 60 healthy male volunteers after a single 40 mg rivaroxaban intake [13], 

we found a coefficient of variation (CV) for the rivaroxaban concentration area under the 

curve of 51 %, in agreement to that reported in patients included in clinical trials [10,11]. In 

addition, DRIVING volunteers were selected on their 2677-3435 haplotype of ABCB1 gene 

encoding P-gp and we found no significant effect of this haplotype on rivaroxaban PK [13]. 

A more limited number of studies investigated ex vivo inter-individual rivaroxaban PD 
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variability [9,11-12,15–22]. Among assays measuring clot formation, prothrombin time was 

the most commonly used in prior published studies, showing a poor suitability to assess 

rivaroxaban PD, especially at low concentrations. Moreover, prothrombin time sensitivity 

varies widely across reagents [4,8,11,24-25). In addition, prothrombin time is only reflective 

of the initiation phase of coagulation. Other assays based on viscoelastometry have also been 

shown to be poorly sensitive to FXa inhibitors (18,24-25). 

Thrombin generation (TG) has been proposed as an attractive assay to assess in vitro or ex 

vivo direct FXa inhibitor effect on coagulation based on studies with small series of healthy 

volunteers or patients, after single or repeated direct Xa inhibitors dose exposure 

(rivaroxaban, apixaban, edoxaban, or otamixaban) (15-22,26-32). However, some persistent 

issues remain regarding the most appropriate experimental conditions among different 

methods, including TF concentrations (33). Moreover, data regarding the magnitude of TG 

parameter inter-individual variability in subjects receiving direct Xa inhibitors are scarce 

(15,20,29). 

In the present study, we sought to: 1) characterize plasma TG parameter time-profiles in 

DRIVING healthy volunteers after intake of a 40 mg-rivaroxaban single dose, 2) measure TG 

under several relevant experimental conditions, and 3) develop PD models to characterize the 

relationship between plasma rivaroxaban concentrations and several TG parameters, 

independently from time of drug intake to estimation of population inter-individual 

variability. 

 

METHODS 

Study design 

The DRIVING study was a randomized, open, crossover study with four treatment 

sequences.  The protocol has been described elsewhere [13]. Briefly, 60 healthy male 
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volunteers were recruited at two academic clinical investigation centers in Paris (Hôpital 

Européen Georges Pompidou and Hôpital Pitié-Salpêtrière). Caucasian males aged 18 to 45 

years were eligible if body mass index was between 18 and 28 kg/m². The 60 participants 

were selected based on their ABCB1 genotype: 20 were homozygous wild-type (P-gp 0 

group) for the haplotype 2677-3435, 20 were heterozygous for the variant (P-gp 1 group), 

and 20 homozygous for the variant (P-gp 2 group). Only the DRIVING sequences 

corresponding to the rivaroxaban treatment alone were considered for the present study. 

Rivaroxaban (Xarelto
®

, Bayer Pharma AG, 13342 Berlin, Germany) was administered as a

single oral dose of 40 mg at 9:00 am under fasting conditions, followed by a standardized 

breakfast at 10:15. The single drug dose was selected to obtain plasma concentrations in the 

same order of magnitude as those observed in patients with atrial fibrillation [11]. All 

volunteers adhered to a standardized diet throughout the 24-hour study period. The study 

(NCT 01627665) was approved by the regional Ethics Committee (#P100507-DRIVING, 

CPP Île-de-France 10). All participants gave their written informed consent to participate. 

 

Sample collection 

Blood samples for analysis (4.5 mL) were collected by venipuncture into 5 mL tubes 

containing sodium citrate (3.2 % 0.105 M; 1:9 v/v; Greiner-Alcyon, Nancy, France). Tubes 

were gently inverted five times to ensure adequate mixing. Tubes were immediately double 

centrifuged at 2000g for 15 min at 20°C and platelet poor plasma (PPP) was aliquoted, frozen 

and stored at −80°C until use [13]. All PPP samples were thawed 3 min in a 37°C water bath 

just before use. 
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Rivaroxaban plasma concentrations 

Pharmacokinetic parameters were derived from rivaroxaban plasma concentration-time 

profiles obtained by serial blood sampling at pre-defined sampling time points (T): at 

baseline (T0), and 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10 and 24 hours after rivaroxaban intake. Plasma 

rivaroxaban concentrations were quantified using an ultra-high-pressure liquid 

chromatography (UPLC) system coupled with a Quattro micro triple quadrupole mass 

spectrometer (Waters, Saint-Quentin en Yvelines, France) [13]. 

