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SUMMARY

The olive (Olea europaea L. subsp. europaea) is one of the oldest and most socio-economically important

cultivated perennial crop in the Mediterranean region. Yet, its origins are still under debate and the genetic

bases of the phenotypic changes associated with its domestication are unknown. We generated RNA-se-

quencing data for 68 wild and cultivated olive trees to study the genetic diversity and structure both at the

transcription and sequence levels. To localize putative genes or expression pathways targeted by artificial

selection during domestication, we employed a two-step approach in which we identified differentially

expressed genes and screened the transcriptome for signatures of selection. Our analyses support a major

domestication event in the eastern part of the Mediterranean basin followed by dispersion towards the

West and subsequent admixture with western wild olives. While we found large changes in gene expression

when comparing cultivated and wild olives, we found no major signature of selection on coding variants

and weak signals primarily affected transcription factors. Our results indicated that the domestication of

olives resulted in only moderate genomic consequences and that the domestication syndrome is mainly

related to changes in gene expression, consistent with its evolutionary history and life history traits.

Keywords: artificial selection, differential expression analysis, domestication, Olea europaea (olive tree),

perennial crop, RNA-sequencing, transcriptomics.

INTRODUCTION

The olive tree (Olea europaea L. subsp. europaea var. eu-

ropaea) constitutes a cornerstone of Mediterranean culture

by its multiple past and present uses and its omnipresence

in traditional agrosystems (Loumou and Giourga, 2003).

Historically, olives were restricted to the Mediterranean

basin, but current cultivation includes also the Americas

and Australia. By 2017, more than 10 million hectares were

devoted to olive cultivation globally, with more than 90%

in the Mediterranean area (FAO, 2018). Hundreds of clon-

ally propagated cultivars have been described (Bartolini

et al., 1998), but only a few are cultivated on a large scale,

such as ‘Leccino’ or ‘Picual’. Today, the olive tree is one of

the most important oil-producing plant species, and

demand for its oil is still increasing due to its nutritional

quality (Kalua et al., 2007). Over 20 million tonnes of olives

were harvested in 2017, and the production is in constant

growth (FAO, 2018).

The domestication history of olives, however, remains

unresolved and its origins are partly lost in the mists of

time (Besnard et al., 2018). Olive domestication is a still

ongoing process involving the selection and vegetative

propagation of individuals of high agronomical value, but

also the establishment of orchards with various cultivation

practices. While archaeological remains indicate that
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Mediterranean wild olives (also called oleasters; var. syl-

vestris) were already used during the Palaeolithic (Kislev

et al., 1992), cultivation and early domestication efforts are

supposed to have started only about 8000–6000 years BP in

the Levant, where the olive oil trade has been developed

during the Bronze Age (Liphschitz et al., 1991; Galili et al.,

1997; Terral et al., 2004; Kaniewski et al., 2012).

Botanical and genetic data attest that cultivated olives

mostly derive from oleasters (Besnard et al., 2001b, 2013a,

b; Terral et al., 2004; Breton et al., 2006; Carri�on et al.,

2010; D�ıez et al., 2015). Oleasters are found all over the

Mediterranean basin and are partitioned in two main gene

pools in the East and the West, according to plastid and

nuclear markers (Besnard et al., 2001b, 2013b; Breton

et al., 2006; D�ıez et al., 2015). Likewise, the cultivated

germplasm shows some degrees of geographic differentia-

tion between the East, Central and West of the Mediter-

ranean basin; yet, extensive admixture between these

gene pools has occurred, especially in the western part of

its distribution (Besnard et al., 2001a, 2013a; Breton et al.,

2009, 2006; D�ıez et al., 2015; Lumaret et al., 2004). Whether

these two gene pools were independently domesticated

remains highly debated (Besnard et al., 2018). Some stud-

ies on a few dozens of genetic markers support a main

domestication event in the East, followed by diffusion to

the West where this genepool was introgressed by local

oleaster populations (Besnard et al., 2013a,b; Khadari and

El Bakkali, 2018). Other studies sustain at least two inde-

pendent domestications in the East and Central Mediter-

ranean basin (Breton et al., 2006; D�ıez et al., 2015).

Even less is known about the genetic bases underlying

the domestication of olives. In many crops, domestication

genes were recently identified through QTL mapping, gen-

ome-wide association studies, candidate gene approaches

and more recently population genomic screens for signa-

tures of selection (Doebley et al., 2006; Meyer and Purug-

ganan, 2013; Gepts, 2014). Despite examples of important

protein-altering mutations (e.g. Olsen and Purugganan,

2002; Olsen and Wendel, 2013), these studies highlight the

predominant role of regulatory mutations affecting either

coding (i.e. transcription factors) or non-coding regions

(i.e. cis- regulatory elements) (Meyer and Purugganan,

2013; Lemmon et al., 2014; Mart�ınez-Ainsworth and Tenail-

lon, 2016; Swinnen et al., 2016). For instance, the overex-

pression of the tb1 gene in maize is responsible for its

apically dominant architecture (Doebley et al., 1995; Studer

et al., 2011), and the rewiring of the expression of several

genes in oilseed rape (Brassica napus), increased seed oil

content (Liu et al., 2015). However, most of these findings

stem from annuals, while the genetic architecture of peren-

nial domestication remains elusive (Gaut et al., 2015). In

olives, QTL analyses have identified molecular markers

associated with fruit yield and flowering variables (Ben

Sadok et al., 2013; Atienza et al., 2014), but the genetic

basis of other phenotypic changes associated with domes-

tication attested by the archaeobotanical record, such as

an increase in fruit size or oil content (Galili et al., 1997), is

still unknown.

Here we present a study based on transcriptome

sequences of wild and cultivated olive trees that aims at

clarifying the evolutionary history of olives and identifying

the molecular changes associated with its domestication.

