
HAL Id: hal-02177806
https://univ-rennes.hal.science/hal-02177806

Submitted on 17 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Galactofuranosidase from JHA 19 Streptomyces sp:.
subcloning and biochemical characterization

Mateja Senicar, Laurent Legentil, Vincent Ferrières, Eliseeva V. Svetlana,
Stéphane Petoud, Kaoru Takegawa, Pierre Lafite, Richard Daniellou

To cite this version:
Mateja Senicar, Laurent Legentil, Vincent Ferrières, Eliseeva V. Svetlana, Stéphane Petoud, et al..
Galactofuranosidase from JHA 19 Streptomyces sp:. subcloning and biochemical characterization.
Carbohydrate Research, 2019, 480, pp.35-41. �10.1016/j.carres.2019.05.011�. �hal-02177806�

https://univ-rennes.hal.science/hal-02177806
https://hal.archives-ouvertes.fr


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 

Galactofuranosidase from JHA 19 Streptomyces sp.: subcloning and 

biochemical characterization. 

 

Mateja Senicar1,2, Laurent Legentil3, Vincent Ferrières3, Svetlana V. Eliseeva2, Stéphane 

Petoud2, Kaoru Takegawa4, Pierre Lafite1 and Richard Daniellou1,* 

 

1 ICOA UMR CRNS 7311, Université d’Orléans, rue de Chartres, BP 6759, 45067 Orléans 

cedex 2, France. 

2 Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France. 

3 Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, 

F-35000 Rennes, France. 

4 Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 

Moto-oka 744, Nishi-ku, Fukuoka, Japan. 

 

* Corresponding author; E-mail address: richard.daniellou@univ-orleans.fr; Tel: +33-2-38-

49-49-78. 

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 2 

Highlights 

 

• Galf-ase from JHA 19 Streptomyces sp. was subcloned. 

• Recombinant Galf-ase was obtained with a yield of 0.5 mg/litre of culture.  

• Galf-ase exhibits the best reported KM for Galf moiety. 

• Galf-ase can be competitively inhibited by thiogalactofuranosides analogues. 

•  Galf-ase can be envisioned in biocatalysis.  
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Abstract 

Despite the crucial role of the rare galactofuranose (Galf) in many pathogenic micro-

organisms and our increased knowledge of its metabolism, there is still a lack of recombinant 

and efficient galactofuranoside hydrolase available for chemo-enzymatic synthetic purposes 

of specific galactofuranosyl-conjugates. Subcloning of the Galf-ase from JHA 19 

Streptomyces sp. and its further overexpression lead us to the production of this enzyme with 

a yield of 0.5 mg/litre of culture. It exhibits substrate specificity exclusively towards pNP β-D-

Galf, giving a KM value of 250 µM, and the highest enzymatic efficiency ever observed of 14 

mM-1.s-1. It proved to be stable to temperature up to 60°C and to at least 4 freeze-thaw’s 

cycles. Thus, Galf-ase demonstrated to be an efficient and stable biocatalyst with greatly 

improved specificity toward the galactofuranosyl entity, thus paving the way to the further 

development of transglycosylation and thioligation reactions. 

 

Keywords: β-D-galactofuranosidase, Subcloning, Glycoside hydrolase, Thio-β-D-

galactofuranoside Inhibition 
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1. Introduction 

D-Galactose (D-Gal) is extensively distributed in nature as constituent of oligosaccharides and 

glycoconjugates.[1] However, under its furanose form, galactofuranose (Galf) is totally absent 

from mammals, but is present in many pathogenic microorganisms.[2],[3] Indeed, there are 

three main and specific enzymes involved in the biosynthesis and the metabolism of the Galf-

containing molecules[4]: UDP-galactopyranose mutase (UGM),[5] 

galactofuranosyltransferase (GalfT)[6] and galactofuranosidase (Galf-ase).[7] The 

glycobiology of Galf and enzymes involved in its metabolism have thus become attractive 

targets for the development of antimicrobial agents.[8]  

Although the metabolism of β-D-galactofuranosyl conjugates has been extensively studied, 

mostly in infectious microorganisms such as Mycobacteria, Trypanosoma, Leishmania and 

