
HAL Id: hal-02161312
https://univ-rennes.hal.science/hal-02161312v1

Submitted on 21 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chemical oxidation efficiency for aged,
PAH-contaminated sites An investigation of limiting

factors
Julien Lemaire, Veronica Mora, Pierre Faure„ Khalil Hanna, Michel Buès,

M.-O. Simonnot

To cite this version:
Julien Lemaire, Veronica Mora, Pierre Faure„ Khalil Hanna, Michel Buès, et al.. Chemical oxidation
efficiency for aged, PAH-contaminated sites An investigation of limiting factors. Journal of Environ-
mental Chemical Engineering, 2019, 7 (3), pp.103061. �10.1016/j.jece.2019.103061�. �hal-02161312�

https://univ-rennes.hal.science/hal-02161312v1
https://hal.archives-ouvertes.fr


Chemical oxidation efficiency for aged, PAH-contaminated sites: an investigation of limiting 

factors 

Julien Lemairea,b, Veronica Moraa, Pierre Faurec, Khalil Hannad, Michel Buèsb,  

Marie-Odile Simonnota* 

 

a Université de Lorraine, CNRS, LRGP, Nancy, 54000, France 
b Université de Lorraine, CNRS, Géoressources, Nancy, 54000, France 

c Université de Lorraine, CNRS, LIEC, Nancy, 54000, France 
d Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 

35708 Rennes Cedex 7, France. 
 

*Corresponding author: phone: +33(0)372 743 750;  

e-mail: Marie-Odile.Simonnot@univ-lorraine.fr 

 

graphical abstract 

Oxidizing
agents

PAHs

PAH degradation

KMnO4

Fenton
Persulfate

 

 

 

ACCEPTED M
ANUSCRIP

T

mailto:Marie-Odile.Simonnot@univ-lorraine.fr


Highlights 

 Investigation of the factors limiting PAH degradation in soils during oxidation. 

 Permanganate was the most effective oxidant. 

 Permanganate oxidation: correlation between PAH degradation and availability. 

 Radical oxidation: sequential addition is better than single addition. 

 Type/age of soil organic matter and carbonate content influence PAH oxidation. 

 

Abstract 

 

In Situ Chemical Oxidation (ISCO) can be applied to soils contaminated by polyaromatic 

hydrocarbons (PAHs). PAH degradation yields are often rather low, because of different 

obstacles not clearly understood. These include the low availability of PAHs, the type and age 

of soil organic matter and the carbonate content of the soil. The aim of this work was to provide 

a better understanding of the influence of these limiting factors at a given oxidant dose. Batch 

experiments were performed on contrasted PAH-contaminated soils or matrices using 

permanganate, persulfate, modified Fenton’s reagent and activated persulfate. PAH 

availability was estimated by a cyclodextrin-enhanced extraction method. Moderate amounts 

of oxidant were used in order to lower costs whilst minimizing environmental impacts. Results 

showed that chemical oxidation efficiency was mainly affected by PAH availability, 

particularly with low persistent oxidant. With permanganate, a correlation was found between 

PAH availability and degradation yield. With low persistent oxidants, degradation yields 

were significantly increased by sequential addition. The negative impacts of a high content of 

soil organic matter and/or carbonate were highlighted. For the aged contaminated soils, PAH 

degradation yields remained below 30% after most treatments except with permanganate (40-

60%) and sequential addition of Fenton’s reagent (40-70%). These results should have useful 

implications for the design of ISCO treatments. 
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1. Introduction 

Huge areas of industrial and urban soils are contaminated with polycyclic aromatic 

hydrocarbons (PAHs), whose content may reach up to a few tens of thousands of mg kg-1 in 

brownfields of ancient steel making or coking plants [1]. These pollutants represent a threat 

for human health because of their recognized carcinogenic and mutagenic effect [2]. Despite 

the high PAH diversity encountered in soils, only the 16 PAHs listed by the US Environmental 

Protection Agency (USEPA) are considered. Most of these neutral, non-polar and hydrophobic 

molecules are poorly soluble in water, poorly volatile and tend to sorb onto soil organic matter 

(SOM) [3]. 

Highly contaminated soils are commonly excavated and treated by thermal desorption, 

whereas lower contaminated soils (< 1 gPAH kg-1dry soil) are generally left for natural attenuation 

or treated by monitored biological treatments [4]. PAH bioremediation is usually quite a long 

process and can be incomplete because of low PAH availability and recalcitrance especially 

for higher molecular mass PAHs [5-8]. 

