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Parametric Optimization of a non-Foster Circuit
Embedded in an Electrically Small Antenna for

Wideband and Efficient Performance
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Abstract—In this paper, we present the design of a small,
wideband antenna with an embedded non-Foster circuit. The
design procedure is based on modeling the antenna in the
presence of the EM model of the Negative Impedance Converter
(NIC) and trying to optimize the components and location of this
active circuit inside the antenna. The EM modeling of the circuit
provides the possibility to identify the key parameters that mostly
affect the performance of the antenna in terms of bandwidth
and efficiency. These parameters are then optimized accordingly.
This procedure is applied on a monopole antenna which has
its natural resonance at 2.2GHz. With an embedded non-Foster
circuit, the antenna is miniaturized to cover wideband frequencies
around 900MHz. Two examples are considered for different NIC
topologies, after optimizing the components of the NIC, the best
performance was given by the the second antenna which exhibits
an impedance bandwidth of 50% ([0.84 − 1.45GHz]) and total
efficiency of 25%. The measurement results of both antennas
are in good agreement with simulations showing a significant
enhancement with respect to the passive antenna.

Index Terms—Electrically small atenna, non-foster matching,
miniaturization.

I. INTRODUCTION

NEgative Impedance Converters (NICs) were first intro-
duced by Linvill in 1954 [1]. The unusual reactance

behaviour of such circuits, have made them an attractive
alternative to solve the issues in various RF problems [2]. One
of the most common application of NICs is found in matching
of Electrically Small Antennas (ESAs). As the electrical size
of the antenna decreases, its behaviour approaches that of a
lumped element where its reactance increases significanltly
and its resistance attains very low values resulting in a high
Q factor [3], [4]. In such a case, it becomes impossible
to match the antenna in a wideband using the conventional
passive matching networks which are limited by the gain-
bandwidth theory of Bode and Fano [5], [6]. To surpass this
limit, active matching networks are used. They are realized by
terminating a two-port NIC with a specific impedance whose
negative value is seen at the input of the NIC. This type of
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NICs is known as non-Foster circuits. The reactive part of
the non-Foster circuits exhibits a negative slope as a function
of frequency contrary to traditional lumped reactive elements.
This special behaviour of non-Foster loads, provides higher
flexibility in matching the ESAs in which it becomes easier
to compensate their high reactance and hence reducing their
Q factor [7].

In addition to ESA matching, non-Foster circuits have found
application in other RF domains. The authors in [8] studied
the analogy between the Negative Group Delay (NGD) and
non-Foster circuits showing that it is possible generate non-
Foster impedances using NGD circuit. The NGD based non-
Foster elements provide superluminal characteristics which
can find attractive applications in broadband metamaterials
[9] and eliminitaing the beam squint in parasitic arrays [10].
Furthermore, non-Foster ciruits have also found application in
enhancing the directivity bandwidth of superdirective arrays
[11], [12].

Various non-Foster impedance matching of ESAs have been
discussed in literature [13]–[18]. In these studies, non-Foster
loads were connected at the input of the antenna. Despite the
wideband achieved, it has been shown that input non-Foster
matching is very sensitive [19]. A slight change in the value
of the negative load can dramatically change the matching
performance of the whole system.This is due to the sensitivity
and instability of the NICs [20], [21]. Moreover, when tar-
geting higher frequencies, the NIC dissipates more resistive
losses which cause degradation in the overall efficiency [15].
This resistive effect will have a high impact on the efficiency
since the circuit is placed directly at the feeding point. In
addition, a non-Foster impedance placed at the input point can
compensate the reactance of the antenna. However this does
not insure a wideband matching due to the squared frequency
dependence of the resistance which might impose the need for
an additional input matching network [22].