Aspergillus, there are only few reports related to these enzymes, especially Galf-ase. Over the 

past forty years, Galf-ase has been identified as responsible for the degradation of the D-Galf 

containing glycoconjugates.[8] The first Galf-ase identified was an extracellular exo-β-D-

galactofuranosidase (exo-β-D-Galf-ase) isolated and partially purified from Penicillium 

fellutanum (ex-type of Penicillium charlesii) culture filtrates.[7] Although described back in 

1977 and later, several exo- and endo-Galf-ases were purified from the culture supernatants 

and cell lysates of filamentous fungi,[7]-[9] bacteria[10] and protozoa,[11] but the genes 

encoding these enzymes have not been identified and expressed earlier, nor their amino acid 

sequence determined. Therefore, reported chemo-enzymatic procedures in literature all used 

cloned α-L-arabinofuranosidases as biocatalytic tools, based on the structure similarity 

between pNP β-D-Galf 1 and its analogue pNP α-L-Araf 2 (Fig 1.).[12][13][14] However, 

given the poor catalytic efficiency of theses biocatalysts toward pNP β-D-Galf 1, there is still a 

crucial need for the discovery of improved biocatalysts that will allow the community to 

easily access to furanosyl conjugates (and analogues) owing potential biological properties.[3] 
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Fig. 1. Chemical structures of pNP β-D-Galf 1 and its analogue pNP α-L-Araf 2. 

 

Only recently, in 2015, based on the draft genome sequence analysis of soil Gram-positive 

bacteria Streptomyces sp., strain JHA19, an open reading frame that encoded Galf specific 

enzyme was identified and cloned, and the enzyme characterized.[15], [16] Another gene 

coding for a putative Galf-ase was also found later in the genome of Streptomyces sp., strain 

JHA26.[16][17], However this first cloned Galf-ase protein was co-expressed with a large 

fusion NusA[18] (N-utilization substance A) tag as solubility enhancer and two His-tags for 

affinity purification purpose, thus leading to a large protein of around 150 kDa (Figure 

2A).[15] We thus rapidly thought that these multiple tags might hamper i) the overexpression 

of the Galf-ase leading to low yield, and ii) the physico-chemical and enzymatic properties of 

this original biocatalyst. In addition, the obtained low yield of protein was incompatible with 

the development of this biocatalyst. 

In view of the previous research considering Streptomyces Galf-ase investigations,[15] we 

wish to report herein the optimization of the overexpression and the purification to 

homogeneity of recombinant ORF1110 β-D-galactofuranosidase including only one His-tag 

(Figure 2B), with detailed and improved biochemical and kinetic properties, as well as 

preliminary inhibition studies of this enzyme. This Galf-ase will thus constitute the basis for 

the further development of biocatalyzed incorporation of Galf moieties in more complex 

glycoconjugates. 
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Fig. 2. Schematic representation of pET plasmid constructs cloning/expression regions 

bearing Galf-ase gene insert. A) pET-50b(+) plasmid construct ORF coding for N-terminal 

Nus protein and double 6xHis-tagged Galf-ase. B) pET-28a(+) plasmid construct ORF coding 

for N-terminal single peptide 6xHis-tagged Galf-ase. 

 

2. Materials and Methods 

2.1. Biological and chemical reagents 

Restriction enzymes and T4 DNA ligase were purchased from Thermo ScientificTM, E. coli 

RosettaTM (DE3) and plasmid vector pET-28a(+) from Novagen®. All  p-nitrophenyl 

monosaccharides (pNP sugars) were purchased from Carbosynth (Compton, UK). 