In situ chemical oxidation (ISCO), widely applied to treat groundwater and saturated zone 

contaminated by chlorinated organic compounds, has also been investigated to remediate 

PAH-contaminated soils [9-13]. This method aims at degrading pollutants by injecting an 

oxidant (e.g. permanganate, Fenton’s reagent, ozone, persulfate) into groundwater or soil 

without excavation. Its efficiency strongly depends on the contact between oxidant and 

contaminants that can be affected by the low availability of contaminants, the short life of some 
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oxidants and the high soil oxidant demand. In the case of aged contaminated soils, PAHs can 

be strongly sorbed to natural and anthropogenic (coal and coke) soil organic matter and 

sequestrated in complex soil structures [6, 14-17]. Moreover, high SOM content can consume 

much oxidant. Consequently, ISCO may not be appropriate in some situations depending on 

soil characteristics [7, 18]. For this reason, a feasibility study is generally required on a case-

by-case basis. Furthermore, ISCO is often integrated with other technologies such as biological 

treatment to achieve the clean-up objectives [9, 10, 19]. 

The aim of the present contribution is to bring some understanding of the influences of 

PAH content, availability and structure (number of cycles) and some soil properties (organic 

matter content, carbonate content and pH) on oxidation efficiency. To achieve this goal, nine 

contrasted contaminated matrices were prepared from Fontainebleau white sand and three 

soil samples of contrasted pH, organic carbon content and carbonate content. The first two 

soils had been collected from representative former steel-making brownfields contaminated 

with a classical mixture of PAHs (mainly 2- to 6-ring) and the third one from an 

uncontaminated agricultural field [17, 20-22]. These contaminated matrices were treated in the 

laboratory by batch experiments with four of the most commonly used oxidants: 

permanganate, persulfate, modified Fenton’s reagent and persulfate activated with hydrogen 

peroxide [13]. Moderate amounts of oxidant were used (i) to be suitable with treatment 

feasibility at field scale, and (ii) to minimize the environmental impacts on soil functions [23, 

24] and thus make soil revegetation possible. This work forms part of the OXYSOL project 

(http://www.oxysol-anr.org), which aims at combining ISCO, bioremediation and soil 

construction to restore soils at former metallurgical sites.  

 

2. Materials and methods 
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2.1. Chemicals 

Acetonitrile and methylene chloride (99.8% purity) were supplied by Fischer Scientific and 

the PAHs standard used in HPLC analysis by Dr Ehrenstorfer (16 USEPA PAHs mix, at 100 

mg L-1 in acetonitrile). Hydroxypropyl-β-Cyclodextrin (HP-β-CD) was purchased from 

Molekula. Sodium persulfate (>99%) was supplied by Merck, potassium permanganate (>99%) 

by Fluka Chemika, Fontainebleau sand by Carlo Erba, hydrogen peroxide (50%), ferrous 

sulfate heptahydrate Rectapur and hydrochloric acid (37%) by VWR Prolabo. 

 

2.2. Soil samples 

Two aged industrial soils contaminated by PAHs and metals (soils TNM and TH) and a 

non-polluted agricultural soil (soil TCh) were selected. TNM was collected from a former steel-

making plant (Neuves-Maisons, France) [17, 22, 24-26]. TH was taken from the upper horizon 

of a former coking plant (Homécourt, France) [23, 25] and TCh from the Ap horizon of an 

agricultural Cambisol (Chenevières, France) [20, 21, 23]. Soils were sampled, air-dried at 25 °C 

and sieved at 2 mm from large volumes excavated, and then homogenized by quartering. The 

main physico-chemical characteristics (Table 1) have been determined by the Soil Analyses 

Laboratory (Arras, France) following French standards (details given in [22]). All concentrations 

refer to dry soil.  

Except for fine texture (sandy loam), both industrial soils TNM and TH exhibit very 

different characteristics from the agricultural soil TCh. TNM and TH are slightly alkaline (pHs 

7.4 and 9.5, respectively) with high carbonate content (35.7 and 369 g kg-1 respectively), 

whereas TCh is an acidic soil (pH 4.7) with a very low carbonate content (< 1 g kg-1). Moreover, 

TNM and TH have organic carbon contents 10 times higher than TCh. The latter mostly 

ACCEPTED M
ANUSCRIP

T



contains natural organic matter whereas TNM and TH mainly contain anthropogenic organic 

particles derived from coal, coke and coal tars [27]. In these two industrial soils, 14C has been 

measured to determine the percentage of modern carbon pMC; this represents < 6 % of the total 

carbon in TNM and TH soils [28, 29] confirming the predominance of fossil organic matter. 