Embedded non-Foster matching was adopted as an alterna-
tive for wideband ESA matching [23]–[28]. Placing the NIC
inside the antenna can reduce the sensitivity of impedance
matching with respect to slight changes in the non-Foster load
value. Additionaly, an internal non-Foster load can provide
better control on both the resistance and reactance of the
antenna making it a more suitable approach for wideband
matching [29]

Most of the practical non-Foster matching circuits for ESA
discussed in literature are limited to taregting frequency bands
below 500MHz [25], [30], [31] . For higher frequency bands
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(above 800MHz) the ideal non-Foster value is considered in
simulation, in which high simulated efficiency and impedance
matching is shown [32]. The lack of practical study of non-
Foster matching at higher frequency bands, is due to the fact
that the design of such circuits becomes more constrained by
stability, the non-linearity of the active components and the
effect of their parasitic elements, which might eventually limit
the possibilty to optimize the performance of the circuit. In
[15], the authors have succeeded to realize a NIC producing
a low negative capacitance value (C = −0.87pF ) which was
however associated with high resistive losses. This circuit was
connected at the input of an ILA antenna to match it in a wide
frequency band (above 800MHz) while it suffered from a low
efficiency in the lower part of the band (12%).

In this paper we present a systematic design of a wideband
electrically small monopole antenna embedded with a non-
Foster circuit. The monopole is naturally resonant and matched
at a 2.2GHz. The non-Foster circuit is then embedded to
miniaturize the antenna and match it in a lower frequency
wideband. To accurately model the effect of the non-Foster
circuit inside the antenna, the EM model of the ciruit is taken
into account. By introducing the EM model of the NF circuit
in the full wave simulation of the antenna, accurate results
can be predicted compared to measurements. This accuracy,
provides the possibility to optimize the location and the critical
parameters of the NF circuit, in order to reduce the resistive
loss of the active circuit while maintaining a stable behaviour
and a wideband matching. The realized antenna of ka = 0.31
is matched in a 50% bandwidth ([0.87 − 1.45GHz]), has a
maximal total efficiency of 25% and a peak realized gain of
−3.6dBi at 0.93GHz which is more than 10dB higher than
the unloaded antenna.

II. ANTENNA WITH IDEAL NEGATIVE CAPACITANCE

The geometry of the unloaded antenna is shown in Fig.1.
The antenna is a bent monopole integrated on a PCB and
mounted on a Rogers RO5088 substrate (εr = 2.2, tanδ =
0.0009). The overall dimensions of the structure is (90mm×
35mm) while the radiating part is confined to (10mm ×
23mm). The input reflection coefficient and impedance be-
haviour of the antenna are shown in Fig.2. The antenna
resonates at 2.2GHz, while having a significant capacitive
reactance below this frequency.

In order to miniaturize the antenna , its capacitive reactance
should be compensated. The surface current distribution of the
antenna at 1GHz is given in Fig.3a. Following the distributed
matching methodology presented in [33], an internal port (port
2) is defined at 3.8mm from the feeding point (Fig.3b). At
this position, the antenna exhibits a relatively high surface
current distribution. Therefore a load placed at this position
can efficiently control the current of the antenna in order
to match it in a wideband. Using this method, the optimal
capacitive value needed to miniaturize the antenna and match
it in a lower frequency band is found to be C = −0.87pF .
With this negative capacitance connected at the second port,
the antenna is matched in a wide bandwidth [1.06−1.44GHz].

Fig. 1. Geometry of the unloaded antenna
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Fig. 2. Simulated antenna parameters (a) Input reflection coefficient, (b) input
impedance.

(a)

(b)

Fig. 3. (a) Current distribution of the antenna at 1GHz, (b) geometry of the
two port antenna

This represents 30% of the central frequency. The antenna’s
resonance frequency shifts to 1GHz at which the antenna
has an electric size ka = 0.31 (ka = 1.2 considering the
dimensions of the ground plane). Hence the negative capacitive
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Fig. 4. Input reflection coefficient of the loaded and unloaded antennas.

load miniaturizes the antenna by a factor of 2.2. A comparison
between the input reflection coefficients of the loaded and
unloaded antennas is shown in Fig.4.

In the next section we present the integration of the realistic
non-Foster circuit inside the antenna.