Galactofuranosides 3-6 were chemically synthesized as previously described.[19][20] All 

other laboratory chemicals used as the starting compounds, reagents and solvents were 

analytical grade purity and commercially available, unless otherwise specified. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 7 

2.2. Subcloning, overexpression, and protein purification 

Plasmid construct pET-50b(+), encoding wild type Galf-ase gene was digested with EcoRI 

and HindIII restriction enzymes and the resulting 2.5 kb fragment containing Galf-ase gene 

was agarose-gel purified and ligated into expression vector pET-28a(+) (Novagen®). Ligation 

was verified by restriction enzyme analysis, and the gene sequence integrity was confirmed 

by DNA sequencing performed by Eurofins Genomics. E. coli RosettaTM (DE3) (Novagen®) 

expression strain was transformed with Galf-ase encoding pET-28a(+) plasmid construct by 

heat shock method and cultured at 37°C overnight on LB agar plates supplemented with 

chloramphenicol (34 µg/mL) and kanamycin (30 µg/mL). One single positive colony was 

used to inoculate fresh lysogeny broth (LB) (10 mL) supplemented with the same antibiotics 

and cultured overnight with agitation at 37°C. The preculture was then inoculated into LB 

broth (1L) containing corresponding antibiotics and shaker incubated (250 rpm) at 37°C. 

Cells were grown to mid-exponential phase (OD600: 0.6), shortly cooled on ice and protein 

expression was induced by the addition of β-D-thiogalactopyranoside (IPTG) (100 µL; 1 M) 

and left on shaker incubator (250 rpm) for further 16 hours at 15°C. Cells were harvested by 

centrifugation (4255 g, 30 min, 4 °C) and the cell pellets were resuspended in lysis buffer 

solution (1:10 v/v; 100 mM NaCl, 50 mM Tris/HCl pH 8, 1 mM phenylmethanesulfonyl 

fluoride (PMSF), 5% glycerol, 0.1% Triton X-100, lysozyme 1 mg/L). Suspension was 

incubated by stirring for 20 min at 4°C, lysed by three freeze-thaw cycles and subsequently 

sonicated ([2 min on/2 min pause]x3, 50% cycle) on ice. Lysate was centrifuged (30 000 g, 20 

min, 4°C), supernatant filtered (0.45 µm pore filter) and the recombinant protein was then 

purified from the clarified lysates using pre-equilibrated (10 mL; 50 mM Tris, 200 mM NaCl, 

10 mM Imidazole) Thermo Scientific HisPurTM Ni-NTA Chromatography Cartridge (1 mL). 

The bound protein was eluted by an imidazole gradient (10-500 mM) and an aliquot of eluted 

fractions were analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
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PAGE) on 8% separating gel according to Laemmli’s method[21], and protein bands were 

visualized by staining with Coomassie Brilliant Blue G250. Fractions containing pure protein 

were collected, concentrated by ultrafiltration (30 000 MWCO, Sartorius Vivaspin® sample 

concentrator) and protein quantity was determined using colorimetric Bio-Rad protein assay 

based on the Bradford dye-binding method, with a bovine serum albumin (BSA) as a 

standard. 

2.3. Substrate specificity through hydrolysis of pNP sugars 

The hydrolysis of 21 pNP-linked monosaccharide substrates (pNP α and β-D-Glc, -Man, -Gal, 

-GlcNAc, -Xyl,-L-Fuc, -L-Ara, pNP α-L-Rha, pNP β-D-GalNAc and pNP β-D-GlcA, and 3 

furanoses namely pNP β-D-Galf, pNP α-L-Araf and pNP β-D-Ribf) was assayed in reaction 

mixture (50 µL) containing purified enzyme (5 µL; 0.053 mg/mL), pNP monosaccharide 

substrates (5 µL; 10 mM), buffer (8 µL; 0.1 M Citric acid/0.2 M Na2HPO4 pH 4.5) and water 

(32 µL). Residual spontaneous hydrolysis of the substrate was determined on sample 

containing H2O instead of enzyme. For paranitrophenol (pNP) containing substrates, after 20 

min of incubation at 30°C, 150 µL of sodium carbonate 1 M were added, and produced pNP 

(ɛ405 = 19 500 M−1cm−1) was quantified by absorbance measurement at 405 nm (Thermo 

Scientific™ Multiskan™ GO). All kinetics parameters were calculated by fitting of saturation 

curves (as mean of triplicate measurements) with standard Michaelis-Menten equation, using 

Prism 6 (GraphPad). One unit (U) of enzyme activity was defined as the amount of enzyme 

required to liberate 1 µmol of pNP per min. 