Importantly, TH and especially TNM, were also contaminated by heavy metals, mainly Zn 

and Pb, but also Cr, Ni, Cu and Hg, unlike TCh whose metal concentrations were comparable 

to lower values in regional references [30] (Table 1). 

 

2.3. Preparation of PAH-contaminated matrices  

In order to investigate the selected limiting factors, eight contrasting matrices were 

prepared: 

- TNM and TH: correspond to TNM and TH raw soils; 

- TNM D and TH D: were prepared from TNM and TH soils, respectively as already 

applied [15, 16, 31]: the extractable organic matter (EOM), including PAHs, was 

isolated by methylene chloride extraction and re-added into the corresponding soil, in 

order to increase PAH availability without any other qualitative or quantitative 

modifications; 

- TCh D and SNM: correspond to the TCh soil sample and Fontainebleau white sand, 

respectively contaminated with the EOM isolated from TNM soil and added at the 

same concentration; 

- TNM-DC and TH-DC: correspond to TNM and TH, respectively after partial 

decarbonization. TH and TNM soil samples were mixed with ultra-pure water (20% 

wt ratio) and 37% concentrated HCl in a glass beaker, at a dose of 0.5 equivalent of HCl 
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per equivalent of carbonate (13 and 130 g HCl per kg of dry matrix for TNM and TH, 

respectively). 

In a preliminary step, each sample of soil and sand was ground in a vibratory disc mill, 

until it could be completely sieved at 500 µm in order to produce homogenous samples. 

Extractable organic matter (EOM) was isolated from TNM or TH with methylene chloride 

by Accelerated Solvent Extraction (ASE, Dionex 350). Two extraction cycles were run at 100 

°C and 130 bars for 5 min to extract the EOM. 

EOMs were both re-added to their native soil TNM and TH at the same concentrations (10 

and 15 mg g-1 of dry soil respectively) or, in the case of EOM isolated from TNM, introduced 

into an uncontaminated matrix (TCh or Fontainebleau sand) in a similar proportion as NM (10 

mg g-1 of dry soil). Mixing was performed in a large glass beaker placed inside a fume hood 

until complete evaporation of methylene chloride was achieved. 

Before treatment, 16 USEPA PAH contents of each contaminated matrix were measured in 

triplicate (Fig. 1, Fig. S1).  

 

 

 

 

2.4. Oxidation experiments 

Batch oxidation experiments were performed in triplicate at room temperature (20 °C) in 

250 mL glass flasks covered with aluminum foil and stirred at 250 rpm. Fifteen g of soil or sand 

were mixed with 30 mL of ultra-pure water and the appropriate amount of oxidant for 5 d 

(Table 2).  
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Four chemical oxidation treatments were chosen according to a previous investigation and 

our background information [17, 20-22]: 

- PM: potassium permanganate, 

- PS: sodium persulfate, 

- APS: activated sodium persulfate, molar ratio [H2O2]:[Na2S2O8] = 5:1,  

- F: modified Fenton’s reagent, molar ratio [H2O2]:[FeSO4] = 20:1 (without modifying soil 

pH). 

A control treatment (C) with only ultra-pure water was performed for each contaminated 

matrix.  

The same oxidant amount was used for each soil (Table 2). It corresponded to a medium 

amount of oxidant: molar ratio [oxidant]:[16 USEPA PAHs] between 3:1 and 8:1, depending 

on the treated matrix. Molar ratios lower than 10:1 were chosen in order to: (i) prevent radical 

self-consumption or scavenging effects (for F and APS), (ii) limit the impacts on soil properties 

[23, 24] and also (iii) keep a moderate treatment cost.  

Sequential addition was tested with F and APS at the same molar ratio as for single 

addition. Oxidants were added 4 times a day with intervals of 2 h over 5 d. These treatments 

are called Fseq for ‘sequential Fenton’ and APSseq for ‘sequential activated persulfate’.  

At the end of the batch experiments, supernatant pHs were measured, the mixtures were 

freeze-dried (Christ Alpha 1-2 LD freeze-dryer) and the concentrations of the 16 USEPA PAHs 

analyzed by HPLC. Before chemical treatment, the proportion of available PAHs (among the 

16 USEPA PAHs) was evaluated by an extraction using a concentrated solution of 

hydroxypropyl-β-cyclodextrin (CD) (in triplicate) [32]. 