 

Thrombin generation 

TG was investigated for the 11 PPP samples prepared from blood drawn at different 

time points over the 24 hour period (see above) in 18 out of 60 volunteers, which were 

selected to obtain six out of the 20 homozygous wild-type volunteers (P-gp 0 group), six out 

of the 20 heterozygous variants (P-gp 1 group), and six out of the 20 homozygous variants 

(P-gp 2 group). In each P-gp group, the six volunteers were chosen as follows: two subjects 

with low rivaroxaban peak concentration profile, two subjects with intermediate peak 

concentration profile and two subjects with high peak concentration profile. For the 

remaining 42 volunteers, we performed TG at three time-point PPP samples, i.e. at baseline 

(T0), at peak level time (Tmax) and at T24. Tmax was defined for each volunteer as the time 

associated with the highest concentration following rivaroxaban intake. If two concentration 

peaks were observed, the earliest one was chosen. 

TG was performed on a ST-Genesia system (Stago, Asnières-sur-Seine, France). The 

ST Genesia system is a dedicated platform to enable fully automated quantitative and 

standardized evaluation of TG, using dedicated reagents, calibrator, quality controls, and 

reference plasmas. The assay principle of the ST Genesia system is similar to the previous 

generation, semi-automated Calibrated Automated Thrombogram (CAT) system (Stago) [34], 
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but differs with respect to improved 37°C temperature control at and a unique calibration 

performed for each series. Briefly, STG-ThrombiCal, a buffered solution containing a known 

fixed amount of human thrombin, is incubated for 10 min in a cuvette precisely pre-warmed 

at 37°C; a solution containing the Z-Gly-Gly-Arg-7-amino-4-methylcoumarin (Z-GGR-

AMC) fluorogenic substrate together with calcium chloride (STG-FluoStart) was then added. 

Upon substrate cleavage by thrombin, fluorescence increases, and is monitored at 37°C with 

measurement every 15 seconds at 377 nm excitation / 450 nm emission wavelengths. In 

parallel, STG-ThrombiCal was incubated in another cuvette with a solution containing a 

fixed concentration of AMC (STG-FluoSet), enabling adjustment of the calibration curve for 

the optical characteristics of the milieu on subsequent plasma measurements, correcting for 

the inner filter effect. Once the calibration had been validated, individual plasma samples (80 

L) are run in duplicate under different experimental conditions upon final addition of STG-

Fluostart, but always in parallel to the STG-FluoSet determination. ST-Genesia embedded 

software calculated from fluorescence traces the concentration of active thrombin generated 

over time. Results are displayed as mean of duplicate results. 

TG was investigated according to the manufacturer’s recommendations using two TF 

concentrations (STG-DrugScreen and STG-ThromboScreen), in absence (-), or presence (+) 

of thrombomodulin (TM). STG-DrugScreen contains a mixture of phospholipids and 

recombinant human TF at a relatively high picomolar concentration, referred infra to as “high 

picomolar TF concentration”, whereas STG-ThromboScreen contains the same mixture of 

phospholipids and human TF at an intermediate picomolar concentration, referred infra to as 

“intermediate picomolar TF concentration”, both reagents adjusted for each batch by the 

manufacturer to obtain the desired TG profile ("reagents manufacturer undisclosed data"). 

TM concentration is present in the reagent in order to inhibit 50 % of the ETP in absence of 

TM on frozen normal pooled plasma. 
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STG-DrugScreen and STG-ThromboScreen reference plasmas, and TG dedicated 

quality controls, were run for each series, at low and normal levels for STG-DrugScreen, and 

at low, normal and high levels for STG-ThromboScreen as recommended by the 

manufacturer. 

We recorded and analyzed the following parameters: lag time (in min: time from test 

triggering to signal detection), time to peak (in min: time necessary for thrombin 

concentration to reach its maximal value), peak height (in nM: maximal thrombin 

concentration) and endogenous thrombin potential (ETP; in nM•min: area under the thrombin 

time-concentration curve). 

We determined there were no substantial differences in results from the ST-Genesia 

system vs. the extensively documented CAT system (24). We tested 47 DRIVING samples 

covering a wide range of rivaroxaban concentrations on both ST-Genesia system using STG-

ThromboScreen without TM and the Calibrated Automated Thrombogram (CAT) using PPP-

reagent (5 picomolar TF) (Stago). Comparisons between both systems showed acceptable 

agreements using Bland-Altman difference plots and Passing-Bablok equations, without 

biases of clinical relevance within the measuring range as also confirmed in another 

comparison study (Suppl Fig 1) (35-36). 