2.4. Effects of pH and temperature 

The optimum pH was determined by incubating the enzyme in various pH adjusted buffers 

(0.1 M Citric acid/HCl pH 2; 0.1 M Citric acid/0.2 M Na2HPO4 pH 2.5 – 6.5; 0.1 M Tris/HCl 

pH 7 – 8; 0.1 M Tris/NaOH, pH 8.5; 0.1 M Glycine/NaOH pH 9 – 9.5). The assays were 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 9 

performed separately in each buffer system containing purified enzyme (5 µL; 0.05 mg/mL), 

pNP β-D-Galf substrate (5 µL; 10 mM), buffer (8 µL; pH 2 – 9.5) and water (32 µL). After 20 

min of incubation at 30°C (water bath), reaction was terminated (150 µL; 1 M Na2CO3) and 

absorbance (405 nm) of released pNP was measured using spectrophotometer (Thermo 

Scientific™ Multiskan™ GO). All the reactions were assayed in triplicate and absorbance 

values were corrected for the spontaneous hydrolysis of the substrate.  

The effect of temperature on the enzyme activity was investigated at temperatures ranging 

from 10 to 80°C. The reaction mixtures (50 µL), containing purified enzyme (5 µL; 0.05 

mg/mL), pNP β-D-Galf substrate (5 µL; 10 mM), buffer (8 µL; 0.1 M Citric acid/0.2 M 

Na2HPO4 pH 4.5) and water (32 µL), were incubated 20 min in thermocycler (Esco Swift 

MiniPro Thermal Cycler). Afterwards, reactions were stopped (150 µL; 1 M Na2CO3). Then, 

the  absorbance (405 nm) of released pNP was measured (Thermo Scientific™ Multiskan™ 

GO) and values were corrected for the spontaneous hydrolysis of the substrate. All the 

reactions were assayed in triplicate and absorbance values were corrected for the spontaneous 

hydrolysis of the substrate. 

2.5. Effect of freeze-thaw cycles 

Three samples (100 µL), containing previously purified enzyme (50 µL; 0.235 mg/mL) 

different concentrations of glycerol (0 %, 10%, 20%) and water, were prepared. The samples 

were precooled on ice (30 min), frozen at -20°C and were removed from -20°C after four 

days, thawed on ice (30 min) and the enzymatic activity of a sample aliquot (10 µL) was 

assayed in reaction mixture (200 µL) containing pNP β-D-Galf substrate (20 µL; 10 mM), 

buffer (35 µL; 0.1 M citric acid/0.2 M Na2HPO4 pH 4.5) and water (135 µL) at 37°C (water 

bath), during 10 min, according to previously described enzymatic activity protocol. This 

predefined freeze and thaw procedure and activity assessment were repeated in four cycles 

within four days interval. Activity recovery was expressed as a percentage of the activity prior 
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to freezing. All the reactions were assayed separately in duplicate and absorbance values were 

corrected for the spontaneous hydrolysis of the substrate. 

2.6. Kinetic studies 

Kinetic parameters were determined with pNP β-D-Galf as a substrate in different 

concentration ranges (0.01 mM-5 mM). The reaction (200 µL) containing buffer (20 µL; 0.1 

M citric acid/0.2 M Na2HPO4 pH 4.5) and water, if required, was started by addition of the 

enzyme (2 µL; 0.13 mg/mL) and after 20 min of incubation at 37°C (water bath), reaction was 

terminated (100 µL; 1 M Na2CO3) and absorbance (405 nm) of released pNP was measured. 

All the reactions were assayed in triplicate and absorbance values were corrected for the 

spontaneous hydrolysis of the substrate. The kinetic parameters (KM, Vm, kcat) were calculated 

using GraphPad Prism 5 software (GraphPad Software, San Diego, CA, USA). 