Transcriptomic data at the population level are powerful to

study both the changes in regulation, through the study of

gene expression differential, as well as the change in pro-

tein-coding genes, with no or minor biases when com-

pared with genome-wide data (Ray et al., 2011; Romiguier

et al., 2014). It has previously been used successfully to

study the domestication process in several crops, including

African rice (Nabholz et al., 2014), common bean (Bellucci

et al., 2014) and tomato (Koenig et al., 2013; Sauvage

et al., 2017).

To date, genome assemblies of olives and oleasters are

available (Barghini et al., 2014; Cruz et al., 2016; Unver

et al., 2017), along with several transcriptome assemblies

from different tissues of olives (Mu~noz-M�erida et al., 2013;

Parra et al., 2013; Carmona et al., 2015; Iaria et al., 2016;

Sarah et al., 2017). While transcriptomic studies have high-

lighted differences in gene expression in response to cold

acclimation (de la O Leyva-P�erez et al., 2015) or salt stress

(Mousavi et al., 2019), neither the domestication history of

olives nor the genetic architecture of its domestication syn-

drome have been studied with such data so far. We there-

fore generated transcriptomes of 39 cultivated accessions

and 27 oleasters, which we used to refine the scenario of

domestication and expansion. We further inferred the

genomic changes associated with olive domestication

using a two-step strategy: we first contrasted transcrip-

tome-wide expression levels in wild and cultivated olives

to identify changes in gene expression. Second, we

scanned the transcriptomic sequences for signatures of

selection to identify alleles potentially associated with

domestication. The identification of regions under positive

selection is methodologically challenging as selection and

demography leave very similar signatures in the genome

(Stephan, 2016). This is particularly problematic for peren-

nial crops that have complex domestication history with

possibly more than one origin and ongoing wild-cultivated

gene flows (Miller and Gross, 2011). We therefore made

use of the demographic model inferred here to properly

look for signatures of selection in the olive transcriptome.

RESULTS

RNA-sequencing and variant detection

RNA-seq data were generated for 66 Mediterranean olive

accessions and two accessions of O. e. cuspidata using an

Illumina HiSeq2000 sequencer, resulting in a total of 2
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billion reads of 100 bp with an average of 30 million reads

per individual (Table S1). After removing low-quality reads,

trimming low-quality bases and keeping only reads map-

ping to the reference transcriptome of var. ‘Arbequina’

(Sarah et al., 2017) with high quality (Methods S2), the

average and median depth were 33.49 and 13.19 per

accessions, respectively (Table S1). Variant calling led to

583 455 single nucleotide polymorphisms (SNPs) when the

outgroup O. e. cuspidata was included, and to 536 341

SNPs when it was excluded. We eliminated four cultivated

olive accessions identified as clones based on inferred

relatedness (Figure S1) and therefore kept a total of 62

unique olive genotypes for downstream analyses. Variant

calling on those samples resulted in 536 113 SNPs over

25 835 contigs.

Evolutionary history of olive tree domestication

Structure of nuclear and chloroplastic diversity. We

examined population structure in our olive transcriptomic

data using principal component analysis (PCAs) (Figure 1)

and NGSadmix (Figure 2). A strong geographic structure

between the West and East of the Mediterranean Basin

was observed along with a subtler differentiation between

wild and cultivated accessions (Figures 1, 2 and S2–S6).
Eastern and western oleasters clustered into distinct

groups in the admixture analysis (Figure 2; Appendix S1),

and stretched the first principal component of the PCA

(Figure 1). Many cultivars sampled in the East of the

Mediterranean Basin could hardly be differentiated from

eastern oleasters in the admixture analysis (Figure 2). They

appeared distinct although close in the PCA with only one

cultivated accession falling among the eastern oleasters

(OGMed_019: cultivar Zard from Iran; Figure 1). The

oleaster OS3 from Morocco clustered with cultivated

accessions (Figure 1) and displayed a mixed ancestry (Fig-

ure 2). The distinction between western and eastern acces-

sions was also supported by chloroplast lineages

(Figure S7). Eastern and western oleasters displayed chlor-

otypes from lineages E1 and E2, respectively. Most culti-

vars carried a chlorotype from lineage E1, but some

western cultivars carried chlorotypes from lineages E2 and

E3, which had been previously reported to be western

(Besnard et al., 2013b).

Based on these results, we split cultivated accessions

into two populations: (1) a western cultivated population

comprised of 27 accessions with <50% of ancestry from

the eastern oleaster cluster in the admixture analysis with

K = 3, and either chlorotypes from lineages E1, E2, E3 or

L1 (Figure 2); and (2) an eastern cultivated population com-

prised of the remaining eight accessions that displayed

ancestry mainly from the eastern oleaster clade (>50% with

K = 3) and the eastern chlorotype lineage E1. This assign-

ment matches the presumed geographic origin of cultivars

(Table S1), with the eastern population including all culti-

vars from Iran, Syria, Lebanon, Egypt and Cyprus, and the

western population all cultivars from Greece and further to

the West. The only exception was accession OGMed_032

(cultivar Stanbouli), which was assigned to the western

population while its presumed origin is Syria. But this mis-

classification was previously noted in an a microsatellite

analysis (Haouane et al., 2011).

Genetic diversity. When grouped together, wild acces-

sions displayed on average more diversity than cultivated

accessions (Table 1), as predicted for crops (Gepts, 2004).

We observed a loss of diversity of about 14% and a slight

increase in Tajima’s D in eastern cultivated accessions

compared to eastern oleasters, compatible with a weak to

moderate bottleneck during domestication. Western culti-

vated accessions displayed more variability than eastern

cultivated accessions in all diversity estimators as well as a

more positive Tajima’s D than the other populations, likely

due to its admixed origin (Figures 1 and 2).

The fixation index (FST; Table 2) was the highest between

western oleasters and eastern cultivated olives (21.8%).

While the two oleaster populations were highly differenti-

ated (16.7%), the two cultivated populations were much

more similar (5.77%). Eastern cultivated olives appeared to

be genetically very close to eastern oleasters (1.31%).