The total extractable organic matter (EOM) degradation was measured to estimate the 

oxidant selectivity towards PAHs (competition with others organic compounds). 
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2.5. Analytical methods 

2.5.1.  Extractable organic matter (EOM) isolation and quantification of the 16 USEPA PAHs 

Ten g of dry contaminated matrix were ground in a ball mill for 10 min at 25 Hz to obtain 

homogenous samples. EOMs were extracted from 1 g sub-samples using Accelerated Solvent 

Extraction (ASE Dionex 350). One g of anhydrous sodium sulfate and 1 g of Florisil® were 

added to a sub-sample in the extraction cell to purify the extract and trap potential traces of 

water. Extraction, using a mixture of acetone and methylene chloride (v/v 50/50), was 

performed at 100 °C and 100 bars for 5 min. After re-concentration of the solution to 1 mL 

under gentle nitrogen flow (TurboVap® Evaporation Workstation), a solvent exchange was 

carried out, in order to replace acetone and methylene chloride by acetonitrile for HPLC 

analysis. The vials containing these solutions were previously weighed before/after to estimate 

the volumes of the final extracts. 

PAHs were quantified with a HPLC (Shimadzu system) equipped with a UV diode array 

detector, a Prosphere column C-18 (Alltech, 250 mm x 46 mm, particle size 5 µm) and a pre-

column (Alltech, 150 mm x 4.6 mm). The mobile phase was 85% acetonitrile and 15% ultrapure 

water (flow rate: 0.4 mL min−1). External calibrations were made with a standard mixture of 16 

USEPA PAHs in acetonitrile in the 1-100 mg L−1 range (Dr Ehrenstorfer PAH-Mix 9) with 5 

calibration levels [20, 21].  

 

2.5.2. PAH extractability with a cyclodextrin solution 

PAH availability was evaluated by extraction using a concentrated solution of 

hydroxypropyl-β-cyclodextrin (CD) [17, 32]. Two g of each contaminated matrix were placed 

in Teflon (Nalgene) tubes with 25 mL CD solution (69.5 g L-1) and stirred for 12 h in a rotating 
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stirrer at 24 °C. The CD solution containing the available PAHs was isolated from the solid 

matrix by centrifugation (10 min at 10000 g, Sorvall RC 5B). A sequence of 3 liquid-liquid 

extractions was performed with 10 mL methylene chloride each time (3 min stirring and 3 min 

settling). The organic phase was collected and the solvent almost totally evaporated 

(TurboVap® Evaporation Workstation) in order to carry out a solvent exchange (methylene 

chloride to acetonitrile) before HPLC analyses. 

 

2.6. Statistical analysis 

Analytical triplicates and treatment triplicates were needed in order to take into account 

possible contamination heterogeneity. Statistical analyses were performed to compare oxidant 

efficiency appropriately. In the case of PAH measurements, a reference standard deviation 

was defined for each contaminated matrix as the average standard deviation of different 

triplicates. Fischer’s tests proved that each standard deviation of different triplicates was not 

significantly higher than the reference value with a 5% alpha risk. 

For each contaminated matrix, normal z-tests were run to compare mean values of PAHs 

contents before and after control treatment. The reference standard deviation was used as 

previously defined. As expected, they demonstrated that the control treatment did not change 

significantly PAHs (p < 5%). The mean values after control treatment were used as the 

references to calculate PAH degradation yields. The degradation percentage corresponds to 

the PAH content difference between the initial (t0) and the oxidized sample normalized by the 

PAH content of the initial (t0) sample.  Pearson's correlation coefficient r-tests were performed 

to assess the correlation between PAHs degradation yields and the percentage of PAHs 

extracted with cyclodextrin solution. 
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3. Results  

3.1. Distribution of the 16 PAHs before oxidation 

The initial abundances and distributions of the 16 PAHs in the original soil samples TH and 

TNM, in the same soils previously extracted and then spiked with their corresponding EOM 

(THD, TNMD), and in the matrices spiked with the EOM of TNM soil (TChD and SNM) are 

similar for TH-t0, THD-t0 on the one hand, and TNM-t0, TNMD-t0, TChD-t0 and SNM-t0 on 

the other hand (Fig. 1, Fig. S1, Table S1). Therefore, the stages of extraction and spiking have 

not modified PAH contamination. In contrast, the results for CD extraction reveal that EOM 

extraction and incorporation into soil matrices (THD, TNMD and TCh) caused an increase in 

PAH availability, from 8 to 39% (Table 3).  

 

3.2. Control experiments (C) 

After the control experiments, no significant difference was recorded in PAH distribution 

before/after treatment (Table S1) and so the differences observed after oxidation are due to 

oxidation.  