For STG-DrugScreen, inter-series coefficients of variation (CV) of 2.1 and 2.7% for lag 

time, 3.0 and 1.6% for time-to-peak, 14.5 and 11.5% for peak height, 12.0 and 13.4% for 

ETP were obtained with low and normal quality control levels, respectively (15 runs). For 

STG-ThromboScreen, in the absence of TM, CVs of 5.4, 4.5 and 5.0% for lag time, 4.3, 3.8 

and 3.0% for time-to-peak, 10.0, 5.8 and 2.8% for peak height, 6.3, 4.2 and 5.5% for ETP, 

were obtained with low, normal and high quality control levels (STG-QualiTests), 

respectively (15 runs); in the presence of TM, CV of 3.9, 2.9 and 4.2% for lag time, 3.7, 3.0 

and 2.6% for time-to-peak, 9.8, 6.9 and 3.8% for peak height, 8.4, 6.5 and 4.3% for ETP, 
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were obtained with low, normal and high quality control levels (STG-QualiTests), 

respectively (15 runs). 

 

Statistical analysis 

All statistical analyses were run using R software (version 3.5.1) using the nlme 

package (37-38). The assessed PK parameters were peak plasma concentration (Cmax), and 

time to peak plasma concentration (Tmax). The assessed PD parameters were lag time, time-

to-peak, peak height and ETP. Data were described as median or mean values (± standard 

deviation), interquartile ranges, minimal and maximal values. We performed univariate 

analyses to test the association between TG parameters and covariates, using Spearman 

correlation test for quantitative variables (age, BMI and creatinine clearance), and Kruskal-

Wallis test for qualitative variables (ABCB1 genotypes). 

The PD relationship between plasma rivaroxaban concentration and TG parameters 

(ETP or peak height in the presence or absence of TM) was modeled by a sigmoidal 

relationship (derived from Hill’s relation) with the constrain of a null ETP or peak height for 

infinite rivaroxaban concentrations (no residual effect) and between-subject variability on the 

PD parameter baseline value and the half-concentration, leading to the following model: 

where Yi,j is the PD parameter (peak height or ETP) for patient i at time j,  the baseline 

value of this parameter for patient i, γ is the Hill coefficient (sigmoidicity parameter), C50,i is 

the rivaroxaban concentration, which when divided by two yields the baseline value for 

patient , and εi,j is the residual error at time j for patient i. Residual errors and random effects 

on baseline and C50 values were assumed to follow a normal distribution in the log scale. 

Errors were assumed to be independent, identically distributed between them and from the 
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random effects. Random effects were assumed to be independent and identically distributed 

between all subjects. This mixed-effects model was fitted to the data by maximizing its 

likelihood, using the nlme function within the nlme package for R. Initial values for the 

minimization algorithm were obtained on the average curve. Assumptions were checked and 

verified graphically. 

 

RESULTS 

DRIVING volunteer characteristics 

Among the 60 volunteers enrolled in the DRIVING study [13], 17 out of 18 subjects had TG 

analyzed at all 11 time-points. In the case of one volunteer, (P-gp 2 group, low Cmax), TG 

could not be assessed due to insufficient plasma sample quantity. The remaining 42 

volunteers were tested at three time-points (T0, Tmax and T24). Mean age of the 59 analyzed 

volunteers was 31 ± 8 years (min 19-max 45), mean BMI 23.6 ± 2.5 kg/m
2
, mean creatinine

clearance (Cockcroft-Gault) 122 ± 22 mL/min. Rivaroxaban concentration at peak level 

(Cmax) was reached at a median time (Tmax) of 1.5 hours (interquartile range IQR 1.25-1.5 - 

min 0.5 - max 4). Rivaroxaban concentrations at Tmax and T24 for the 59 volunteers are 

displayed in Table 1. We checked that distributions of rivaroxaban concentrations at both 

Tmax and T24 were comparable in the 17 volunteers with 11 time-points and in the 42 

volunteers with three time-points (Suppl Fig 2).

TG parameter time-profiles 

Using three conditions, high and intermediate picomolar TF concentrations, the latter in 

absence and presence of TM, TG parameter time-profiles were determined for the 17 

volunteers with 11 time-points (Figures 1, 2 and 3). The individual ETP- and peak height-

time profiles are displayed in Suppl Figure 3, along with plasma rivaroxaban concentration 

time-profiles. When TG was studied with no TM added, progressive prolongations of 
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temporal parameters, i.e. lag time and time-to-peak, were observed during the first two hours 

following rivaroxaban intake, as expected. Then, lag time and time-to-peak slowly decreased 

up to T24 with both high and intermediate picomolar TF concentration, without returning 

back to baseline values (Figures 1 and 2). The greatest parameter variability was observed 

between T0.5 and T4, reflecting the inter-individual variations of both Tmax and Cmax. In 

contrast, the variability of temporal parameters was lower at baseline and at T24. ETP and 

peak height rapidly decreased, i.e. within 90 min after drug intake, and then progressively 

increased without return to baseline, with both high (Figure 1) and intermediate picomolar TF 

concentration (Figure 2). As expected, temporal parameters were shorter. In contrast, ETP 

and peak height values were greater, when using high TF concentration vs. intermediate TF 

concentration. 

