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Abstract 15 

Dispersal, movement leading to gene flow, is a fundamental but costly life history trait. The use of 16 

indirect social information may help mitigate these costs, yet we often know little about the 17 

proximate sources of such information, and how dispersers and residents may differ in their 18 

information use. Terrestrial molluscs, which have a high cost of movement and obligatorily leave 19 

information potentially exploitable by conspecifics during movement (through mucus trails), are a 20 

good model to investigate links between dispersal costs and information use. We studied whether 21 

dispersers and residents differed in their trail-following propensity in the snail Cornu aspersum. 22 

Dispersers followed mucus trails more frequently than expected by chance, contrary to non-23 

dispersers. Trail following by dispersers may reduce dispersal costs by reducing energy expenditure 24 

and helping snails find existing habitat or resource patches. Finally, we point that ignoring the 25 

potential for collective dispersal provided by trail-following may hinder our understanding of the 26 

demographic and genetic consequences of dispersal. 27 

Keywords costs of movement, dispersal syndromes, social information, Y-maze 28 
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Introduction 30 

Dispersal, i.e. movement potentially leading to gene flow in space, is a key trait connecting ecological 31 

and evolutionary dynamics (Jacob et al. 2015a; Bonte and Dahirel 2017). Costs and uncertainty 32 

associated with dispersal (Bonte et al. 2012) can be reduced by obtaining information about current 33 

and prospective habitats (Cote et al. 2007; Clobert et al. 2009; Chaine et al. 2013). Indirect social 34 

information, obtained from the presence, traits and/ or performance of conspecifics, can provide 35 

information about nearby habitats without the need for costly prospecting (Cote et al. 2007; Chaine 36 

et al. 2013; Jacob et al. 2015b). 37 

Movement in terrestrial gastropods (snails and slugs) is among the costliest in animals, as mucus 38 

secretion leads to substantial energy and water losses even over short distances (Denny 1980; McKee 39 

et al. 2013). As mucus production is obligatory, many crawling gastropods have unsurprisingly 40 

evolved trail following behaviour to locate conspecifics or potential gastropod prey (Ng et al. 2013). 41 

Information on phenotype can additionally be gathered from mucus trail physical and chemical 42 

characteristics (Ng et al. 2013). Crawling on pre-existing trails may reduce the need for mucus 43 

production, leading to significant energy savings (Davies and Blackwell 2007). However, trail 44 

following has mostly been studied in aquatic gastropods and knowledge about its frequency and 45 

function in terrestrial snails is comparatively limited (Ng et al. 2013). 46 

The brown garden snail Cornu aspersum (Müller) (Helicidae ; syn. Helix aspersa) is a well-studied 47 

generalist land snail, able to thrive and disperse even in strongly fragmented habitats (Dahirel et al. 48 

2016a; Balbi et al. 2018). Cornu aspersum snails are sensitive to mucus accumulations (Dan and 49 

Bailey 1982) and adjust dispersal decisions to conspecific density (Dahirel et al. 2016b). They appear 50 

to follow trails slightly more than expected by chance (Bailey 1989), but there is no evidence so far 51 

that they use trails during dispersal or that dispersers and residents react differently to social 52 

information. Using a Y-maze setup and ecologically relevant tests of dispersal propensity, we tested 53 

the hypotheses that Cornu aspersum snails are trail followers, and that dispersers would be more 54 
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likely to follow trails. Indeed, they would benefit more from potential energy savings and from 55 

information about conspecific presence than residents, which, given the costs of movement, are not 56 

expected to stray far from an already established group of conspecifics.  57 

Methods 58 

Rearing conditions 59 

Snails (greater shell diameter > 25 mm) were obtained from two sources in April - May 2016. First, 60 

we selected 50 individuals (see below for details) among 120 snails used in a previous dispersal study 61 

(Dahirel et al. 2017), which were collected from natural populations in parks in Rennes, France 62 

(≈1°38'W, ≈48°7'N, hereafter the “natural population”). We also tested 47 new individuals randomly 63 

chosen from a set of 130 stock snails obtained from a snail farm in Corps-Nuds, close to Rennes 64 