 

 

 

 

3.3. Oxidation experiments  

The results of the oxidation experiments are all plotted in Fig. 1, which gives the 

concentrations of the sum of the 16 PAHs in each soil sample before/after oxidation.  The 

degradation yields of the 16 PAHs have been calculated as follows: 

𝒅𝒆𝒈𝒓𝒂𝒅𝒂𝒕𝒊𝒐𝒏 𝒚𝒊𝒆𝒍𝒅 =  
∑ (𝑪𝟏𝟔𝑷𝑨𝑯𝒔 )𝒇𝒊𝒏−∑ (𝑪𝟏𝟔𝑷𝑨𝑯𝒔 )𝒊𝒏

∑ (𝑪𝟏𝟔𝑷𝑨𝑯𝒔 )𝒊𝒏
𝒙𝟏𝟎𝟎       (1) 
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where ∑ (𝑪𝟏𝟔𝑯𝑨𝑷 )𝒇𝒊𝒏  and ∑ (𝑪𝟏𝟔𝑯𝑨𝑷 )𝒊𝒏  are the total concentrations of the 16 PAHs in a soil 

sample after and before oxidation (mg kg-1)  

 

3.3.1 Oxidation with permanganate (PM) 

Permanganate was the most efficient oxidant for all the soil samples since degradation 

yields ranged from 40.2 to 98.6% (Fig. 1, Table S1). The highest degradation yield was obtained 

with the contaminated sand (SNM), followed by the freshly contaminated soil samples (TH D, 

TNM D and TCh D), whereas aged contaminated soils were the most recalcitrant. These results 

clearly show that oxidation depends on PAH availability, which is consistent with previous 

data [29, 33]. Indeed, a positive correlation has been established between degradation yields 

and availability, measured by the fractions of PAHs extractable by CD (not measured for 

SNM) (confidence levels > 95%) (Fig. 2). Moreover, the LMW/HMW ratio remained constant, 

showing that PM was effective whatever the number of aromatic rings (Table 4). This result 

could not be checked for SNM because of the very high degradation yield (98.6%), preventing 

accurate calculation of the LMW/HMW ratio. 

After treatment, pHs were very close for TH and TNM (6.86 and 7.25) and lower than the 

reference soils without influence of the extraction/re-incorportion steps (Fig. S2). The pH of 

TChD-PM remained stable whereas it increased from 6.77 to 8.70 for soil SNM . 

 

3.3.2 Oxidation with persulfate (PS) 

Overall, PS was less efficient than PM with degradation yields from 10.6 to 43.5% (Fig. 1, 

Table S1). A similar oxidation efficiency was recorded for the freshly contaminated soil 

samples (THD and TNMD) and for aged ones (TH and TNM). No significant correlation was 

found between PAH degradation yield and PAH extraction yield with CD. As with PM, the 
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LMW/HMW ratio was not modified after oxidation with PS, showing no preferential 

degradation (Table 4). 

After treatment, pHs were close for each matrix (7.13 to 7.38) except for Chenevière soil 

(TChD-PS – pH = 5.05) and Fontainebleau sand (SNM-PS – pH = 1.50) (Fig. S2). This decrease 

is explained by the low buffering effect due to the low carbonate content.  

 

3.3.3 Oxidation with activated persulfate (APS) 

With APS, degradation yields ranged from 1.9 to 39.2%, comparable to PS (Fig. 1, Table 

S1). No obvious effect of PAH availability and no selective degradation was observed linked 

to the molecular weight of the PAHs (Table 4). The effect of APS treatment on pH was similar 

to PS treatments (Fig. S2), with a low pH for TChD-APS and especially so for SNM-APS. 

 

3.3.2 Oxidation with modified Fenton’s reagent (F) 

Modified Fenton oxidation led to the lowest degradation yields whichever the soil; no 

degradation was recorded for TNM-F and THD-F and the highest was 45.2% for SNM-F. No 

significant correlation could be found between degradation yields and extraction yield with 

CD. The LMW/HMW ratios remained stable for each soil (Table 4).  

After oxidation, soil suspension pHs were close to those attained after PS or APS treatment, 

except for TCh-F, with a pH drop to ca 2.7 and SNM-F, with a pH value of 2 (Fig. S2). 

 

4. Discussion 

The different oxidation treatments led to a very wide range of effectiveness, partly due to 

the differences in soil characteristics. PAH availability and distribution, pH, carbonate content, 

nature of the soil and the amount of organic carbon all can drastically affect oxidation 
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efficiency [7, 17, 20, 21, 34-36]. Furthermore, these potential limiting factors can interact and 

their effects also depend on the nature of the oxidant and its method of addition.  