Inference of olive population splits and mixtures. We

identified patterns of divergence and migration between

the four olive populations with TreeMix, using the O. e.

cuspidata individuals to root the tree (Figure 3). One

migration event was required to explain >99.9% of the vari-

ance in the data (Figures S8 and S9) and results were con-

sistent across five separate runs. The resulting tree

PC1 (17.64 %)
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Figure 1. Principal component analysis plot (PCA) of the first two factors

based on 536 341 SNPs genotyped in 62 olive accessions. Accessions are

coloured according to the population they belong to as defined using their

geographic origin, these results and the results from the admixture analysis

and chloroplast genotyping (see text). EO, eastern oleasters; WO, western

oleasters; EC, eastern cultivated olives; WC, western cultivated olives.
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confirms an initial domestication event in the East as east-

ern and western cultivars clustered together, separated

from eastern oleasters by a very short branch only. How-

ever, the analysis also confirmed the admixed origin of

western cultivars, which were estimated to have received

33.73% of their gene pool from western oleasters (Fig-

ure 3). To test for the robustness of this admixture signal,

we repeated the analysis without the introgressed western

oleaster (OS3), resulting in a 28.77% contribution of west-

ern oleasters to western cultivars. We further repeated the

analysis by separating pure from admixed western culti-

vars based on the admixture analysis with K = 3. Both

western cultivated populations clustered with the eastern

oleasters and cultivars and we inferred a 40.60% contribu-

tion of western oleasters to the western cultivars (Figures

S10 and S11).

Gene expression profiling

To avoid issues related to the independent construction of

libraries (Conesa et al., 2016), we focused on the first

sequencing batch, which contained data from all four

populations studied here (Table S1). These data were gen-

erated by RNA-sequencing both inflorescences and leaves.

Population structure and diversity in gene expression. We

obtained expression profiles for each of the 19 accessions

(Table S1) after filtering transcripts based on high

intrapopulation variance and low read numbers, leading to

40 831 transcripts (90%). Hierarchical clustering on the

expression profiles clustered the two known clones

(OGMed_025 and OGMed_026) together, confirming the

reliability of our expression analysis. We identified three

major groups (Figure 4a). The first and most divergent

group consisted of the western oleasters. The second

group consisted of the eastern oleasters and eastern culti-

vars, which could not be separated into individual groups.

The third groups consisted of western cultivars, which

appeared intermediate between the other groups, in line

with their admixed origin (Figures 1–3). Two samples,

however, did not match this general pattern as the expres-

sion profile of both the western cultivar OGMed_018 and

the introgressed western oleaster OS3 appeared nested
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within the eastern group. Although we observed a lower

gene expression diversity in cultivars compared to oleast-

ers, this difference was not significant (Student’s t-test,

P = 0.056 and 0.093 for eastern and western accessions,

respectively; Figure 4b).

Transcriptional differences in olives. Differentially

expressed genes (DEGs) were identified in six pairwise

comparisons (Table 3). Interestingly, the divergence in

gene expression between western and eastern accessions

(1280 DEGs) is comparable with that between oleasters

Table 1 Summary of population diversity statistics calculated on cultivated (1) and wild accessions (2) and on western and eastern subpop-
ulations (a and b, respectively)

Population No. accessions Site class % p % hW Tajima’s D HE HO C

(1) Cultivated olives 35 Synonymous 0.969 0.807 0.243 0.0110 0.00792 0.614
Non-synonymous 0.374 0.339 0.160 0.0041 0.00263
All sites 0.576 0.490 0.423 0.00612 0.00395

a) Western cultivated 27 Synonymous 0.987 0.772 0.408 0.0121 0.00792 0.615
Non-synonymous 0.380 0.317 0.411 0.00425 0.00263
All sites 0.582 0.463 0.693 0.00657 0.00395

b) Eastern cultivated 8 Synonymous 0.789 0.681 0.215 0.00920 0.00792 0.624
Non-synonymous 0.297 0.268 0.224 0.00363 0.00263
All sites 0.448 0.392 0.434 0.00511 0.00395

(2) Oleasters 27 Synonymous 1.001 1.014 �0.209 0.0114 0.00834 0.615
Non-synonymous 0.385 0.448 �0.494 0.00481 0.00263
All sites 0.589 0.621 �0.270 0.00636 0.00398

a) Western oleasters 5 Synonymous 0.904 0.843 0.059 0.00936 0.00822 0.629
Non-synonymous 0.335 0.322 0.017 0.00390 0.00263
All sites 0.497 0.468 0.197 0.00496 0.00394

b) Eastern oleasters 22 Synonymous 0.866 0.842 �0.143 0.0106 0.00837 0.617
Non-synonymous 0.332 0.368 �0.393 0.00371 0.00263
All sites 0.508 0.512 �0.178 0.00577 0.00398

p, Mean number of pairwise difference; hW, number of segregating sites; HE, expected heterozygosity; HO, observed heterozygosity; C, selec-
tive constraint.

Table 2 Pairwise genetic differentiation (FST) and standard deviation between pairs of populations

C WO WC EC EO

O 0.0243 � 0.0559 / 0.0319 � 0.0657 0.0107 � 0.0838 /
WO 0.118 � 0.239 0.000 0.116 � 0.220 0.218 � 0.307 0.167 � 0.313
WC / 0.116 � 0.220 0.000 0.0559 � 0.115 0.0577 � 0.0883
EC / 0.218 � 0.307 0.0559 � 0.115 0.000 0.0131 � 0.0862
EO 0.0434 � 0.0729 0.167 � 0.313 0.0577 � 0.0883 0.0131 � 0.0862 0.000

C, cultivars (n = 35); EO, eastern oleasters (n = 22); EW, eastern cultivated olives (n = 8); O, oleasters (n = 27); WC, western cultivated olives
(n = 27); WO, western oleasters (n = 5).
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and cultivated accessions (1269 DEGs). Additionally, the

lowest number of DEGs among these six comparisons was

found when comparing eastern oleasters to eastern culti-

vars, supporting a low differentiation between these two

populations. Most of the DEGs identified between eastern

oleasters and eastern cultivars were also divergent when

comparing all wild and all cultivated olives (Figure 5). But

only a fraction of the DEGs between western oleasters and

western cultivated accessions were also divergent between

all wild and all cultivated accessions.