2.7. Inhibition studies 

IC50 assay was performed in the presence of different concentration ranges of inhibitors 3 – 6 

(0.1 mM-7 mM), pNP β-D-Galf substrate (3.75 µL; 10 mM), buffer (20 µL; citric 

acid/Na2HPO4, pH 4.5) and water. The reaction (150 µL) was started by addition of the 

enzyme (11.2 µL; 0.067 mg/mL), and after 20 min of incubation at 37°C (water bath), 

reaction was terminated (100 µL; 1 M Na2CO3) and absorbance of released pNP was 

measured (405 nm). Control enzyme activity reactions were carried out and absorbance values 

were corrected for the spontaneous hydrolysis of the substrate. The type of inhibition for 4 

was tested in the presence of different concentration ranges of pNP β-D-Galf substrate (0.05 

mM-1 mM) and with different concentrations of 4 (0.1 mM-1 mM) in the reaction conditions 

identical to the one previously described. The IC50 value for each inhibitor, the type of the 

inhibition and KI value for 4 were calculated using GraphPad Prism 5 software (GraphPad 
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Software, San Diego, CA, USA). KI value for compounds 3, 5 and 6 was corroborated by the 

following Cheng & Prusoff equation: KI = IC50/(1+[S]/Km).[22] 

 

3. Results and Discussion 

3.1. Subcloning, expression and purification of recombinant Galf-ase 

Plasmid construct pET-50b(+), containing the gene insert coding for β-D-galactofuranosidase 

(Galf-ase), was double digested with EcoRI and HindIII restriction enzymes and the resulting 

2.4 kb Galf-ase gene fragment was excised and purified from agarose-gel. The gene fragment 

was ligated to EcoRI and HindIII linearized pET-28a(+) expression vector. Newly obtained 

plasmid construct was checked for integrity by restriction enzyme analysis and the gene 

sequence was confirmed by DNA sequencing performed by Eurofins Genomics. Plasmid 

construct was transformed into E. coli RosettaTM (DE3) (Novagen®) expression system. Galf-

ase was expressed as soluble recombinant protein bearing only N-terminal peptide 

hexahistidine fusion tag (6xHis-tag). 6xHis-tag facilitated selective recombinant protein 

purification from the bacterial cellular environment by immobilized metal-affinity 

chromatography (IMAC) and, due to its small size, was less likely to interfere with protein 

activity and structure.[23] The 6xHis-tagged Galf-ase was expressed and purified by IMAC 

with a Ni2+ immobilized on a nitrilotriacetic acid matrix (Ni-NTA) column with a yield of 0.5 

mg/litre of bacterial culture.[24],[25] The purified enzyme displayed an intense band on the 

SDS-PAGE gel at an apparent molecular weight (90.3 kDa), consistent with that theoretically 

predicted for the Galf-ase fusion protein (Fig. 3.). This purified Galf-ase was further used for 

biochemical characterization.  
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Fig. 3. SDS-PAGE analysis of Galf-ase after IPTG induction and Ni-NTA chromatography 

purification. Lane 1: protein marker. Lanes 2 & 3: cell’s extract before and after IPTG’s 

induction. Lane 4: purified Galf-ase. 

 

3.2. Substrate specificity  

A Simple one-step colorimetric assay which commonly employs synthetic pNP sugars as 

artificial substrates was used for the assessment of Galf-ase activity. The assay directly 

correlates the release of formed pNP with the hydrolytic activity of tested enzyme and is 

quantified spectrophotometrically at 405 nm. The hydrolytic activity and substrate specificity 

of Galf-ase was screened against 21 commercially available pNP pyranosyl and furanosyl 

substrates at 1 mM (Fig. S1.). The only hydrolysed substrate was pNP β-D-Galf and the Galf-

ase exhibited no hydrolytic activity towards any other of the 20 tested pNP sugars. It is also 

noteworthy that, in these experimental conditions, no activity was observed with the pNP α-L-

araf analogue nor the pNP β-D-Ribf. This result is in total agreement with our previous 

observation.[15]  
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3.3. Temperature and pH properties 

The biochemical properties of purified Galf-ase were investigated with pNP β-D-Galf as a 

substrate in different buffer systems covering the pH intervals between pH 2 and 9.5 and 

temperature intervals between 10 and 80 °C. The optimum pH was comprised in a narrow 

range between 3.5 and 5, significantly decreasing above pH 5. The peak of maximum activity 

is present at pH 4.5 (Fig. 4. Left). Once the optimum pH conditions were established, the 

influence of different temperatures on activity was also measured. For 20 min reactions, the 

optimal temperature was at 60°C with a clear peak of activity (Fig. 4. Right). Temperatures 

above the optimum value resulted in dramatic loss of activity. However, due to practical 

constraints, all the following activity assays were assessed at the physiological temperature of 