 

4.1. Influence of PAH availability  

The low availability of PAHs has been identified as one the main limiting factors for soil 

clean-up by chemical oxidation [15-17]. Its effect strongly depends on oxidant type [29]. With 

PM, a positive correlation has been found between the degradation yields of the 16 PAHs and 

their availability measured by CD extraction rate (Fig. 2). The treatment effectiveness was 

clearly governed by PAH availability; the highest oxidation rate (98.6%) obtained with 

Fontainebleau sand is explained by the very weak interaction between PAHs and the mineral 

matrix. 

Unlike PM, oxidation by F and PS or APS resulted in lower degradation yields, without 

any relationship between availability and degradation; degradation yields were no higher 

with freshly contaminated soil samples (THD and TNMD) than to the equivalent aged ones 

(TH and TNM) (Fig. 1 and Table S1).  

The low PAH availability in aged contaminated soils can be due to sequestration (transfer 

in micropores, possibly clogged) and to the strong sorption onto soil organic matter. It 

depends on organic carbon content and the nature of organic compounds [14]. Both industrial 

soils had a high content of organic carbon (close to 10 wt % - Table 1). Moreover, their nature 

is very different from organic matter of natural soils (as for example in soil TCh). Indeed, in 

industrial residues from former steel-making and coking plants, most of the organic 

compounds generally derive from coal tar and their aromaticity and hydrophobicity enhance 

PAH sorption [23, 28, 37]. This absence of correlation suggests that other parameters are 

involved. 
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4.2. Oxidant persistence – successive additions 

APS and Fenton’s reagent involve highly reactive and very short half-life radicals with 

many possible radical scavenging reactions [10, 22, 38-40]. The chemical availability of catalyst 

‘activators’ plays a major part in these activated systems [15, 16]. With these oxidants, 

sequential addition may lead to higher PAH degradation yields [41, 42].  

Activated persulfate (APS vs. APSseq): sequential addition of APS considerably improved its 

efficiency for most soil samples (11.0 to 96.3% degradation yields) (Fig. 3, Table S2). 

Degradation yields increased particularly for freshly contaminated matrices (THD, TNMD, 

TChD and SNM). No significant correlation could be found between degradation yields 

resulting from Fseq and APSseq treatments and PAH availability. 

Fenton treatments (F vs. Fseq): as for APS, sequential addition of Fenton’s reagent improved 

its efficiency for most of soil samples (10 to 70% degradation yields) (Fig. 3 and Table S2). 

However, unlike APS, the highest degradation yields were obtained with aged contaminated 

matrices (TH and TNM). When soil samples are spiked with EOM, not only PAHs but also 

other organic compounds become more available. Given that oxidation with radicals is non-

selective, they may react with many other compounds. Therefore the increase in availability 

resulting from spiking does not only enhance PAH degradation and the degradation yields 

are not higher. This effect could be more pronounced with PS acting as a detergent likely to 

solubilize organic matter.  

 

4.3. Influence of content and nature of organic matter 

Oxidants are not selective; the competition between PAHs and other organic constituents 

therefore plays a significant role in treatment efficiency [10, 14, 17, 22, 24, 43]. Its effect has 

ACCEPTED M
ANUSCRIP

T



been described earlier for Fenton’s reagent and APS. The influence of the competition with 

organic matter was also recorded with PM but to a lesser extent; degradation yields decreased 

as organic content increased with SNM-PM, TChD-PM and TNMD-PM, the PAH 

concentration being the same. The same trend was observed with APS by comparing results 

obtained with TNMD-APS and TChD-APS. 

The nature of organic matter also plays a role. TH and TNM contained organic matter 

derived from industrial activities, mainly composed of persistent aromatic compounds [28, 29] 

whereas TCh contained natural organic matter which was easier to oxidize.  

 

4.4. Influence of carbonate content and pH  

Among the different parameters which can induce contrasting behaviors between soils, 

carbonate content can play a major role. TH and THD contain especially high amounts of 

carbonate (369.0 gCaCO3 kg-1), ten times more than TNM and TNMD (35.7 gCaCO3 kg-1), whilst 

TChD and SNM did not contain any carbonate (Table 1). In order to evaluate the specific effect 

of carbonate on oxidation effectiveness, TH and TNM were partially decarbonized before 

further oxidation experiments (see 2.4). TH-DC and TNM-DC were oxidized with PM, PS in 

one addition and with F and APS sequentially. 