We identified primary domestication DEGs as genes dif-

ferentially expressed between all wild and all cultivated

accessions and/or eastern oleasters and eastern cultivated

accessions, excluding genes differentially expressed when
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(a) (b) Figure 4. Gene expression data of 19 wild and culti-

vated olives over 40 831 transcripts. (a) Dendro-

gram of hierarchical clustering from gene

expression data; (b) Gene expression diversity cal-

culated as the level of gene expression variation for

each sample. EO, eastern oleasters; WO, western

oleasters; EC, eastern cultivars; WC, western culti-

vars.

Table 3 Summary of the transcriptome-wide differential of expression analysis performed on 40 831 transcripts profiled in 19 wild and culti-
vated olives

Pairwise comparison

No. DEGs (total,
upregulated,
downregulated) Enriched GO

Oleasters versus cultivated olives 1269 GO:0000785: Chromatin;GO:0034728: Nucleosome organization;
GO:0016837: Carbon-oxygen lyase activity, acting on polysaccharides;
GO:0006270: DNA replication initiation

543 /
726 GO:0000785: Chromatin;GO:0034728: Nucleosome organization;

GO:0006270: DNA replication initiation;GO:0016837: Carbon-oxygen
lyase activity, acting on polysaccharides;GO:0006563: L-serine
metabolic process

Eastern oleasters versus eastern
cultivated accessions

566 /
233 /
333 GO:0006270: DNA replication initiation;GO:0016837: Carbon-oxygen

lyase activity, acting on polysaccharides
Western oleasters versus western
cultivated accessions

749 /
257 /
492 /

Western accessions versus eastern
accessions (both wild and cultivated)

1280 GO:0009648: Photoperiodism;GO:0009791: Post-embryonic
development;GO:0004486: Methylenetetrahydrofolate dehydrogenase
activity;GO:0019238: Cyclohydrolase activity;

433 GO:0010557: Positive regulation of macromolecule biosynthetic process
847 GO:0009648: Photoperiodism;GO:0004486: Methylenetetrahydrofolate

dehydrogenase activity;GO:0019238: Cyclohydrolase activity
Eastern oleasters versus western
oleasters

713 GO:0004486: Methylenetetrahydrofolate dehydrogenase activity;
GO:0019238: Cyclohydrolase activity

242 /
471 GO:0004486: Methylenetetrahydrofolate dehydrogenase activity;

GO:0019238: Cyclohydrolase activity
Eastern cultivated accessions versus
western cultivated accessions

571 /
195 /
376 /
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comparing eastern with western accessions (oleasters or

cultivars) to correct for the high geographic differentiation

in olives. Among these 1136 primary domestication DEGs,

six Gene Ontology (GO) terms were significantly enriched

(P < 0.05), of which four were related to transcriptional

activity (Figure 5).

Detection of loci under selection in cultivated olives

No sign of relaxation of the selective constraint (C) on non-

synonymous sites was detected in domesticated olives

with all four olive populations showing very similar values

(Table 1).

To focus on the primary domestication event that took

place in the East, and dispose of the effect of gene flows

between western oleasters and the cultivated olive acces-

sions, we first scanned the transcriptome for signatures of

selection using eastern accessions only. Neither BayeScan

nor PCAdapt detected outlier SNPs when comparing east-

ern oleasters with eastern cultivated accessions (Table 4

and Figure S12), nor did BayeScan identify outliers when

including western cultivated accessions in the cultivated

population.

Under a model contrasting 27 wild against 35 cultivated

olives, BayeScan identified 30 and seven SNPs as

O/C
(1269)

WO/WC
(749)

EO/EC
(566)

EO/WO
(713)

614

8 340

514 0

0

53

312

313

0

0 0

43 44

1

6 enriched GO terms:
    GO:0000785: Chromatin
    GO:0034728: Nucleosome organization
    GO:0006270: DNA replication initiation
    GO:0016837: Carbon-oxygen lyase activity
    GO:0003676: Nucleic acid binding
    GO:0071555: Cell wall organization

1136 DEGs 
related to the eastern 

primary domestication event

Figure 5. Overlap of differentially expressed genes (DEGs) identified in four differential expression analyses including a total of 19 wild and cultivated acces-

sions. O/C: comparison between all oleasters and all cultivated accessions; EO/EC: comparison between eastern oleasters and eastern cultivars; WO/WC: com-

parison between western oleasters and western cultivars; EO/WO: comparison between eastern oleasters and western oleasters. Numbers in parentheses

indicate the total number of DEGs for each of these four analyses. We identified 1136 genes differentially expressed in relation to the domestication process.

These were DEGs either when comparing all oleasters and all cultivars or when comparing eastern oleasters and eastern cultivars or both but were removed

from this list DEGs related to eastern/western geographic differentiation as identified by the analysis EO/WO and DEGs in relation to the divergence between

western oleasters and western cultivars (WO/WC).

Table 4 Selection scans performed on the RNA-seq olive dataset with BayeScan and PCAdapt

Software Population pairwise comparisons Parameter Threshold
No. outlier
SNPs

No. contigs with
outliers

No. enriched GO
terms

BayeScan Oleasters vs. cultivated 100 FDR = 0.05 30 22 0
1000 FDR = 0.05 7 7 0

Eastern oleasters vs. all cultivated 100 FDR = 0.05 0 / /
1000 FDR = 0.05 0 / /

Eastern oleasters vs. eastern
cultivated

100 FDR = 0.05 0 / /
1000 FDR = 0.05 0 / /

Eastern accession vs. western
accessions

100 FDR = 0.05 1 1 0
1000 FDR = 0.05 0 / /

Eastern cultivars vs. western
cultivars

100 FDR = 0.05 0 / /
1000 FDR = 0.05 0 / /

Eastern oleasters vs. western
oleasters

100 FDR = 0.05 0 / /
1000 FDR = 0.05 0 / /

PCAdapt All olives factors 1-
2

FDR = 0.01 3211 1119 298

All olives factor 2 top 1% 3000 1649 97
Eastern olives factor 1 FDR = 0.01 0 / /

The parameter column in the case of BayeScan indicates the value set for the prior odds. For PCAdapt, it indicates the principal component
used to find outlier loci.
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potentially under selection with a prior odds of 100 and