TG using intermediate TF concentration was further assessed in the presence of TM in the 17 

volunteers (Figure 3). Adding TM markedly reduced ETP and peak height in comparison to 

TG performed with intermediate TF concentration without TM, especially at Tmax, without 

return to baseline at T24; percentages of ETP and peak height inhibition are shown on Figure 

3. When adding TM, the median ETP decreased from 1059 to 548 nM•min at T0,

corresponding to 48 % inhibition of ETP. At Tmax, the median ETP dramatically dropped 

from 654 to 54 nM•min, corresponding to more than 90 % inhibition of ETP and at T24, the 

median ETP raised slowly, still exhibiting 73 % inhibition of ETP when adding TM. Similar 

inhibition-time profiles were obtained regarding peak height (Figure 3). 

Finally, in order to evaluate inter-individual variability, TG was assessed at T0, Tmax and 

T24 in the 42 remaining volunteers using the high or intermediate concentration of TF, the 

latter in absence or presence of TM. TG results for the whole cohort (n=59), i.e. ≈ 300 time-

points per experimental condition, confirmed the higher sensitivity of peak height and ETP to 

rivaroxaban when using the intermediate vs. the high concentration of TF as shown by 
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median Tmax/T0 ETP and peak height ratios (Table 2). Inter-individual CV values of 

Tmax/T0 ratios for lag time and time-to-peak, were < 20 % at both concentrations of TF in 

the absence of TM; regarding Tmax/T0 ratios for ETP and peak height, CV values were 

higher when using the intermediate TF concentration compared with a high TF concentration 

(25.1 and 39.1 % vs and 8.7 and 23.4 %, respectively), and were much higher when adding 

TM (for both ≈ 80%), but the low absolute levels ETP and peak height with the likely altered 

precision of the method must be taken into account. At T24, CV values were below 30 % for 

all parameters using both concentrations of TF. 

The potential influence of the 59 volunteer characteristics on TG parameters at T0, Tmax and 

T24 was tested using univariate analysis. Among non-genetic (age, BMI, creatinine 

clearance) and genetic (ABCB1 genotype) variables, advancing age was the only variable that 

was significantly associated with a higher peak height both at T0 and at Tmax (p = 0.0135 

and p = 0.0163, respectively) and a higher ETP both at T0 and at Tmax (p = 0.0409 and 

p = 0.0208, respectively) using the intermediate concentration of TF. 

 

ETP and peak height modeling 

In order to characterize the relationships between plasma rivaroxaban concentrations and TG 

parameters independently of time, we sought to develop PD models. Among the different 

measured TG parameters, we chose ETP and peak height obtained using the intermediate TF 

concentration in the absence and in the presence of TM as PD parameters to build the models. 

Indeed, the greatest sensitivity of ETP and peak height to rivaroxaban was obtained with 

intermediate TF concentration compared with high TF concentration; moreover, the effect of 

TM on both parameters could be studied. 

 



A
cc

ep
te

d
 A

rt
ic

le

. 

The relationship between rivaroxaban concentrations and TG parameters was modeled with a 

sigmoidal relationship. TG parameters, assigned as y, were modeled as a function of the 

corresponding rivaroxaban plasma concentration (Figure 4). The characteristics of the four 

models for fitting ETP and peak height in the absence and presence of TM are given in Table 

3. Model fit convergence was achieved for all models, but for the ETP without TM random

effect on C50 had to be removed from the model. Diagnostic plots of each model suggest that 

the assumptions were satisfied: random effects and residuals seemed normally distributed, 

and residuals as a function of rivaroxaban concentration showed no remaining trend, nor 

apparent heteroscedasticity. There were four outliers (standardized residual > 3), related to 

three volunteers, but without influence on the results, thus making the results interpretable. 

The model estimates a mean () rivaroxaban concentration halving the baseline value of peak 

height (C50) in absence of TM of 33.2 ng/mL (95 % confidence interval [CI]: 26.2; 40.1), 

with an interindividual variability standard deviation (σ) of 4.0 ng/mL; estimated mean C50 

declined to 13.8 ng/mL (95 % CI: 10.7; 16.9) with a standard deviation σ of 4.3 ng/mL in 

presence of TM. The C50 population CVs (σ/µ) estimated with the peak height model were of 

12.2 % and 31.3 % in absence and presence of TM, respectively. The mean C50 for ETP, of 

284.2 ng/mL [244.7; 323.8] in absence of TM, was in the same order of magnitude in 

presence of TM, estimated at 19.4 ng/mL (95 %CI: 15.2; 23.5), and the C50 standard 

deviation was of 6.7 ng/mL, with a population CV of 34.8 %. 