The influence of carbonate content was estimated by comparing results with partially 

decarbonized soil samples TH-DC and TNM-DC with  results obtained with the original TH 

and TNM (Fig. 4). High carbonate content did not have an impact on PM efficiency (similar 

results for TH and TH-DC and for TNM and TNM-DC), whereas partial decarbonization 

increased APS performance, especially in the case of the most carbonated soil sample TH (Fig. 

4). It was consistent with previous published reports since unlike PM, APS involving radical 

species can be inhibited by carbonate anions [9, 10, 36, 39]. However, partial decarbonization 
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of TH and TNM soil samples drastically decreased the efficiency of Fenton’s reagent (hydroxyl 

radical pathway) [11, 17, 21, 22]. A release of trapped organic matter or an enhancement of its 

availability during decarbonization could explain this decrease. Indeed, Fenton’s reagent 

seemed less selective and more affected by competition between PAHs and other organic 

compounds (see section 4.2).  

Our data revealed that the pH reached during chemical oxidation could have an impact 

on PAH degradation. Fenton’s reaction is known to be favored at low pH and persulfate at 

alkaline pH (with or without activation) but permanganate remained efficient over a large 

range of pHs [10, 17, 22, 38]. During our experiments (Fig. S2), no severe pH decrease occurred 

with soil samples TNM and TH and their derivatives (TNMD, THD) because of their high 

carbonate content being responsible for a buffering effect (pH between 5 and 7), even in partial 

decarbonized ones (TNM DC and TH DC). This pH range could explain the low efficiency of 

Fenton’s reagent with these matrices, in addition to other limiting factors, compared to other 

oxidants not particularly hindered at a pH around 6. However, with contaminated sands 

(SNM) the severe pH decrease observed with Fenton’s reagent was an advantage but a great 

drawback for persulfate, especially without any activation. 

 

5. Conclusion  

In this work, oxidation has been investigated as a method to degrade PAHs from different 

soil samples in diverse conditions, in order to bring an understanding on the role of the type 

of oxidant and injection method, the type and age of organic matter, of PAH availability and 

of carbonate content. It was clearly shown that permanganate was the most effective oxidant, 

whatever the conditions, even if low PAH availability limited its action. Indeed, a positive 

correlation has been revealed between PAH availability and the PAH degradation yield by 

ACCEPTED M
ANUSCRIP

T



permanganate. To the best of our knowledge, no clear correlation has ever been proposed 

before to explain the impact of PAH availability on oxidation effectiveness. 

The other oxidants employed (modified Fenton’s reagent, persulfate, activated persulfate) 

were less effective under all conditions. Different obstacles limited their action; the type and 

age of organic matter, injection method and/or high carbonate content.  Persulfate led to low 

PAH degradation in all cases. Moving from single to sequential addition of oxidant improved 

the action of low persistent oxidants (modified Fenton’s reagent and activated persulfate). The 

decrease in carbonate content also improved the action of activated persulfate.  

This work provides additional evidence that oxidation requires a systematic feasibility 

study at the laboratory scale before being applied at field scale. Furthermore, it clearly shows 

the role of the limiting factors that must be taken into account. In addition to the degradation 

performance, other factors should also be considered, namely the influence of oxidant on later 

remediation operations, such as bioremediation or soil revegetation. Therefore, the impact of 

chemical oxidation on soil physical, chemical and biological properties should be limited, and 

the oxidant type and dose as well as of the operating conditions must be carefully selected 

with this in mind.  
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Figure captions 

 

 

Fig 1. 16 US EPA PAH content in soil samples (TH THD, TNM, TNMD, TChD and 

SNM) before and after different oxidative treatments (C, PM, PS, PS, F).  

 

Fig. 2. Degradation yields of the 16 PAHs after permanganate oxidation as a function 

of PAH availability measured by cyclodextrin extraction. 
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Fig. 3. PAH concentrations before (t0), after single or sequential addition of Fenton’s 

reagent (F and Fseq) or activated persulfate (APS and APSseq) for initial soils (TH and 

TNM) and modified soils (THD, TNMD, TChD and SNM). 

 

Fig. 4. PAH concentrations before (t0) and after oxidation (C, PM, PS, APS, Fseq, 

APSseq) of partial decarbonatation of TH (TH-DC) and TNM (TNM-DC) soil samples. 
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Fig. 2. 