1000, respectively (Table 4 and Table S2; Figure S13). Nev-

ertheless, these outliers could reflect the high differentia-

tion between western cultivars and eastern oleasters that

is not due to domestication but to their admixture with the

highly differentiated western oleaster gene pool. To correct

the candidate genes list, we therefore identified SNPs and

contigs exhibiting large FST between eastern and western

accessions. Comparing all eastern with all western acces-

sions, BayeScan identified a single outlier SNP, while

when taking cultivars or oleasters only, the comparisons

led to no outlier SNP. This single outlier did not overlap

with the 30 and seven from the oleaster/cultivar compar-

ison indicating that the oleaster/cultivar comparison could

actually provide insights into the domestication event.

Nevertheless, no enriched GO term was identified among

these outliers SNPs (Table 4).

PCAdapt identified 3211 candidate SNPs that were atypi-

cally associated with both PC1 and PC2 (FDR < 0.01) when

ran on all accessions together. PC1 captures the geo-

graphic partitioning of olive diversity while PC2 actually

relates to the distinction between oleasters and cultivated

olives (Figure 1). Therefore, to identify SNPs related to

domestication, but not to the geographic differentiation,

we focused on the top 1% hits associated to PC2 only.

These 3000 SNPs were distributed over 1648 transcripts

enriched for 97 GO terms (Figure S14). Enriched GO terms

for cellular components were mostly related to chromo-

some organization, transcription complex as well as

endomembrane structures (lipid bilayer) while enriched

GO terms for molecular function were mostly related to

protein synthesis (mRNA transcription and translation) and

growth (growth factor binding, tubulin binding and

cytoskeletal protein binding).

Ten of these outlier transcripts also contained an SNP

identified by BayeScan and are therefore the strongest can-

didates for selection (Figure 6). Their sequence similarity

to the nucleotide collection of NCBI was identified with

blastn using default parameters (Zhang et al., 2000; Mor-

gulis et al., 2008): three transcripts are proteins involved in

transcriptional and translational activities and two are

involved in cell cycle (Table S3).

Differentially expressed transcripts do not show more sign

of selection

We investigated whether genes showing divergent expres-

sion in relation to the primary eastern domestication event

were also identified as likely targets of selection. The inter-

section of the top 1% transcripts associated to PC2 in the

PCAdapt analysis combining all samples (3000 SNPs on

1648 contigs) with the DEGs in all, eastern only and west-

ern only accessions (Table 3) led to, respectively, 73, 35

and 32 overlapped contigs. These numbers are, however,

not different from what is expected by chance

(hypergeometric test; P = 0.116). Additionally, when com-

pared with non-DEGs, they did not show a larger differenti-

ation (as calculated using FST between eastern wild and

cultivated accessions, Wilcoxon rank sum test; P > 0.05)

nor a decrease in nucleotide diversity, whether synony-

mous or non-synonymous, in the cultivated accessions

(Wilcoxon rank sum test; P > 0.05).

DISCUSSION

Here, we studied the evolutionary history of the olive using

transcriptomic data of both wild and cultivated accessions

from all around the Mediterranean basin. Oleasters were

carefully selected to represent genuinely wild olives not

heavily impacted by human activities (Besnard and Rubio

de Casas, 2016). Their wild origin was corroborated

through their high diversity in cpDNA haplotypes and their

genetic differentiation observed at the nuclear genome.

Insights into the domestication history of olives

East/West geographic structure in olives and admixture in

the cultivated gene pool. Expression data, transcriptomic

variants and chloroplastic data all confirmed the previously

described high East/West differentiation observed in olives

(Besnard et al., 2013a; D�ıez et al., 2015), in line with the

hypothesis of a geographic structure older than the

domestication process (Besnard et al., 2013b). The diver-

sity of cultivated olives also displayed an East/West struc-

ture, but in contrast with oleasters, there is extensive

admixture between these two gene pools, as already evi-

denced (Besnard et al., 2013b; D�ıez et al., 2015; Khadari

and El Bakkali, 2018).

Based on few markers, previous investigations identified

two cultivated populations (namely eastern and western)

(Besnard et al., 2001b), or three (namely western, central

9
1

0

163

BayeScan
Oleasters/cultivated accessions

PCAdapt
All accessions

PC 1 and 2

PCAdapt
All accessions
Top 1% on PC2

10 strong 
candidates for 
selection

12

995 1475

1119 1648

22

Figure 6. Overlap between selection scan analyses. The 10 contigs found as

outliers in both BayeScan (all accessions) and PCAdapt (all accessions, top

1% on PC2) can be considered as strong candidates for selection.
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and eastern populations, Haouane et al., 2011; Belaj et al.,

2012; D�ıez et al., 2012, 2015; El Bakkali et al., 2013). Our

SNP dataset identified two major groups: cultivated acces-

sions sampled in the East of the Mediterranean as only

marginally differentiated from eastern oleasters in terms of

nuclear diversity, and those from the West and Central

Mediterranean basin that had mixed ancestry and were dif-

ficult to be further differentiated into separate populations.