(1°36'37" W, 47°58'44"N, hereafter the “farm population”).  Snails were kept under controlled 65 

conditions (20 ± 1 °C; 16L: 8D; ad lib cereal-based snail food, Hélinove, Le Boupère, France), in 66 

polyethylene boxes covered by a net (30 × 45 × 8 cm) and lined by synthetic foam kept saturated 67 

with water. Snails were used in the experimental tests presented here between three to six weeks 68 

after collection. They were housed in groups of at most forty before use, and then in groups of eight 69 

to ten individually marked snails (with paint markers) for at least one week before dispersal tests. 70 

Boxes were cleaned and linings changed every week.  71 

Behavioural tests 72 

All snails were tested both for dispersal and trail following (see below for protocols). Snails from the 73 

natural population were tested for dispersal first, within the framework of a previous study (Dahirel 74 

et al. 2017), and then 25 dispersers and 25 residents (randomly selected among snails with greater 75 

shell diameter > 25 mm) were tested for trail following a week after dispersal testing. In the farm 76 

population, trail following was instead tested before dispersal for logistical reasons. Dispersal was 77 

then assessed a week later; 15 out of 47 tested “farm” snails were dispersers. 78 

Dispersal tests 79 
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We assessed dispersal in an outdoor asphalted area on the Beaulieu university campus, Rennes 80 

(1°38’15"W, 48°6’59"N; see Dahirel et al. 2017 for details on protocols and their relevance to Cornu 81 

aspersum ecology). Briefly, rearing boxes (including food and water) were placed in the middle of the 82 

test area and left open for one night (19:00 to 09:00). Snails found more than 1 m outside of the box 83 

in the morning, i.e. beyond the typical Cornu aspersum home range (Dan 1978; M. Dahirel, 84 

unpublished data), were considered dispersers. This protocol qualitatively recovers phenotypic- and 85 

context-dependency in dispersal previously found in more natural settings (Dahirel et al. 2016a, b, 86 

2017). All dispersers were more than 1.5 m from their box, and all but one more than 3 m away; with 87 

one exception (found 10 cm from the box), all residents were found inside their box.  88 

Trail following experiment 89 

We studied trail following using Y-mazes (Ng et al. 2013) in a dark room, as snails are nocturnal (Fig. 90 

1). The experimenter (AV) wore latex gloves during setup and experiments to limit uncontrolled 91 

disturbance by human odours. Plastified cardboard mazes were lined with watered synthetic foam 92 

(as in rearing boxes), and 7g of snail food were placed at the extremities of both choice arms to 93 

stimulate movement. To limit escapes, Y-mazes were raised by 11 cm and the stand on which the 94 

starting arm of the maze rested was covered in soot, repulsive to snails (Shirtcliffe et al. 2012; Fig. 1).  95 

 96 

Figure 1. Experimental setup (Y-maze) for the trail-following experiments (not to scale; arm width: 97 

3.5 cm; main arm length: 10 cm; choice arm length: 15 cm; angle between arms: 120°). 98 
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First, a “marker” snail randomly chosen among untested stock adult snails was placed in the main 99 

arm of the maze and left free to move for 10 minutes. Trails with U-turns or using both choice arms 100 

were excluded from further tests. Within 10 minutes after removing the marker, a “tracker” snail was 101 

placed at the start of the maze and left free to move for 10 minutes. All tracker snails made a choice; 102 

they were counted as trail followers if they chose the same arm as the marker snail. Maze linings and 103 

feeders were discarded and replaced with pristine ones between each test (i.e. between each 104 

marker-tracker combination). Preliminary tests with no marker snail were done to confirm that snails 105 

had no intrinsic left-right bias (Ng et al. 2013) (47.5 % chose the left side, binomial test against a 50% 106 

expectation, N = 40, p = 0.87). Following this, left-right symmetry during actual tests was enforced by 107 

alternately proposing left-side and right-side trails to successive tracker snails, randomly selected 108 

from simultaneously generated trails. 109 

Statistical analyses 110 

We used a binomial generalized linear model to test for an effect of dispersal status, population of 111 

origin and their interaction on trail following probability. Analyses were done using R, version 3.5.1 (R 112 

Core Team 2018). 113 

Results 114 

Dispersers were more likely to follow trails than residents (72.5% versus 47.4%, N = 40 and 57, Χ²1 = 115 

6.40, p = 0.01, Fig. 2). Contrary to dispersers, residents were not more likely to follow trails than the 116 

50% expected by chance (Fig. 2). There was no significant effects of population of origin or dispersal 117 

status × population interaction (Χ²1 = 0.17 and 1.20, p = 0.68 and 0.27, respectively). 118 