(the title of the vertical axis was corrected) 
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Table 1 

Agronomic properties, organic parameters and metal contents of the two industrial soils (TNM and TH) and the agricultural soil (TCh) 

 

  
TNM TH TCh 

Regional 

referencea 

    mean max 

Agronomic parametersb       

Sand wt % 62.9 63.7 88.7   

Silt wt % 24.1 25.5 6.3   

Clay wt % 13.0 10.8 5.0   

pH water  7.4 9.5 4.7   

Total CaCO3 g kg-1 35.7 369.0 <1.0   

Total N g kg-1 2.69 2.14 1.19   

Organic parameters             

Organic carbonb g kg-1 71.5 99.7 12.4   

pMC (percentage of modern carbon) % 5.6 4.5 -   

Metalsb             

Zn mg kg-1 2.68 361 33.1 120 500 

Pb mg kg-1 684 121 27.2 25 100 

Cr mg kg-1 325 55.5 19.4 80 500 

Ni mg kg-1 260 24.3 7.4 30 100 

Cu mg kg-1 110 28.5 8.6 15 50 

Hg mg kg-1 3.9 12.0 < d.l. 0.5 2.0 

a values taken from (30); b values taken from (17); < d.l.: below the detection limit 
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Table 2 

Oxidant amount used in batch experiments to treat 15 g of the different contaminated matrices 

 

 

 

 

  

  Fenton’s reagent 
Activated 

persulfate Sodium 

persulfate 

Potassium 

permanganate 
    H2O2 FeSO4,7H2O H2O2 Na2S2O8 

Amount 
g 0.75 0.306 0.625 0.875 5.25 2.32 

g kg-1 50 20.4 41.7 58.3 350 155 
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Table 3 

Sum of the 16 USEPA PAH concentration in initial soils (t0) and sum of the 16 USEPA PAH 

concentration mobilized by cyclodextrine extraction (CD) for TH, THD, TNM, TNMD, 

TChD soils. Individual PAH concentrations are supplied in Table S2. 

 

 

 

 

 

  

  ∑ 16 HAP (mg kg-1) 

TH-t0 
mean 2155.4 

Std.-Dev. 100.4 

TH-CD 
mean 179.8 

Std.-Dev 25.5 

% available  8.3 

THD-t0 
mean 2074.2 

Std.-Dev 159.2 

THD-CD 
mean 325.5 

Std.-Dev 18.5 

% available  15.7 

TNM-t0 
mean 933.9 

Std.-Dev 230.5 

TNM-CD 
mean 119.0 

Std.-Dev 18.0 

% available  12.7 

TNMD-t0 mean 1198.5 
 Std.-Dev 34.1 

TNMD-CD mean 244.2 

 Std.-Dev 38.8 
% available  20.4 

TChD-t0 mean 821.4 
 Std.-Dev 104,1 

TChD-CD mean 323.7 

 Std.-Dev 23.9 
% available  39.4 
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Table 4 

Values of the ratio of the concentration of low molecular weight (LMW) PAHs (from 

Naphtalene to Pyrene) to the concentration of the high molecular weight (HMW) PAHs (from 

Benzo(a)anthracene to Dibenzo(a.h)anthracene) before (t0) and after the different oxidation 

treatments (C, F, APS, PS, PM) for the different matrices (TH, TNM, TChD, THD, TNMD 

and SNM)  

 

 

  LMW/HMW*     LMW/HMW*     LMW/HMW* 

TH-t0 0.81  TNM-t0 0.84  TChD-t0   0.83 
TH-C 0.79  TNM-C 0.80  TChD-C 0.74 
TH-S 0.79  TNM-S 0.84  TChD-F 0.61 

TH-APS 0.78  TNM-APS 0.79  TChD-APS 0.80 
TH-PS 0.78  TNM-PS 0.81  TChD-PS   0.77 

TH-PM 0.86  TNM-PM 1.17  TChD-PM   0.85 

THD-t0 0.82   TNMD-t0 0.78   SNM-t0 0.93 
THD-C 0.80  TNMD-C 0.78  SNM-C 0.75 
THD-F 0.79  TNMD-F 0.73  SNM-F 0.78 

THD-APS 0.76  TNMD-APS 0.82  SNM-APS 1.03 
THD-PS 0.80  TNMD-PS 0.84  SNM-PS 0.64 

THD-PM 0.77   TNMD-PM   0.66   SNM-PM 4.59 
 

* LMW: sum of the 16 USEPA PAH from Naphthalene to Pyrene 

   HMW:  sum of the 16 USEPA PAH from Benzo(a)anthracene to Dibenzo(a,h)anthracene 
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