III. NIC CIRCUIT TOPOLOGY

After determining the ideal non-Foster load value that is
capable to miniaturize and match the antenna in a wideband,
in this section we present the NIC circuit design. To obtain
a negative capacitance, a Linvill floating type NIC circuit is
considered. The schematic of the circuit is shown in Fig.5.
Two BJT transistors connected through a feedback path with
a resistance RL. The transistors used are BFR93A. Rather
than including a capacitance in the feedback path, the parasitic
capacitance of the transistors is used to generated the desired
negative capacitance. Fig. 5b shows the capacitive behaviour
of the circuit. It is evident that the circuit generates a negative
capacitance over the whole band. In the band of interest, the
value of the capaciatance is almost equal to −0.87pF which
corresponds to the optimized value required to match the
antenna in a wideband. The initial parameters of the circuit
components is given in Table. I.

TABLE I
INITIAL CIRCUIT PARAMETERS.

C1 100 pF Ls 470 nH
Cs 33 nF Rs 100 Ohm
Cb 100 pF Rb 100 Ohm

IV. ANTENNA WITH INTEGRATED NIC CIRCUIT

After choosing the topology of the NIC circuit, the next
step is to integrate the circuit inside the antenna. However in
order to obtain accurate results, the EM model of the NIC
circuit is taken into account in the full wave simulation of the
antenna. This EM model will provide a better understanding
on the electromagnetic interaction between the antenna and
the embedded circuit.In this section, we study the effect of
the circuit position on the antenna’s matching and efficiency.
Moreover, a parametric study of the key circuit components
is carried out to optimize the overall system performance.
Two cases are taken into account, in which we show that the
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Fig. 5. The proposed NIC circuit (a) Schematic, (b) de-embedded capacitance.

topology of the embedded NIC can have an impact on the
impedance bandwidth and efficiency of the antenna.

A. case 1

The initial geometry of the anetnna with the NIC circuit is
given in Fig. 6. Due to the dimensions of the NIC circuit, the
first arm of the monopole is increased by 5mm in order to
properly fit the NIC inside the given dimensions (Fig. 6a). This
increase will just result in shifting the resonance frequency of
the antenna. A 0.5mm gap is cut in the antenna. At each
end of the gap, a via is connected to a terminal of the NIC
which is located on the bottom side of the antenna (Fig. 6b).
To predict the behaviour of the antenna in the presence of
NIC, each component in the circuit is defined as a discrete
port, which yields to an overall network of 27ports. After
running the full wave simulation in CST [37],each port in the
network is connected to its corresponding circuit element in
post processing. The association of the ports to the components
is given in Fig. 6.C,B,E corresponds respectively to the
collector, base and emitter of the BJT. The input reflection
coefficient and the total efficiency of the antenna is given in
Fig. 7a. With Ic = 2.95mA the antenna is matched in a wide
band [1−2.04GHz] (66%) which is larger than the one with
ideal capacitance. However, the overall system efficiency is
very low in the whole band (ηmax = 2.7%). In this situation,
the EM model of the antenna in the presence of the circuit
becomes useful to investigate the main reason of this low
efficiency. Fig.7b shows the surface current distribution of the
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(a)

(b)

(c)

Fig. 6. Geometry of the antenna with internal NIC(a) Top view, (b) bottom
view, (c) EM NIC model with associated elements

embedded NIC at 1 GHz. It is obvious that the current inside
the NIC is very low. However, an active circuit embedded
inside the antenna will become a part of this radiating element,
hence a current coming from the antenna and passing inside
the NIC is supposed to radiate a certain amount of power.
However, a ground plane is placed directly above the NIC
which is preventing part of the power to be radiating and
therefore resulting in a very low efficiency.

To eliminate this inconvenience and allow the current pass-
ing through the NIC to radiate, a gap of size 13mm×7mm is
etched in the ground plane of the antenna, exactly above the
circuit. Fig. 8a shows the geometry of the antenna with the
font. The substrate is made transparent to visualize the NIC
circuit on the bottom side. With this configuration the antenna
is matched in a wide bandwidth [1.05−1.68GHz] (46%) for
Ic = 4.7mA, in addition to an increase in the overall efficiency
in the operating bandwidth (ηmax = 9%) at 1.2GHz which
represents an enhancement by a factor of 3 with respect to the
initial configuration.
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Fig. 7. Performance of the proposed antenna with active circuit. (a) Input
reflection coefficient and efficiency, (b) Surface current distribution of the
embedded NIC at 1 GHz.
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Fig. 8. Antenna with slot in the ground plane. (a)Geometry of the antenna,
(b) input reflection coefficient and efficiency

Fig.9 shows the surface current distribution of the NIC after
this modification. After introducing a gap in the ground plane,
the surface current distribution in the NIC is significantly
increased compared to the results of Fig.7b. This indicates
that the current passing from the antenna through the NIC is
now capable of radiating the power which was translated in
enhancement in the total efficiency. Although the efficiency
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Fig. 9. surface current distribution of the NIC after adding a gap in the ground
plane.