 119 
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 120 

Figure 2. Trail following rate as a function of dispersal status (model predictions and 95% confidence 121 

intervals based on binomial GLM, the non-significant effect of origin population is averaged out ; N = 122 

97). 123 

Discussion 124 

Dispersers, but not residents, were more likely to follow trails than expected by chance, indicating 125 

that mucus trails are usable sources of indirect social information in Cornu aspersum snails. A non-126 

exclusive alternative is that trail-following is an energy saving measure (Davies and Blackwell 2007), 127 

which would be more useful for dispersers. Intuitively and importantly, our results also indicate that 128 

tests realized without knowledge of dispersal status may falsely conclude to the absence of trail 129 

following behaviour under ecologically realistic dispersal rates (see Supplementary Material). 130 

Mucus trails may even have higher value for dispersers compared to previously studied sources of 131 

indirect social information, as they may not only give information about meta-population level 132 
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habitat quality or population density (Cote et al. 2007; Chaine et al. 2013; Jacob et al. 2015b), but 133 

also about the spatial location of other patches (or at least other snails), further reducing dispersal 134 

costs. This may be especially valuable in fragmented urban areas where Cornu aspersum is common, 135 

where artificial porous substrates may make movement more costly (McKee et al. 2013) and inter-136 

patch distances are often larger than the (low) perceptual range of C. aspersum (Dahirel et al. 2016a). 137 

Following trails in the same direction as the trail layer, as in our experiment, would give dispersers 138 

information on patch location from residents homing back to their roosts (Bailey 1989). If they are 139 

also able to follow trails with negative polarity (which is likely; Ng et al. 2013), they might additionally 140 

be able to “walk back” trails left by immigrants to reach their departure point. 141 

The well-documented effects of within-habitat mucus accumulations on life-history and behaviour 142 

are size- and species-specific (Dan and Bailey 1982), and recent evidence suggest this is also the case 143 

for trail following in at least one land snail group (Holland et al. 2018). An important next step will be 144 

to determine how social information and phenotype combine to shape dispersal, especially in the 145 

context of matching habitat choice (Jacob et al. 2015a) Furthermore, dispersers following trails 146 

(potentially laid by previous dispersers) may provide a mechanism for collective dispersal in snails, 147 

several individuals following an initial trail-blazer (Cote et al. 2017). As pointed out by Cote et al. 148 

(2017), such collective dispersal would have wide-ranging yet poorly studied consequences for 149 

population dynamics, evolution and genetic structure, and affect our ability to infer spatial dynamics 150 

from population genetics data. Land snails, by combining ease of behavioural study in controlled and 151 

naturalistic conditions, trail following ability and a long and ongoing history as population genetic 152 

models (Backeljau et al. 2001; Balbi et al. 2018), are one of the best taxa to investigate these 153 

questions. 154 
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 221 

Supplementary material for: Dispersers are more likely to follow mucus trails in the land snail 222 

Cornu aspersum 223 

Alexandre Vong, Armelle Ansart, Maxime Dahirel 224 

On the probability of detecting trail-following when one does not know the dispersal status of 225 

tested snails. 226 

In the main text, we showed that dispersers and residents differed in their trail following propensity, 227 

the latter not choosing the trail side more than expected by chance (binomial GLM; main text Fig. 2). 228 

We here use this binomial GLM predictions to estimate the relationship between population-level 229 

dispersal rate and the expected probability that a randomly chosen individual of unknown dispersal 230 

status would exhibit trail following.  231 

We find that unless more than ≈55% of the tested individuals are dispersers, an investigator using Y-232 

mazes and blind to dispersal status would conclude to no trail following in the studied population, 233 

even though a significant, non-random subset of the population does exhibit trail following 234 

(Supplementary Fig. 1). 235 

This non-independence (behavioural syndrome) of dispersal status and trail following status thus 236 

needs to be accounted for, as dispersers are generally the minority in populations (e.g. (Dahirel et al. 237 

2016) for snails), and even when specifically selecting subgroups with high dispersal propensity, one 238 

may still find dispersal rates < 50% in subpopulations (Dahirel et al. 2017). 239 

 240 
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Supplementary Figure 1. Relationship between population dispersal rate and predicted population 241 

level trail following probability. Predicted line and confidence bands are fitted assuming individual 242 

dispersers and residents follow trails according to the model presented in main text (main text Fig. 243 

2). 244 
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