 

DISCUSSION 

While numerous studies on rivaroxaban PK variability have been published [5-14], few 

focused on TG parameter time-profiles [11,15,19-22]. The originality of the present study lies 

in two main features: 1) we analyzed ex vivo rivaroxaban PD in a substantial number of 

healthy volunteers (n=59) with TG determined using an automated system under different TF 
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conditions, including one in the presence of TM; ii) relevant PD models were constructed, 

which enabled estimation of inter-individual PD variability [2,9]. 

We chose to assess TG using the novel ST-Genesia system because standardization has been 

improved compared with the reference CAT system and it is fully automatized. At baseline 

(T0), TG parameters and corresponding CVs were in the same order of magnitude as those 

found using the comparable TF concentrations with CAT [29,34-36]. The new system seems 

to be a good candidate for a wider, more convenient use in view of a potential clinical 

application. Regarding the TG time-profiles, the lowest concentration of TF increased TG 

sensitivity compared with the highest, as evidenced by Tmax/T0 ETP and peak height ratios. 

The normalization of TG parameter values with those of reference plasmas did not affect 

results (not shown) [39]. Our ex vivo findings reinforce those obtained in vitro using normal 

plasma spiked with rivaroxaban and 1-20 picomolar TF concentrations [24,26,40-41]. 

Interestingly, we obtained PD mirror-inverted time profiles to PK-time profiles for both 

temporal parameters (lag time and time-to-peak), markedly for peak height and to a lesser 

extent for ETP, peak height being consistently more affected than ETP in agreement with 

previous findings [24,42]. In some volunteers, a double peak pattern was observed with both 

PK and TG parameters on time profiles, suggesting multiphasic elimination including entero-

enteric cycle of rivaroxaban in these individuals, a phenomenon already described in the 

literature [43]. Overall, rivaroxaban exerted a concentration-dependent effect on all TG 

parameters under all TF conditions, with a greater sensitivity obtained with the intermediate 

TF concentration. The optimal choice between these two TF conditions may depend on 

rivaroxaban concentration levels: intermediate picomolar TF is highly suitable for 

concentrations up to 300 ng/mL whereas high picomolar TF might be required for 

concentrations over 300 ng/mL. 
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The possibility to use TM under manufacturer’s conditions is obviously an advantage. 

Indeed, one strength of our study is that we assessed TG using intermediate picomolar TF 

concentration with the addition of TM, thus enabling the involvement of protein C system. In 

vivo, thrombin generation (TG) is down regulated by natural inhibitors among which the 

protein C (PC) anticoagulant pathway [44]. Remarkably, at baseline, we found that the 

addition of TM in the DRIVING volunteer plasmas generated an almost 50 % inhibition in 

ETP, validating the concentration of TM introduced into the commercial reagent. In the 

presence of increasing rivaroxaban concentrations, the percentage of inhibition markedly 

increased to achieve approximately 90% inhibition at peak concentration. Similar effects on 

TG parameters had already been observed when adding TM, using normal human plasma 

spiked with various rivaroxaban amounts [41]. 

Interestingly, we found that inhibition persisted at a high median level (73%) at T24 although 

the median rivaroxaban concentration was ≈ 30 ng/mL, demonstrating maintenance of the 

inhibitory effect. The substantial residual hypocoagulability we evidenced is consistent with 

the concern that invasive procedures such as neuroaxial anesthesia can be at very high risk of 

bleeding and should be avoided [45-46]. 

 This persistently inhibitory effect had been previously shown in subjects analyzed in the 

absence of TM [5,15,19-20], but never in the presence. The involvement of the inhibitory 

dynamic system of activated protein C, formed in the presence of TM by thrombin, contrasts 

with what occurs in subjects under VKA therapy, whose hypo-gamma-carboxylated protein 

C and protein S are altered [47]. Interestingly, Bloemen et al found a significantly decreased 

whole blood ETP and peak height in VKA-patients with bleeding versus those without [47]. 

Whether the rivaroxaban response evaluated with TG should be associated with clinical 

events needs further investigation. 
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In these young healthy male volunteers, we provided data on the TG parameter variability at 

baseline as well as after rivaroxaban intake, therefore minimizing inter-individual 

demographic and environmental factors. Indeed, only advancing age from 18 to 45 years 

slightly increased peak height and ETP at baseline and at Tmax using the intermediate 

concentration of TF, in agreement with previous data [48-49]. No effect of ABCB1 haplotype 

was found in agreement with DRIVING PK results [13]. 