TABLE II
PARAMETRIC VALUES OF Rb ,Ls , AND Ic FOR DIFFERENT STATES

state Rb (Ohm) Ls (nH) Ic (mA) BW (%) ηt(%)
1 100 470 4.7 46 9
2 60 470 5.7 52 10.5
3 20 470 4.1 51.2 12
4 20 270 2.95 45 13.5
5 20 220 2.5 43.7 17

have been enhanced, the achieved value is still relatively low
and it is important to investigate the possibility to enhance
more this parameter while maintaining a wideband impedance
behaviour. Therefore, changing the components inside the
circuit might be an interesting option to help reduce the
losses introduced by the circuit. Fig.10, shows the current
passing from the antenna through the NIC. Ideally the current
(red arrow) passing from the antenna to port 1 of the NIC
should completely pass from the emitter through the base.
However, the choke inductance Ls does not provide an ideal
isolation and hence part of the current will be lost in the
chock inductance as marked by the black arrows. Therefore,
a parametric study should be carried on Ls to find the best
realistic component value that provide the best isolation. This
is typically the inductance whose self resonance lies in the
frequency band of interest. Another parameter to take into
account in our study is the base resistance Rb, part of the
current passing through Rb (green arrows) will pass through
RL. The principle role of RL is to reduce the resistive loss
of the circuit, the negative value of RL will be added to
the positive resistance of the circuit and will compensate
it. However, when the value of Rb increases, the voltage
across RL causing in reducing its effect in compensating the
resistive losses. Therefore, it is also important to carry out
a parametric study on Rb in order to identify the best value
that can help in enhancing the overall performance. Based
on this interpretation, the effect of Rb and Ls in the band of
interest between 0.8GHz and 1.6GHz was studied by varying
their values. Each parametric change of these components is
represented by a state, whose values are given in Table.II. It
should be noted that changing the values of the components
in the NIC might give rise to oscillations causing instabilities.
The stability of the active system will be verified in section V
for the different states.

18/09/2018 PhD defense - Hussein Jaafar 1
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Fig. 11. Variation of the antenna performance as a function of Rb and Ls.
(a) Input reflection coefficient, (b) total efficiency

Fig.11 shows the variation of the antenna performance
as a function of Rb and Ls. In the first three states, the
value of Ls was fixed to 470nH while the value of Rb was
decreased from 100Ohm to 20Ohm. At each state, the DC
feed V 1 is also varied to ensure the correct excitation of
the transistors so that the NIC circuit functions properly. We
notice that as the value of the base resistance Rb decreases
the total efficiency of the circuit increases up to 12% with a
corresponding relative bandwidth of 51.2%. Moreover, while
fixing the value of Rb to 20Ohm and decreasing the value
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Fig. 12. Variation of the antenna performance as a function of the NIC
position. (a) Input reflection coefficient, (b) total efficiency

of Ls from 470nH to 220nH , the total efficiency increases
up to 17% with a corresponding relative bandwidth of 43.7%.
The enhanced performance of of state 5 compared to state
1 verifies the previous interpretations. Reducing the value of
Rb from 100Ohm down to 20Ohm have increased the ability
of the load resistance RL in compensating the resistance of
the NIC. Besides, decreasing the value of the inductance from
470nH to 220nH have increased the effect of the isolation
in the choke inductance. This is due to the fact that the self
resonance of the 470nH inductance is 700MHz which is
lower than that of 220nH (1200MHz) [38].Therefore, by
performing a parametric study on the values of Rb and Ls

it was possible to increase the total efficiency of the active
antenna from 9% up to 17% while maintaining a wideband
impedance matching. As the values of Rb and Ls decrease,
the resistive effect of the NIC circuit decreases and hence
the total efficiency increases. It should be noted that at high
frequencies, the parasitic components of the inductance starts
to play an improtant role in the overall circuit behaviour,
therefore it is improtant to correctly model the inductors in
order to accurately predict the overall system performance.
In the simulations, the s2p touchstone files of the Murata
LQW18AN library are used to model Ls [38]. This model
is also important to take into account the self resonance of the
these inductors.