37°C. Still, this current Galf-ase biocatalyst exhibits different and improved physico-chemical 

properties toward the previously reported one, with a maximum pH shift from 5.5 to 4.5 and a 

maximum temperature at 60 °C, thus demonstrating the drawback of large fusion tags.[15] 

 

 

Fig. 4. A: Influence of pH on Galf-ase hydrolytic activity towards pNP β-D-Galf 1. B: 

Influence of temperature on Galf-ase hydrolytic activity towards pNP β-D-Galf 1. Error bars 

correspond to the SD of 3 independent measurements. 
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3.4. Freeze-thaw stability 

Galf-ase stability towards multiple freeze and thaw cycles was assayed over a different 

storage conditions, without and in the presence of glycerol (10% and 20%), and throughout 16 

days. Percent of activity was normalized to an initial activity measured for each storage 

condition sample. Galf-ase exhibited stability across all storage conditions tested and 

maintained minimally 70% activity after three cycles (Fig. S2.). After four cycles, Galf-ase 

demonstrated low activity (40%) over all storage conditions and exhibited higher sensitivity 

to inactivation due to multiple freezing. No cryoprotectant was included in this assay to test 

the stability of crude Galf-ase sample which showed to be resistant to inactivation to multiple 

freeze-thaw cycles and retaining 80% activity after three cycles. The addition of glycerol did 

not significantly improve or conserve enzyme stability when compared to one observed in the 

absence of a cryoprotectant. Glycerol is a common cryoprotectant which protects proteins 

from inactivation during freezing and thawing by inhibiting the formation of ice crystals upon 

freezing.[26] Also, it is worth mentioning that the purified enzyme remains fairly active over 

a minimum of three weeks when stored at 4°C without presence of any additives such are 

cryoprotectants, protease inhibitors, reducing agents, metal chelators or antimicrobial agents. 

All together these experiments demonstrate the good stability of the Galf-ase under storage 

condition, which will be highly convenient in order to use it during chemo-enzymatic 

synthesis. 

3.5. Kinetic analysis 

To determine catalytic parameters, Galf-ase activity was further investigated with pNP β-D-

Galf as a substrate at optimum pH and at appropriate temperature. The Galf-ase exhibited 

typical Michaelis-Menten kinetics, with KM value of 250 µM and with kcat value of 3.5 s-1 

giving a kcat/KM of 14 mM-1s-1 (Fig. 5. and table 1). Investigation of kinetic parameters was 
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also extended to pNP α-L-Araf, despite displaying no hydrolysis when screened for substrate 

specificity. The pNP α-L-Araf did not appear to show saturation kinetics with concentrations 

as high as 15 mM (Fig. S3.). The assay did not yield interpretable kinetic parameters since the 

hydrolysis rate was too low to give accurate values. These observations emphasized that Galf-

ase has a really poor Araf-ase activity as it badly recognised the α-L-arabinofuranose moiety, 

thus demonstrating the crucial role of the C-6 hydroxymethyl group in the specific recognition 

by the Galf-ase. In addition, when compared to the recombinant α-L-Araf hydrolases AbfD3 

and Araf51 owing dual specificity for α-L-Araf and β-D-Galf (Table 1, lines 1 & 2), the 

specificity of Galf-ase is incredibly increased toward the hexofuranosyl moiety by a factor of 

about 100-fold. When compared to the only two reported cloned Galf-ases (line 3), from 

Streptomyces sp. strains JHA19 and JHA26, the values are not in the same order of 

magnitude. For Galf-ase JHA19 and JHA26, KM value ranges from 4.4 to 6.8 mM 

respectively,[15] yielding at least a 18-fold lower substrate affinity compared to Galf-ase’s KM 

which is in the µM level (line 4). Finally, the Galf-ase parameters described herein are the 

best reported to date and fully compatible with the development of the specific and efficient 

biocatalyzed incorporation of Galf entities into more complex glycoconjugates. 
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Fig. 5. Michaelis-Menten plot of pNP β-D-Galf 1 hydrolysis reaction catalysed by Galf-ase. 