In contrast to previous studies underpowered to address this issue, we could build PD models. 

Modeling was made feasible due to the fact we had suitable PK data and a wide range of 

quantitative PD parameters (> 300 time points per condition), namely ETP and peak height, 

reflecting the effect of the drug with a good sensitivity [50]. The rivaroxaban response curve 

was sigmoidal, with the Hill’s derived equation fitting to the experimental data. When 

evaluating PD with PT, a linear correlation between plasma concentrations and prolongation 

of PT is observed, similarly to what we found here (not shown); this is due to the lack of 

sensitivity of PT to low rivaroxaban concentrations [7,9,11,12]. Our approach with models 

enabled us to estimate a very low value of the mean rivaroxaban concentration halving the 

baseline peak height (C50), namely 33 ng/mL i.e. 76 nM, with a population C50 CV of only 

12%. These results suggest that even at low concentrations, rivaroxaban still strongly inhibits 

the maximal thrombin peak concentration, thus covering the 24-hour interval between two 

oral intakes in most subjects. Moreover, the much lower C50 in presence of TM suggests an in 

vivo powerful inhibitory effect even though soluble TM used here cannot be directly 

superimposable to endothelial TM. Regarding ETP, the mean C50 rivaroxaban concentration 

halving ETP  in absence of TM (284 ng/mL) was 15-fold lower in its presence (19 ng/mL), 

confirming the strong inhibitory effect of rivaroxaban when the dynamic system of activated 

protein C was incorporated, even at low levels. Remarkably, under in vitro experimental 

conditions using normal plasmas spiked with rivaroxaban, Perzborn et al. reported ETP and 



A
cc

ep
te

d
 A

rt
ic

le

. 

peak height EC50 values in the absence and in the presence of TM of the same order of 

magnitude of those than those we found ex vivo [41]. 

In addition, our modeling approach enabled us to estimate the PD inter-individual variability 

independently from time of drug intake. Peak height and ETP CVs, < 20% in the absence of 

TM and < 35% in the presence of TM, were rather low, in comparison with PK variability, 

which was evaluated at 51% in these DRIVING volunteers [13]. Overall variability amounts 

up to 100% for ETP at Tmax when TM was added, but here, the low absolute values have to 

be taken into account. It is likely that PD variability as well as PK inter-individual variability 

were here highly minimized owing the selection of young male volunteers, providing here 

“baseline” variability data. The extent of PD variability in different patient settings deserve to 

be further investigated. 

Our study has some limitations. One limitation is the use of a single dose of rivaroxaban 

rather than repeated dose to achieve steady state drug concentrations. Secondly, only males 

were included. However, gender most likely is not a factor significantly contributing to the 

overall variability. Third, the association between PK parameters and clinical events has been 

demonstrated with some direct-Xa inhibitors, including edoxaban [51]. Whether an 

association exists between TG parameter results and bleeding or thrombotic events in patients 

receiving direct-Xa inhibitors remains to be established in different settings. 

In conclusion, the measurement of TG parameters with the ST-Genesia system enabled a 

reliable assessment of the PD response after rivaroxaban intake under several relevant 

experimental conditions. For the first time, we showed that modeling characterized the 

relationship between peak height / ETP and rivaroxaban concentrations as a sigmoid curve, 

especially in presence of TM: the low C50 demonstrated the powerful inhibitory effect of 

rivaroxaban. The concentration-effect relationship of rivaroxaban in healthy volunteers 

showed low-to-moderate PD variability. Further studies are required to analyze the higher 
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variability reported in patients. Whether such PD models can be generalizable to patients 

receiving rivaroxaban for different indications deserve to be investigated. 
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LEGENDS TO FIGURES 

Figure 1:  TG parameter-time profiles using the high picomolar TF concentration. (A) 

Lagtime, (B) Time to peak, (C) Endogenous thrombin potential (ETP), (D) Peak height 

TG was investigated in the plasma obtained from 17 volunteers over the 24-hour period (11 

time-points), using the high the TF concentration (STG-DrugScreen). Box plots: bold 

horizontal bar within box, median; lower and upper horizontal lines of box, Q1 and Q3 

quartiles, respectively; IQR = Q1 − Q3; lower horizontal bar outside box, smallest observed 

value greater than Q1 − 1.5 IQR; upper horizontal bar outside box, highest value smaller than 

Q3 + 1.5 IQR; circles represent values beyond these limits, potential outliers assuming a 

Gaussian distribution. 

Figure 2: TG parameter-time profiles using the intermediate TF picomolar 

concentration without thrombomodulin as a function of time (hours): (A) Lagtime, (B) 

Time to peak, (C) Endogenous thrombin potential (ETP), (D) Peak height 

TG was investigated in the plasma obtained from 17 volunteers over the 24-hour period (11 

time-points), using the intermediate TF concentration (STG-ThromboScreen). Box plots: see 

Figure 1 legend.  