On the other hand, it is also important to study the effect of
the circuit position on the overall system performance. Fig. 12
shows the variation of the antenna performance as a function
of the circuit position (x1) with respect to the feeding point
with the optimized components values Rb = 20Ohm and Ls =

220nH .
As expected the overall efficiency of the antenna drops as

the circuit approaches the feeding point. Therefore, as the NIC
circuit approaches the feed point, its resistive effect becomes
more important, resulting in a decrease in the efficiency. For
a distance of x1 = 10mm the antenna exhibits the best trade
off between bandwidth (43.7%) and efficiency (17%).

B. Case 2

In this section we study the effect of changing the topology
of the NIC circuit on the overall system performance. In this
case the terminals of the NIC circuit are separated by 8mm
rather than 2mm in the previous section (Fig.13b). In order
to integrate the active circuit, the gap of the internal port
is increased to 7.5mm. To compensate the introduced gap,
the terminal section of the antenna is enlarged by 7mm Fig.
13a. Following the same procedure presented in the previous
example, it was found that the antenna exhibits the best perfor-
mance for Rb = 20Ohm, Ls = 220nH , and with a separation
distance x1 = 8mm. This is the maximal separation distance
in this case, since the increased gap approaches the terminal
of the NIC towards the feed point. With this configuration, the
antenna is matched in a wideband [0.87 − 1.45GHz] which
corresponds to 50% relative bandwidth. Moreover, a maximal
efficiency of 24% is achieved at 1.2GHz while the efficiency
remains higher than 15% in most of the band (Fig. 14).
Compared to the previous case, the modified NIC topology
shows a better performance for both bandwidth and efficiency.
So, even a slight change in the NIC topology in terms of
the terminal positions and configuration results in a change
in performance. Hence, in an actively matched antenna, it is
important to take the NIC model in the full wave simulation, in
order to determine the best position, topology and component
values that can improve the overall performance.

(a)

(b)

Fig. 13. Geometry of the antenna with modified NIC topology.

The reason behind this enhancement can be interpreted by
analyzing the current distribution in the NIC and the antenna in
both cases (Fig.15). The transmission lines of the NIC (case 1)
marked in red exhibit a high surface current distribution. These
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Fig. 14. Input reflection coefficient and total efficiency of the antenna with
modified NIC topology.

Fig. 15. Surface current distribution of the NIC and the antenna for the
different topologies

lines are located directly under the antenna, while having an
out of phase current distributions with respect to the antenna.
This will result in canceling part of the radiated power leading
to a decrease in the efficiency. This explains the enhancement
in the efficiency after removing these transmission lines by
increasing the gap between the NIC ports. With this new
topology the out of phase currents are eliminated (Fig.15)

V. STABILITY ANALYSIS

The positive feedback which is necessary to achieve a non-
Foster impedance in the NIC imposes a naturally unstable
behaviour of this circuit. Therefore, when dealing with an
actively macthed antenna using non-Foster impedance, it be-
comes necessary to study the stability of the whole system
to insure a reliable performance [25], [34], [35]. In [36],
Middlebrook has introduced a method to measure the loop-
gain T of a positive feedback system by injecting a small
signal voltage and / or current at a test point in the feedback
loop and measuring the gain around this loop. This gain can
then be used in a Nyquist test to study the existence of Right
Hand Plane (RHP) zeros and poles of the denominator D

of the system’s transfer equation (D = 1 + T ). In our case,
the test point is defined in the feedback passing by the base
resistance Rb. At this test point, two tests involving current
are voltage injections are considered to calculate the T given
by the following equation [36].