Support for a single primary domestication in olives. We

re-examined the debate of single versus multiple domesti-

cation event(s) in olives, and several lines of evidence cor-

roborate the occurrence of a dominant event in the eastern

part of the Mediterranean basin followed by human-medi-

ated spread towards the West and introgression by west-

ern oleasters. First, there was weak differentiation between

eastern oleasters and eastern cultivated accessions

observed in both expression and SNPs data along with a

slight reduction in diversity observed in the domesticated

gene pool. Agronomically interesting oleasters may there-

fore have been put into cultivation in this region through

cloning directly or after only a few generations of (con-

scious or unconscious) selection. Conversely, we could not

identify any cultivar unambiguously assigned to the west-

ern group as they are all at least admixed between the two

gene pools. Second, most cultivars (82%), both eastern

and western, carried a chlorotype that is restricted to the

eastern part of the Mediterranean basin in oleasters. This

situation indicates that, for a majority of olive cultivars, the

maternal origin can be traced to the East of the distribu-

tion. Thirdly, in the analysis of population split and mix-

tures, the western cultivars grouped with eastern oleasters

and cultivated accessions rather than grouped with west-

ern oleasters, even when the western cultivated population

was split into two populations. Lastly, western cultivated

accessions are also closer to eastern wild and cultivated

olives than to western oleasters in term of expression pat-

terns. We therefore argue in favour of a single domestica-

tion event in olive in the eastern region of the

Mediterranean basin as previously proposed (Besnard

et al., 2013a; Khadari and El Bakkali, 2018). But we do rec-

ognize a secondary contribution of western oleasters in the

cultivated gene pool of the western and central Mediter-

ranean basin. Western cultivars indeed showed up to 60%

of admixture from the western oleasters while a minority

displayed a chlorotype only found in western oleasters

(see Besnard et al., 2013b for a large sampling of cultivars

from this area). During the expansion of olive cultivation to

the West, domesticated olives were therefore repeatedly

crossed with western oleasters.

This model of domestication, with introgression from

wild relatives leading to cultivars closely related to their

secondary progenitor, has already been observed in other

perennials such as grape (Myles et al., 2011), apple

(Cornille et al., 2012) and date palm (Gros-Balthazard et al.,

2017; Flowers et al., 2019).

Based on our dataset, we did not retrieve the scenario of

independent domestication in the central Mediterranean

basin favoured by D�ıez et al. (2015) who, based on

microsatellite data, suggested a separate olive domestica-

tion in the central Mediterranean basin. However, their

conclusion might have been driven in part by eastern olea-

ster accessions that turned out to be feral rather than gen-

uinely wild (D�ıez et al., 2015; D�ıez and Gaut, 2016). Also,

such an additional domestication, if it existed, must have

been rather localized as it did not leave any detectable

trace in neither the western nor eastern cultivars analyzed

here.

The consequence of domestication in the olive

transcriptome

Reduction in nucleotide diversity but not in expression

diversity. On average, cultivated olives retained 97% of

the diversity found in oleasters. When only considering

eastern populations, this number falls to 86% and 77% for

nucleotide diversity (p) and the number of segregating

sites (hW), respectively. This deficit is comparable with that

found in other perennials (94.6% on average; Miller and

Gross, 2011). For instance, genomic data indicated that cul-

tivated grapes retained about 95% of the diversity found in

its wild progenitor (Zhou et al., 2017). This limited loss of

diversity in perennials is related to the low number of gen-

erations since domestication and ongoing gene flow

between wild populations and domesticates (Miller and

Gross, 2011; Gaut et al., 2015). Interestingly, the western

cultivars showed the largest nucleotide diversity, in line

with their mixed ancestry including both eastern cultivated

accessions and western oleasters. This high level of

genetic diversity following a secondary contact of the culti-

vated gene pool with other wild relative populations has

already been described in olives (D�ıez et al., 2015) and in

other crops such as the grape vine (Myles et al., 2011) or

the date palm (Gros-Balthazard et al., 2017; Flowers et al.,

2019).

In contrast with the nucleotide diversity, however, we

did not find a significant reduction in the diversity of gene

expression. While such a reduction is reported for annual

crops such as rice (5.1% reduction; Liu et al., 2019) or com-

mon bean (18% reduction; Bellucci et al., 2014), it might be

a result of the generally weaker domestication syndrome

in perennial plants. However, an important limitation of

our result is the restricted number of samples used for the

expression analysis, and further observations might pro-

vide a more robust outcome.

Altered gene expression in cultivated olives. We found

evidence of an important transcriptome rewiring due to

domestication. Indeed, many transcripts exhibited

© 2019 The Authors
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differential expression when comparing wild and cultivated

olives, whether using the full dataset, eastern olives or

western olives separately. The observed fraction of DEGs

linked to olive domestication (1.39%) is comparable with

that found in maize (2.18%; Swanson-Wagner et al., 2012)

or in common bean (0.7%; Bellucci et al., 2014).

We identified six GO terms that were enriched in DEGs

related to domestication. Of those, four were associated

with transcriptional activity. This result is consistent with

previous findings underlying an over-representation of

transcription regulators among domestication genes (Doe-

bley et al., 2006; Meyer and Purugganan, 2013; Olsen and

Wendel, 2013). We did not identify any DEGs directly

related to oil content or fruit/seed size, traits expected to

have been impacted by domestication. However, we note

that the expression data analyzed here were obtained from

leaves and inflorescences rather than fruits. Nevertheless,

we provide evidence of olive transcriptome reshaping by

domestication, motivating the expression profiling of other

tissues, especially the fruit, to further understand how the

olive transcriptome was affected.

Lack of signatures of selection in the olive transcrip-

tome. Estimates of the extent to which artificial selection

has shaped crop genomes mostly stem from annuals and

include ~7.6% for maize (Hufford et al., 2012), ~9% for the

common bean (Bellucci et al., 2014) and ~7.3% in sun-

flower (Chapman et al., 2008). Estimates are lower for the

perennial apple, for which regions selected during the ini-

tial phase of domestication or secondary introgression cov-

ered only 3.7% of the genome (Duan et al., 2017).

Here we report even weaker selection on protein-cod-

ing genes in olives. Both statistical approaches used

(PCAdapt and BayeScan) to contrast eastern oleasters

and eastern cultivated accessions failed to identify candi-

date genes for domestication, and only 10 (0.04%) puta-

tive selected genes were detected when using the full

dataset. While our estimates are based on transcriptomes

rather than full genomes, the very weak selection inferred

here is a likely result of olive life history. Indeed, olives

are self-incompatible with long generation times, and are

extensively propagated clonally while still exchanging

genes with oleasters (Rugini et al., 2016), all limiting the

possibility to impose strong selection regimes. But we

note that our selection scans were underpowered to

detect selection on highly polygenic traits (Narum and

Hess, 2011) that were proposed to contribute substantially

to the domestication in other crops (Olsen and Wendel,

2013). In addition, and given the long generation time,

selection during domestication was likely to act primarily

on standing variation rather than on de novo mutations

(Stetter et al., 2017), therefore leaving even softer signa-

tures of selection that are harder to detect (Przeworski

et al., 2005).