Figure 3:  TG endogenous thrombin potentials (ETP) (A) and peak height (C) in the 

presence of thrombomodulin and percentage of inhibition for ETP (B) and peak height 

(D) as a function of time 

TG was investigated in the plasma obtained from 17 volunteers over the 24-hour period (11 

time-points), using the intermediate TF concentration (STG-ThromboScreen) with TM. The 

percentage of inhibition was calculated by dividing [the result of TG parameter (peak height 

or ETP) with TM] by [the result without TM] × 100. Box plots: see Figure 1 legend. 
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Figure 4: ETP and peak height models 

ETP (A) and peak height (peak height) (B) measured using the intermediate picomolar TF 

concentration (STG-ThromboScreen) without TM (line) and with TM (dotted line) as a 

function of rivaroxaban concentration. Each symbol represents a volunteer; filled symbols 

correspond to values without TM; open symbols correspond to values with TM.

Supplementary Figure 1: Agreement between CAT system and ST-Genesia 

Fourty-seven DRIVING healthy volunteer samples covering a wide range of TG profiles 

were run on CAT system and ST-Genesia. Comparisons were made using Passing-Bablok 

regression and Bland-Altman plots [35]. 

Supplementary Figure 2: Distribution of rivaroxaban concentrations at Tmax and T24 

Rivaroxaban concentrations at Tmax and T24 in the 17 volunteers with the extended study 

over the 24hour-period and in the 42 volunteers. Box plots: bold horizontal bar within box, 

median; lower and upper horizontal lines of box, Q1 and Q3 quartiles, respectively; IQR=Q1-

Q3; lower horizontal bar outside box, Q1-1.5 IQR; upper horizontal bar outside box, Q3+1.5 

IQR; circles represent values beyond these limits. 

Supplementary Figure 3: Individual PK and PD profiles of the 17 volunteers with the 

extended study over the 24hour-period (11 time-points) 

Rivaroxaban concentrations (ng/mL) (A) measured by LC/MS-MS; Peak height (peak height) 

(B) and ETP (C) measured using the intermediate picomolar concentration of TF (STG-

ThromboScreen) in the absence (open symbols) and in the presence of thrombomodulin 

(closed symbols). Patient profiles are presented according to decreasing peak rivaroxaban 

concentration groups. 
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Table 1:  Rivaroxaban concentrations measured in 59 volunteers at Tmax and T24 

 

 

 
IQR: interquartile range; 

Tmax corresponds to the time associated with the highest concentration following 40-mg rivaroxaban 

intake.  

 

 

 

 

 

 

 Tmax T24 

Median (ng/mL) 

IQR range 

(min-max) 

 

186.1 

[143; 216] 

[48; 389] 

31.1 

[22.6; 37.1] 

[9.5; 68.6] 
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Table 2: TG parameters measured in the volunteers under different conditions at T0, Tmax and T24 

 

Tmax corresponds to the time associated with the highest concentration following 40-mg rivaroxaban intake for each volunteer.ETP: 

endogenous thrombin potential; TF: tissue factor; IQR: interquartile range; CV: coefficient of variation; *except for Tmax/T0 ratio (shaded 

columns) 

 High picomolar TF concentration 

(n=59) 

Intermediate picomolar TF concentration 

(n=59) 

Without TM With TM 

T0 Tmax Tmax/T0 

ratio 

T24 T0 Tmax Tmax/T0 

ratio 

T24 T0 Tmax Tmax/T0 

ratio 

T24 

Lag time (min*) 

Median  

IQR range 

min-max 

CV 

 

1.0 

0.9; 1.1 

0.8; 1.6 

15.5% 

2.1 

1.8; 2.5 

1.5; 3.8 

21.8% 

2.15 

1.9; 2.5 

1.6; 3.4 

18.6% 

1.3 

1.2; 1.4 

0.3; 2.3 

19.8% 

2.0 

1.8; 2.1 

1.6; 2.8 

13.0% 

4.9 

4.3; 5.7 

3.5; 6.7 

16.9% 

2.5 

2.3; 2.8 

1.6; 3.6 

15.6% 

3.0 

2.8; 3.3 

1.4; 4.6 

18.6% 

2.2 

2.0; 2.4 

1.7; 3.4 

15.3% 

7.7 

5.7; 10.1 

0.7; 17.9 

47.6% 

3.3 

2.8; 4.4 

0.1; 7.3 

43.7% 

3.6 

3.2; 4.1 

0.7; 6.5 

27.0% 

Time to peak (min*) 

