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Abstract. Crystallization transformation in the 80GeSe2-20Ga2Se3 chalcogenide glasses caused 

by annealing at 380 oC during different duration (25, 50, 80 and 100 hours) are studied using X-

ray diffraction and atomic force microscopy methods. It is established that GeGa4Se phase of 

low- and high-temperature modification, Ga2Se3 phase (- and -modification) and GeSe2 phases 

are crystallized during this process. It is shown that annealing duration over 50 h does not lead 

to further internal structural crystallization, while annealing for 80 h result in processes of surface 

crystallization. 

1. Introduction 

Development of modern IR photonics brings up the challenges of searching new functional media for 

effective transfer of wide-spectra electro-magnetic radiation and developing of novel miniaturization 

technologies of passive and active photonic elements (optical waveguides, resonators, splitters, 

multiplexers, detectors, signal amplifiers and converters, comparators etc). Among the most promising 

materials for such applications are special chalcogenide glasses (ChG) – non-oxide glassy-like materials 

with high content of chalcogens (S, Se, Te) [1-3]. To a great extent, the further success in this field relies 

on chemical-technological resolutions in development of ChG-based media with unique properties [4-

6]. 

Basic approach in development of functional materials is based on the various methods of 

technological and post-technological structural modification using external factors such as thermal 

annealing, high-energy radiation treatment or laser beams [7-9]. It is known that the nearest atomic 

environment in glass matrix can be adequately studied using numerous experimental methods such as 

vibration and Raman scattering spectroscopy, X-ray diffraction (XRD), scanning electron microscopy 

etc. [10]. 

The aim of this work is the investigation of crystallization processes and features formation of 

crystalline phases in 80GeSe2-20Ga2Se3 chalcogenide glasses under different durations of thermal 

annealing above the glass transition temperature using XRD and atomic force microscopy (AFM) 

methods. 
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2. Experimental details 

The 80GeSe2-20Ga2Se3 samples were obtained from high purity (99.999%) Ge, Ga and Se components 

in silica ampoule kept under 10-6 vacuum. Raw materials were heated from 20 to 850 °C at 2 °C/min 

and maintained at the highest temperature for 12 h. Then silica tube was cooled in water at room 

temperature and annealed at 30 ° C below the glass transition temperature Tg (370 oC) for 3 h and slowly 

cooled down to room temperature [11]. Samples with thickness of 1 mm were polished for further 

investigations [9, 12-14]. 

The crystallization of the 80GeSe2-20Ga2Se3 ChG was performed with a single step typical heat 

treatment at Tg+10 oC as described in [11,15]. This temperature has been chosen as an optimal 

temperature of ceramization as it permits to control the generation by simultaneous nucleation and 

growth of nanoparticles within the glassy matrix according to the heat treatment time. Thus, glass 

samples were placed in a ventilated furnace where the accuracy of temperature is  2 oC for various time 

varying from 25 to 100 h [12]. 

The XRD measurements (CuKα1 radiation) were carried out to determine crystalline phases in the 

studied glasses. The automatic STOE STADI P diffractometer (“STOE & Cie GmbH, Germany) with a 

linear position-precision detector was used for XRD measurements. All measurements were conducted 

in 2θ-step regime, the profiles of peaks being refined using WinPLOTR software [12,15]. 

The surface morphology of the glasses annealed at 25 and 80 h was studied by means of Solver P47-

PRO AFM, the obtained images being processed with Image Analysis program (NT-MDT). 

3. Results and Discussion 

It is possible to assume that basic transformations can be related to inwardly-phase stratification in the 

80GeSe2-20Ga2Se3 cut-section on individual components (stoichiometric GeSe2 and Ga2Se3) which set 

the stage for further reaction forming of GeGa4Se8 triple phase [12]. This indicates that the 

stoichiometric 80GeSe2-20Ga2Se3 cut-section creates terms for crystallization of GeGa4Se8 phase due 

to segregation of preliminary selected GeSe2 and Ga2Se3 phases with additional formation of GeSe2-

enriched residues. Since the stoichiometric GeSe2 phase is outside glass formation [12] then in future it 

will be formed in a separate crystalline phase. 

The Ge-Ga-Se system (polythermal and isothermal cut-sections, crystal structure of intermediate 

phase) was studied in [16]. GeGa4Se8 (Ga0.5Ge0.13Se) phase exists in two modifications with 

polymorphic transformation temperature of ~898 K (625 °C). High-temperature modification is 

crystallized in ZnS structural type (cubic crystal system, F-43m space group, a ~5,45 Å), whereas for 

low-temperature modification (GeGa2Se5) structure has not been established exactly, however, lattice 

parameter a is known to be ~ 5,461 Å [16] indicating affinity in structures of these two modifications. 

It was also reported about existence of GeGa2Se3 but GeGaSe3 phases [17]. Total structural relationship 

between these phases and binary Ga2Se3 GeSe2 phases and various modifications are Ga [Se4] and Ge 

[Se4] tetrahedrons. 

Combined results obtained by XRD method for 80GeSe2-20Ga2Se3 chalcogenide glasses before and 

after thermal annealing at 380 °C for 25, 50, 80 and 100 h are shown in Figure 1. In the 80GeSe2-

20Ga2Se3 ChG annealed for 25 h and 50 h the well-formed peaks of GeGa4Se8, Ga2Se3 and GeSe2 phases 

appear. The maximal reflection corresponding to GeSe2 phase is semi-amorphous halo while reflections 

from GeGa4Se8 and Ga2Se3 are relatively well formed, especially at maximum of 2 ~ 28.22° (Figure 

1). The intensity at low diffraction angles of 2 is shown suggesting that the fractal formation in the 

glass during annealing will not disappear, but become larger. 