The olive domestication syndrome driven by gene expres-

sion changes. In contrast with the weak signature of

selection we found on coding genes, there was a much

higher proportion of changes in gene expression poten-

tially associated with olive domestication. While we

detected only 0.04% of putative genes under selection, we

found that 1.39% of these same genes were differentially

expressed in wild and cultivated eastern olives. Several

non-exclusive hypotheses may explain how the expression

patterns were rewired during olive domestication without

leaving strong signatures of selection in the transcriptome.

First, gene expression may have changed as a result of

drift, in relation to the demography of olives, rather than

artificial selection. Second, and given the polygenic nature

of gene regulation with a large numbers of transcription

factors modulating the expression of single genes (Chen

and Rajewsky, 2007), our data set was underpowered to

detect selection signals. Third, mutations in cis-regulatory

regions (CREs) played a major role in changing expression

patterns. CREs are known to be major targets of evolution-

ary changes, due to their weaker deleterious pleiotropic

effects compared with mutations in coding sequences

(Stern and Orgogozo, 2008), as was exemplified in annual

crops (Lemmon et al., 2014; Wang et al., 2017; but see

Rhon�e et al., 2017). Yet, they were not captured by our

transcriptomic data and, in case of rapid decay of linkage

disequilibrium, signatures of selection could not extend up

to the coding regions we sequenced. Lastly, epigenetic

changes, maintained through vegetative propagation

(Richards, 2011), can also contribute to gene expression

changes associated with domestication as was recently

shown for agronomically important traits such as fruit

ripening in tomato (for review, see Gallusci et al., 2016;

Piperno, 2017). Interestingly, siRNA involved in epigenetic

processes were recently discovered to be involved in oil

biosynthesis in olive (Unver et al., 2017).

Phenotypic differences between wild and cultivated

olives may therefore have emerged from divergent gene

regulation rather than changes in protein function through

fixed difference in amino acid sequence of structural genes

(aka gene coding for any RNA or protein product other

than a regulatory factor). This finding is consistent with the

evolutionary history and the life history of olives. Indeed,

in perennials, there has been a limited number of genera-

tions since the onset of artificial selection (due to long gen-

eration time and clonal propagation) and previous

experimental evolution studies showed that the response

to artificial selection occurs primarily through gene expres-

sion changes rather than changes of allele frequencies at

coding sites (Konczal et al., 2015). Additionally, it was

shown in steelhead trout (Oncorhynchus mykiss) that the

expression of hundreds of genes was heritably altered

after just a single generation of domestication (Christie

et al., 2016). The weak domestication syndrome observed
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in olives therefore probably arose following heritable

changes of gene regulation.

Although more challenging than studying annual crops,

further studies of the genomic of the domestication pro-

cess in perennial should broaden our understanding of the

genomic bases and dynamics of adaptation, especially to

understand whether they are influenced by the life history

and ecological traits of a species.

EXPERIMENTAL PROCEDURES

Plant material

We analyzed a total of 68 accessions of Olea europaea L., repre-
senting 27 oleasters [Olea europaea subsp. europaea var. sylves-
tris (Mill.) Lehr], 39 cultivated olive trees (Olea europaea subsp.
europaea var. europaea), and two accessions of African olive
[Olea europaea subsp. cuspidata (Wall. ex G.Don) Cif.] (Table S1).

Eastern and western oleasters were sampled to represent the
two wild gene pools previously evidenced (Besnard et al., 2001b,
2013b; Breton et al., 2006). We sampled 17 oleasters in the area
south of the Taurus mountains (South Turkey near the border with
Syria), a region considered as very close to the primary centre of
olive domestication (Besnard et al., 2013b) (Table S1). Five addi-
tional eastern oleasters were sampled in the CBNMed collection at
Porquerolles Island, France: two from Western Turkey, and three
from Northwestern Syria. Five western oleasters were sampled in
three different locations in Morocco, with one of these conserved
at the CBNMed. To minimize admixture with cultivated olives,
most of these wild forms were sampled in natural areas far from
olive agroecosystems. The sampled oleasters displayed smaller
fruits characterized by less fleshy mesocarp than cultivated olives;
yet this characteristic may also be found in feral individuals (Han-
nachi et al., 2008). Therefore, we characterized their chloroplastic
(cpDNA) variation (Methods S1 and Data S1) as true oleasters are
expected to harbour a higher diversity of plastid profiles with
many haplotypes never observed in cultivated olives (Besnard
et al., 2013b).

The 39 cultivated accessions were sampled in three germplasm
collections (Table S1) and were chosen to maximize the Mediter-
ranean diversity (El Bakkali et al., 2013). Three pairs of accessions
(OGMed_025/OGMed_026 from Cyprus, OGMed_029/OGMed_046
from Lebanon and Italy, and OGMed_018/OGMed_055 from Mor-
occo) sharing the same nuclear microsatellite profile (El Bakkali
et al., 2013) were considered as clones and used to calibrate the
relatedness and differential gene expression analyses.

RNA-sequencing, read alignments and variant calling

We performed three sequencing runs in 2011, 2013 and 2015 to
obtain a total of 68 Olea spp. transcriptomes (Table S1). Total
RNA was extracted from leaves and/or inflorescence tissues. The
construction of Illumina libraries and sequencing protocols are
described in Sarah et al., (2017). The data obtained for the cultivar
‘Arbequina’ and on a set of 10 wild olive trees and for one acces-
sion O. e. cuspidata were previously used by Sarah et al. (2017)
and Cl�ement et al. (2017) (see Table S1).