T = TvTi − 1
2 + Tv + Ti (1)

where Tv is the voltage loop-gain and Ti is the current loop
gain. Fig.16a,b shows the Nyquist plot of L for the positive
frequencies up to 10GHz which is the maximal frequency
for which the models of the circuit components are still valid.
Both figures illustrate the variation of T as for different values
of Ls and Rb corresponding to the five parametric states which
were considered in Table. II. Fig.16a, shows the response of
the antenna with the circuit topology of case 1 while Fig.16b
shows that with circuit topology of case 2. In both cases and
for all the studies states, the Nyquist contour does not exhibit
encirclement around the point s = −1 + j0 and converges to
the origin as the frequency approaches 10GHz. By analyzing
these contours, it can be deduced that Rb is the parameter that
can potentially affect the stability of the system. for values
of Rb that are relatively high (Rb = 100Ohm for state 1
and 60Ohm for state 2) the Nyquist contours are closer to
the origin for all the positive frequencies in the bandwidth,
however, when Rb decreases down to 20Ohm the domain
occupied by the contours becomes larger. On the other hand,
changing the values of Ls does not have a huge impact on
the stability. Due to the fact that there is no Clock-wise
encirclement around s = −1+j0 we can assume that this system
is supposed to be stable for all the studied parametric states,
the stability of the final design will be verified in the next
section by analyzing its spectrum in a wide frequency range.

The effect of decreasing Rb below 20Ohm on the stability
of the system is shown in Fig.16c. In this case Rb was set to
zero, and Ls = 220nH . The Nyquist contour was plotted for
both cases. By analyzing the plot, it can be seen that for both
cases, there exists an inflection point at which the contour
changes its direction and circulates in a counter clock-wise
direction to the left of the point s = −1 + j0 this behvaiour
indicates the possibility of existence of poles in D which gives
rise to oscillations and instabilities. This observation, will also
be verified in the measurements of the spectrum of the antenna
when Rb = 0Ohm.
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Fig. 16. Nyquist plot of the loop-gain for positive frequencies up to 10 GHz
(a) Case 1, (b) case 2, (c) base resistance equals zero for both cases.

VI. EXPERIMENTAL VALIDATION

Two prototypes of the previous cases have been fabricated.
The prototype of case 1 is shown in Fig. 17 with the antenna
printed on the top side and the NIC circuit on the bottom
connected through vias. As stated in section II, the antenna
is printed on a Rogers RO5088 substrate (εr = 2.2, tanδ =
0.0009). The measured input reflection coefficient of both
cases is shown in Fig. 18. For case 1, the measured active
antenna is driven by Ic = 2.95mA and is matched in a
wideband [1.02 − 1.63GHz] which represents 45.6% relative
bandwidth. This result agrees with the simulated antenna
driven by the same DC voltage and having a relative bandwidth
of 43.7%. However, the measured antenna exhibits a shift
in the resonance frequency with respect to the simulation.
Moreover, the measured results of the case 2 are also in good
agreement with the simulation. The measured antenna driven
by Ic = 2.5mA is wideband and matched in 58.7% relative
bandwidth ([0.9−1.66GHz]). It should be noted that using the

(a)

(b)

Fig. 17. Geometry of the antenna with modified NIC topology.

NIC circuit, the antenna achieves a wider bandwidth compared
to the ideal capacitance case presented section II. This is due
to the existing resistive loss in the circuit that causes this
increase in the bandwidth. On the other hand, the measured
efficiency of both cases is presented in Fig. 19. As predicted in
simulation, the antenna of case1 attains a maximal efficiency
of 18% and a 23% for case 2.

Fig. 20a shows the comparison between the realized gain of
the passive antennas and the active antennas. In its bandwidth
of operation, the antenna of case 1 achieves a peak gain of
−4.6dB at 1.05GHz while that of case 2 achieves a peak
gain of −3.5dB at 0.93GHz. In both cases, the realized gain
is significantly better than the passive antenna which has a
gain less than −10dB at the previously mentioned frequencies.
Furthermore, the gain of the active antennas is also higher
than the actively matched antenna designed in [15] and having
the same size, which proves the advantage of internal active
matching rather than input matching in this frequency band.
On the other hand, the quality factor of the measured passive
and active antennas is shown in Fig.20b. A dramatic decrease
is noticed in the Q factor of the antenna when the non-
Foster circuit is connected. As expected, the antenna of case 2
presents a slightly lower Q with respect to the antenna of case
1 especially in the lower part of the band. This decay in the Q
factor between the passive and active antennas, proves that the
negative capacitance effectively compensated the reactance of
the electrically small monopole making it more suitable to be
matched in a wideband.