Mean values and SD error bars were calculated from three independent experiments and from 

a single protein preparation. Error bars correspond to the SD of 3 independent measurements. 

Table 1. KM for synthetic pNP furanoses 1 and 2 toward two different arabinofuranosidases 

and two Galf-ase. 

Enzyme KM for 1 

(mM) 

kcat 

(s-1) 

kcat/KM
 

s-1.mM-1 

KM for 2 

(mM) 

kcat 

(s-1) 

kcat/KM
 

s-1.mM-1 

AbfD3[12] > 50 15 0.13 3.5 425 122 

Araf51[27][13] 53 12 0.23 0.25 103 412 

JHA 19 & 

26[15] 

4.4 to 6.8 Only VM - - - - 

Galf-ase 0.25 3.5 14 nd nd nd 

nd: not determinable. 

 

3.6. Inhibition studies 

The inhibitory properties of several compounds, i.e. alkyl, thioheteroaryl and thioimidoyl β-D-

galactofuranosides 3-6, were investigated by incubating the enzyme, Galf-ase, in the presence 

of both the substrate pNP β-D-Galf and compounds 3-6 (Fig. S4.). These compounds were 

tested as inhibitors because (i) the glycone part, that is β-D-Galf, is recognized by the active 

site, (ii) the aglycone part is mimicking a carbohydrate moiety and (iii) to probe the stability 

of the thioglyosidic bond.[20] It has been reported previously that alkyl, aryl and heteroaryl 1-

thio-β-D-galactofuranoside derivatives are good inhibitors of exo β-D-galactofuranosidase, 
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isolated from P. fellutanum culture media, and D-galactono-1,4-lactone has been evaluated as 

a reference inhibitor with an IC50 value of 0.02 mM.[28] In our hands, compounds 3, 5 and 6 

showed weak inhibitory activity with IC50 values of 6, 5 and 3 mM respectively, while Galf-

ase was more sensitive to the inhibition by thiogalactofuranoside 4 (Table 2.). This latter 

showed the best inhibition activity, with IC50 value of 0.8 mM. The analysis of the 

Lineweaver–Burk plot (Fig. 6.) indicated that the compound 4 is a competitive inhibitor of the 

Galf-ase with KI value of 0.4 mM. Nevertheless, compared to the only reference L-arabino-

1,4-lactone inhibitor previously probed on Galf-ase,[15] 4 exhibited a 100 times increased in 

inhibition, that can be mostly attributed to its structural analogy to the artificial substrate. 

 

Fig. 6. Lineweaver–Burk plot of competitive inhibition of Galf-ase hydrolytic activity towards 

pNP β-D-Galf by 4. Mean values and SD error bars were calculated from two independent 

experiments and from a single protein preparation. 
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Table 2. Inhibition studies with galactofuranosides 3-6: determination of their respective IC50 

& K I. 

Compound IC50 

(mM) 

K I 

(mM) 

 

6 3.0 

 

0.8 0.4 

 

5 2.5 

 

3 1.5 

 

4. Conclusion 

In this work, we provided a complete biochemical and kinetic characterization of a subcloned 

recombinant Galf-ase since the recent publication of the first ever cloned one. This enzyme 

was obtained with a reasonable yield of 0.5 mg/liter of culture, and optimally active at pH 4.5 

and at 60°C. It is inhibited by substrate’s structural thio analogue (IC50 = 0.8 mM), which 
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proved to be a moderate competitive inhibitor (KI = 0.4 mM). It exhibits substrate specificity 

exclusively towards pNP β-D-Galf, giving a KM value of 250 µM, and the highest enzymatic 

efficiency ever observed of 14 mM-1.s-1. Since to date, only a few furanosidases have been 

involved in the chemoenzymatic approaches, it would be of great interest to explore and 

evaluate the potential synthetic ability of this enzyme to act both as wild-type in 

transglycosylation[29] or after site-directed mutagenesis as an efficient thioligase[30] in the 

efficient preparation of galactofuranosyl conjugates. Works are currently under progress in 

this direction and results will be reported in due course.  
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