Media 

IQR range 

min-max 

CV 

2.1 

1.9; 2.2 

1.7; 2.7 

9.8% 

6.4 

5.4; 7.4 

4.3; 9.2 

20.5% 

3.0 

2.5; 3.5 

2.1; 4.5 

19.1% 

3.1 

2.8; 3.5 

0.9; 4.9 

20.3% 

4.4 

4.0; 4.7 

3.3; 6.0 

12.6% 

11.8 

10.6; 13.0 

8.4; 14.9 

13.8% 

2.7 

2.5; 3.0 

2.0; 4.1 

14.4% 

7.4 

6.7; 8.1 

4.7; 9.9 

15.8% 

3.8 

3.7; 4.1 

3.1; 5.3 

10.5% 

10.9 

9.6; 13.8 

7.1; 21.0 

26.1% 

2.7 

2.6; 3.4 

1.9; 5.6 

24.7% 

5.87 

5.4; 6.5 

2.5; 9.0 

18.0% 

ETP (nM•min*) 

Median 

IQR range 

min-max 

CV 

 

1272 

1194; 1436 

1058; 1897 

15.4% 

1130 

1042; 1244 

873; 1876 

16.9% 

0.90 

0.84; 0.94 

0.69; 1.0 

8.7% 

1212 

1104;1352 

350; 1833 

19.1% 

1064 

982; 1248 

781; 1628 

17.2% 

650 

538; 830 

344; 1518 

35.3% 

0.6 

0.5; 0.7 

0.3; 1.1 

25.1% 

988 

897; 1110 

521; 1419 

17.2% 

551 

426; 741 

278; 1108 

35.0% 

40 

18; 80 

<30**; 346 

 105.8% 

0.08 

0.04; 0.12 

0.02 0.36 

79.5% 

251 

177; 319 

64; 520 

41.9% 

Peak height (nM*) 

Median 

IQR range 

min-max 

CV 

 

397 

369; 423 

317; 532 

10.8% 

123 

112; 169 

79; 268 

29.6% 

0.34 

0.28; 0.42 

0.24; 0.57 

23.4% 

280 

252; 306 

35; 437 

21.4% 

214 

172; 262 

115; 341 

26.5% 

48 

35; 65 

19; 144 

50.0% 

0.23 

0.2; 0.3 

0.1; 0.7 

39.1% 

110.9 

97; 134 

61; 201 

26.3% 

144.9 

102; 190 

67; 301 

36.1% 

7.7 

3.2; 14.4 

<5***; 53 

97.6% 

0.06 

0.03; 0.09 

0.01; 0.3 

82.8% 

51.5 

35; 66 

13; 109 

43.0% 



A
cc

ep
te

d
 A

rt
ic

le

. 

**ETP < 30 nM•min for 9 values; ***peak height < 5 nM for 3 values 

 

 

 

 

Table 3: Parameters of the model equations for ETP and peak height using an intermediate TF concentration in the absence and presence of 

thrombomodulin, respectively 

 

Parameter 

Intermediate picomolar TF concentration - TM Intermediate picomolar TF concentration + TM 

Initial 

value 
µ 95% CI σ 95% CI 

CV 

(%) 

Initial 

value 
µ 95% CI σ 95% CI CV 

ETP (nM•min) 

Y0 1109 1103 1041; 1166 179.7 142; 227.3 16.3% 562.1 576.2 511.8; 640.6 135.9 83.1; 222.3 23.6% 

C50 277.3 284.2 244.7; 323.8 Absent in the model 17.6 19.4 15.2; 23.5 6.7 4.2; 10.9 34.8% 

γ 0.8189 0.906 0.7296; 1.082 - 1.097 1.149 1.053; 1.246 / 

Residual error - 0.1564 0.1432; 0.1708 - - 0.3901 0.3554; 0.428 / 

Peak height (nM) 

Y0 206.6 207.1 191.5; 222.8 39.7 27.9; 56.6 19.2% 139.6 143.2 126.3; 160 33.2 19.4; 56.7 23.2% 

C50 29.1 33.2 26.2; 40.1 4.0 1.2; 13.7 12.2% 12.8 13.8 10.7; 16.9 4.3 2.5; 7.4 31.3% 

γ 0.7036 0.7155 0.645; 0.786 - 1.112 1.138 1.042; 1.234 / 

Residual error - 0.2286 0.2093; 0.2497 - - 0.4181 0.3807; 0.459 / 

 

µ: mean value estimated by the model; σ: standard deviation estimated by the model; CV (%): coefficient of variation estimated by the model; 

γ: Hill coefficient; Y0: value at baseline; C50: rivaroxaban concentration associated with half maximum effect; TM: thrombomodulin 
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