We used a custom bioinformatic pipeline, following in large the
standard Illumina pipeline, to process raw reads, obtain alignment
files and generate variant call files (Figure S15 and Methods S2).
In brief, raw Illumina reads were filtered based on quality before
mapping on the annotated olive transcriptome assembly of var.
‘Arbequina’ (Sarah et al., 2017) with BWA (Li and Durbin, 2010).

Keeping only high quality alignments, we performed local realign-
ment near InDels using GATK (McKenna et al., 2010). Variants
were called using GATK and filtered following different criteria
(Methods S2).

Genetic structure and diversity in wild and cultivated

olives

We first inferred relatedness between each pair of olive accessions
(Methods S3). We estimated individual ancestries using NGSad-
mix (Skotte et al., 2013) on all olive accessions and on wild and
cultivated accessions separately with a minimum minor allele fre-
quency of 0.05. Input files were directly generated from alignment
files with ANGSD v.0.911 (Korneliussen et al., 2014) using the
genotype likelihood estimation as implemented in SAMtools (Li
et al., 2009). A PCA was performed using genotype calls as input
and considering a minimum minor allele frequency of 0.05 with
the PCAdapt R package v.3.0.2 (Duforet-Frebourg et al., 2014,
2015; Luu et al., 2017). We used TreeMix v.1.12 (Pickrell and
Pritchard, 2012) to discriminate trees between wild and cultivated
populations, and identify gene flows between them.

Genetic variation within O. europaea was assessed using differ-
ent statistics. We calculated observed and expected heterozygosi-
ties (HO and HE), the mean number of pairwise differences p
(Tajima, 1983), the Watterson estimator hW (Watterson, 1975), and
Tajima’s D (Tajima, 1989) based on site frequency spectra (SFSs)
inferred with ANGSD v.0.911 (Korneliussen et al., 2014), as
detailed in Methods S4. These statistics were calculated for all
sites and on both synonymous and non-synonymous sites anno-
tated as described in Methods S5. In addition, the partitioning of
diversity within and between populations, measured with FST
(Weir and Cockerham, 1984), was calculated using VCFtools
(Danecek et al., 2011).

Gene expression in wild and cultivated olives

To avoid issues related to the independent construction of
libraries (Conesa et al., 2016), we focused on the first sequencing
run, as it contained data from all four populations studied here
(Table S1). We therefore included five oleasters from both eastern
and western Mediterranean basin, along with three and six acces-
sions of eastern and western cultivated olives, respectively. Read
counts (the number of read pairs aligned to each transcript) were
calculated using the idxstats option of SAMtools. We excluded
genes with very low expression levels (< 30 mapped reads across
all 19 sequenced libraries) and high within-group variance
(> 100 000 in wild or cultivated populations). After data normaliza-
tion using the DESeq2 package from Bioconductor (Anders and
Huber, 2010; Love et al., 2014), we clustered gene expression hier-
archically using hclust in R software (R Core Team, 2015). We
inferred gene expression diversity for each sample by calculating
the coefficient of variation (standard deviation divided by the
mean) of the expression values (Bellucci et al., 2014). We tested
for differences in gene expression diversity between populations
using Student’s t-tests. We then identified DEGs with DESeq2
which fits a generalized linear model (GLM) modelling read counts
per gene and samples using a negative binomial distribution. P-
values were computed using a Wald test (Love et al., 2014) and
transformed into q-values to correct for multiple testing using the
R package qvalue (Storey, 2002; Bass et al., 2015). Genes were
considered as differentially expressed if they showed a
q-value ≤ 0.01.

GO terms enriched in differentially expressed transcripts (func-
tionally annotated by Sarah et al., 2017) were established with the
R package goseq (Young et al., 2010), using a Wallenius
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distribution as null distribution and a false-discovery threshold of
0.05 (Benjamini and Hochberg, 1995).

Genes under selection during domestication

We first measured the strength of the selective constraint C = 1 –
(pNS/pS) (Keightley et al., 2011, also known as evolutionary con-
straint) from the diversity at non-synonymous (pNS) and synony-
mous sites (pS), assuming the latter to be neutral.

To minimize false positives, we accounted for the demographic
history of olives when identifying molecular signatures of selec-
tion using two complementary approaches (Lotterhos and Whit-
lock, 2014; Vatsiou et al., 2016). First, we used a Bayesian
approach implemented in BayeScan v.2.1 (Foll and Gaggiotti,
2008) to detect SNPs with unusually high FST values, which is a
hallmark of divergent selection. This analysis was performed on
different sets of populations and we ran BayeScan twice for each
model with prior odds of the neutral model set to 100 and 1000,
respectively. We used an initial burn-in period of 5000 steps. After
20 pilot runs of 5000 iterations each, we sampled 5000 parameter
combinations with a thinning interval of 10, resulting in a total of
100 000 iterations. The probability that a locus is under selection
was estimated by calculating the Bayes factor of a model with
selection over a neutral model and loci with a q-value < 0.05 were
considered as potential candidates for selection. Second, and
because the presence of admixed individuals may impact the
power of BayeScan (Luu et al., 2017), we also identified candidate
SNPs using PCAdapt v2.2.1, a hierarchical Bayesian approach
(Duforet-Frebourg et al., 2014, 2015). PCAdapt first performs a
PCA to infer population structure and then identifies loci that are
atypically related to a specific principal component as measured
by the latent factors. We corrected for multiple testing by trans-
forming p-values associated with each locus into q-values (Storey,
2002) using the R package qvalue v.2.4.2 (Bass et al., 2015) and
used a false-discovery threshold of 0.01.

To gain a deeper biological insight into the candidate SNPs
retrieved from these selection scans, we performed GO enrich-
ment analysis using the R package SNP2GO version 1.0 (Szkiba
et al., 2014) using default parameters. The lists of enriched GO
terms were summarized and visualized using REVIGO (Supek
et al., 2011).

Finally, we tested whether identified DEGs are more frequently
identified as targets of selection than non-DEGs by comparing
their FST and p values using Wilcoxon rank sum tests.
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