To verify the stability prediction which was studied in
section V, the prototype of case 2 was connected to a spectrum
analyzer to insure that no oscillations are produced in the
active system. Fig.21, shows the spectral behavior of the
prototype for two cases: Rb = 20Ohm, and Rb = 0Ohm while
maintaining a similar value of Ls = 220nH . The parameters
of the first case corresponds to that of state 5 which was
proven to offer the best bandwidth-efficiency trade-off. The
spectrum is studied from 0 up to 20GHz. For Rb = 20Ohm,
no oscillations are observed in the spectrum, which verifies the
stability analysis of the Nyquist plots. The instability due to
low Rb values is also verified by the oscillation that are present
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Fig. 18. Input reflection coefficients of the measured active antennas
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Fig. 19. Total efficiency of the active antennas.
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Fig. 20. Comparison between the internally loaded antennas and the original
antenna.(a) Realized gain, (b) Q factor.
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Fig. 21. Spectral analysis of the antenna of case 2 for stable and unstable
behaviours.

in the spectrum. For this value of Rb, the circuit oscillates at
2.14GH which is the fundamental frequency of oscillation and
the corresponding harmonics are also visible. Therefore, with
the given NIC topology, a minimal value of Rb is important
to insure a stable circuit operation.

VII. CONCLUSION

This paper presents the design of an active internally
matched electrically small antenna. The original passive an-
tenna resonates at 2.2GHz. Using an ideal non-Foster ca-
pacitance embedded inside the antenna,it was shown that it
is possible to miniaturize the antenna by a factor 2.2 where
ka = 0.3 and match it in a wideband (30%). However, the
realization of a negative capacitance is associated with NIC
circuits which are sensitive and introduce resistive losses.
Therefore, we propose modeling the NIC circuit with the
antenna in the full wave simulation in order to have more
accurate results and optimized performance. Each component
of the NIC is defined as a discrete port and finally connected to
its corresponding element in the post processing. It was noticed
that by introducing a slot exactly above the NIC circuit, the
total efficiency was increased by approximately a factor of 3
(from 2.7% up till 9%). Moreover, using the post processing
in CST, a parametric study have been carried to identify the
key components in the NIC that can affect the total efficiency
of the system. It was then shown that for an Rb = 20Ohm and
Ls = 220nH , a maximal efficiency of 17% was achieved with
an impedance bandwidth of 43.7%. Furthermore, the position
of the circuit inside the antenna was varied to show its effect
on the overall performance. It was shown that as the NIC
approaches the feed point, the overall efficiency drops. This is
due to the NIC’s resistive loss which becomes more important
as it gets closer to the antenna’s feed. Following the same
procedure, another case have been considered in which the
distance between NIC’s terminals is increased. In this case, the
antenna shows a better performance than the previous one with
a 24% efficiency and 50% bandwidth. Measurement results
are in good agreement with the simulations in both cases.
The realized gain of the active antenna shows a significant
enhancement with respect to the passive antenna.

Therefore, using the EM modeling of the NIC in the
presence of the antenna it is possible to predict the overall
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behaviour of the system and to carry out parametric studies in
order to optimize the performance. In addition, internal active
matching is advantageous compared to input active matching
where the resistive effect of the NIC becomes more important.

In theory, it is possible to enhance more the bandwidth of
the antenna up to higher than 100%. However, this might re-
quire multiple non-Foster loads distributed along its geometry.
While in an ideal scenario, this can provide a very efficient and
wideband antenna, practically this adds a huge complexity to
the system in addition to the limited space available especially
for a physically small antenna. Therefore, the initial antenna
geometry remains an important point in obtaining a desired
behaviour.
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