This process is accompanied by crystallization of GeGa4Se8 phase (in the structure of glass from 

chaotic arrangement of Ga [Se4] and Ge [Se4] tetrahedrons is characterized by only short-range order, 

the transition to the formation of long-range order characteristic of crystalline structure of GeGa4Se8 

with ZnS structural type ZnS occurs). 

Further increasing in annealing duration to 80 and 100 h does not affect the diffraction peaks, 

reflecting mainly the formation of double and triple GeGa4Se8 and Ga2Se3 phases, just as for 80GeSe2-

20Ga2Se3 glass, annealed for 50 h (Figure 1). Thus, further crystallization process registered by XRD 

and formation of long-range order during such annealing do not occur. The first maximum of semi-
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amorphous halo at ~14.6 °2 corresponds to the maximum intensity reflection (002) of GeSe2 phase 

(monoclinic syngony, P21/c space group). 

 

Figure 1. Experimental XRD patterns for initial 80GeSe2-20Ga2Se3 glasses and after annealing for 

25, 50, 80 and 100 h: comparison of experimental results with theoretical lines. 

 

For ChG samples annealed at high duration of 80 and 100 h the additional analysis of Ga4GeSe8 and 

Ga2Se3 crystallization phase was performed. Considering the state diagram for the Ga-Se system, 

temperature of existence of cubic Ga2Se3 (high-temperature Ga0.67Se) begins above T = 730 °C. Below 

this temperature low-temperature monoclinic modification of Ga2Se3 exists. Distinguishing of 

monoclinic and cubic modification of Ga2Se3 phases is possible only on samples with the high degree 

of crystallization. 

Assuming that in studied samples pure high-temperature Ga2Se3 phase is crystallized, most likely 

this is modification of -Ga2Se3 (а ~ 5.44 Å). However, taking into account the fact that the peaks are 

extended, along with -modification -modification of  Ga2Se is possible (Figure 2). Yet, one should 

pay attention to the raising of the background on diffraction pattern (indicated by ellipses in Figure 3). 
 

 

 

Figure 2. Comparison of experimental XRD patterns for 

ChG annealed for 80 h with theoretical reflexes of -

Ga2Se3 and -Ga2Se3 phases 

Figure 3. Raising of the background on 

experimental XRD patterns for samples annealed 

for 80 and 100 h. 

These raising may correspond to peaks from experimental diffraction pattern for high- and low- 

temperature modification of Ga4GeSe8 (Figure 4) but we can also assume that crystallized high-

temperature -Ga2Se3 phase may exist. Amorphous phase of glass is likely to be responsible for the 

features on the pattern in Figure 4 outlined by ellipses. 
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Figure 4. Comparison of experimental XRD patterns for ChG annealed for 80 and 100 h with theoretical 

reflexes of Ga4GeSe8 phase low- and high-temperature modifications. 

 

The width of the peak at 2 ~ 28,22° indicates the presence of nanoparticles dispersed in the form of 

nanocrystalline inclusions with the size of 9-10 nm (determined by the Debye-Scherrer equation [12,18]) 

in the crystal matrix. It should be underlined that the height of this peak in glasses annealed at 80 and 

100 h does not change essentially as compared to ChG treated at 50 h. Such behavior speaks in favor of 

saturated crystallization at longer durations of annealing. 

The maxima associated with GeSe2 phase appear on the XRD patterns of thermally annealed 

80GeSe2-20Ga2Se3 glass as well [14] but (in contrast to [19]) they cannot be well distinguished as 

separate crystalline peaks even for prolonged annealing. It means that GeSe2 crystals appear only in a 

small amount.  

To better understand these processes on the surface, the glasses were examined by AFM (Figure 5).  

 

   
a b c 

 

Figure. 5. AFM images of unannealed 80GeSe2-20Ga2Se3 glasses (a) and annealed at 380 °C for 25 h 

(b) and 80 h (c). 

 

As was shown in [15,20], that surface of base unannealed 80GeSe2-20Ga2Se3 glass is mostly 

morphologically uniform (Figure 5, a). At various cycles of potential scan, surface irregularities and 

individual features appear. It can be caused by hitting with microparticles from air since microscope 

stand is not placed in a vacuum chamber. The elemental analysis of the surface testifies stoichiometric 

composition of Ge23,5Ga11,8Se64,7 glass [21-23]. However, the thermal annealing of glasses for 25 h 

https://www.google.com.ua/search?q=Debye-Scherrer&spell=1&sa=X&ved=0ahUKEwiwwcOZhtHTAhXhFZoKHSN8Bc0QvwUIHygA
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causes obvious changes in the surface morphology (Figure 5, b). After analysing the images, we can 

conclude that thermal annealing at 380 oC for small durations leads to internal transformation of free 

volume in the 80GeSe2-20Ga2Se3 glass due to the formation of additional crystalline phase on the surface 

[15,20,24]. However, after longer treatment (over 50 h), surface crystallization occurs more efficiently. 

As shown in Figure 5, crystallization of GeSe2 phase in samples annealed for 80 h at 380 oC is a surface 

phenomenon. With respect to AFM and SEM data [15], the GeSe2 crystals in form of wires with 1-3 m 

lengths are non-uniformly distributed on sample surface (Figure 5,c). 

4. Conclusions 

It is established that crystallization processes in the 80GeSe2-20Ga2Se3 ChG caused by annealing at 

380 °C for 25, 50, 80 and 100 h indicate the formation of GeGa4Se (high- and low-temperature 

modification), Ga2Se3 (- and -modification) and GeSe2 crystals with size of 9-10 nm. Increasing 

duration of thermal treatment for 80GeSe2-20Ga2Se3 glasses leads to obtaining of thermally stable 

glasses and glass-ceramic media. Longer annealing durations result in surface crystallization of GeSe2 

phase. 
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