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Abstract 

 

Modern toxicology is challenged in its aspiration to test and risk-assess the myriad of 

chemicals humans potentially can be exposed to. We still lack sufficient data to perform 

proper human risk assessments for a large proportion of environmental chemicals and we 

still know very little about many of the molecular mechanisms that cause adverse effects. In 

turn, lack of mechanistic insight stalls the development of more cost-efficient and high-

throughput alternative assays, which is a prerequisite if we are to deal with the large 

number of untested compounds.  One way to help speed up the effort is to take advantage 

of the many advances in genomics technologies and apply them to toxicity testing 

strategies, or at the very least use them to better characterize the causative molecular 

mechanisms. For instance, single-cell Digital Gene Expression-(DGE-) and single-cell RNA 

(scRNA-) sequencing techniques hold great promise for not only enabling the analyses of 

large sample sizes at low cost, but also capturing toxico-molecular events and genomic 

susceptibilities at the cellular level. In this paper, we discuss some of the advances in 

transcriptomics and how they can be applied to toxicology to advance human-relevant risk 

assessment.  
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Introduction  

Contemporary toxicology is grappling with increasing demands for faster, cheaper and more 

reliable test strategies. There is also an increasing demand to develop and incorporate more 

human-relevant models and assays when assessing the risk to human health; and ideally, 

real-life exposure scenarios and sub-group susceptibilities should also be accounted for [1]. 

These are all individually big challenges, but combined they represent an enormous 

challenge that cannot be solved using traditional toxicology approaches of assessing single 

chemicals one at a time by standard testing regimens. This is especially true if we 

considering the tens-of-thousands of chemicals that are continuously being manufactured 

and used across the world, chemicals for which we still lack sufficient data to perform 

proper risk assessments. In fact, global chemical pollution has been considered so immense 

and complex that its impact on the planet and its inhabitants is beyond quantifiable [2]. To 

help solve some of these challenges, modern genomics methods can be combined with 

toxicology approaches to assess toxicity in new ways – a modern field coined 

toxicogenomics. 

 

The term toxicogenomics first appeared in the late 1990s. It heralded a new era for chemical 

toxicology by advancing our understanding of mechanisms of toxicity and thereby predictive 

capabilities [3]. In 2007, the American National Research Council defined toxicogenomics as 

“combin[ing] toxicology with information-dense genomic technologies to integrate toxicant-

specific alterations in gene, protein and metabolite expression patterns with phenotypic 

responses of cells, tissues and organisms” [4]. The main hypothesis was that an organismal 

response to a toxicant leading to pathological or phenotypical changes in certain organs at a 

low dose could be detected as changes to gene, protein, or metabolite expression. The field 
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has yet to deliver on all its promises, but has come a long way. Currently gene expression is 

the most sensitive of the above-mentioned parameters, also with the highest cost-benefit 

ratio. Consequently, toxicogenomics has by some been defined more narrowly to only 

include ‘‘the study of altered gene expression after toxicant exposure’’ [5]. 

 

Irrespective of current state of the science, toxicogenomics has a broad application 

potential and can be used for mechanistic analyses, biomarker discovery, risk assessments 

and drug development, and so forth. And perhaps more importantly, toxicogenomics holds 

the potential to deliver more discriminate, sensitive and predictive information with regard 

to pharmaceuticals and environmental chemicals and their potential effects on human 

health. A looming challenge, however, comes from the successes achieved with genomics 

technologies that now are capable of retrieving mass amount of data all the way down to 

the scale of single cells. Unless handled appropriately, such terabytes of information can 

serve to obscure rather than illuminate the picture; or to quote Cervante’s immortal 

character Don Quixote, “facts [can become] the enemy of truth”.  

 

Transcriptomics for human-relevant toxicity testing 

Although genomics can be applied to toxicology in numerous ways, here we will focus on 

where transcriptomics can, and already do, make an impact on human-relevant chemical 

toxicity. Three important areas are mechanistic insight, biomarker identification, and 

mixture risk assessment. One: A recent comparative case study on human risk to 

benzo(a)pyrene in drinking water found that genomics-informed assessments yielded 

comparative points-of departure (POD) values as did traditional assessment approaches; 

however, toxicogenomics could also be used to delineate more detailed modes-of-action in 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 

 

the mouse toxicity model and asserting human relevance by showing consistency in 

perturbed pathways between the mouse tissue and expression data from human cells [6]. 

Two: A recent report by Makarov and colleagues presented an efficient method for 

identifying reliable biomarkers using toxicogenomics datasets. Using two different 

algorithms (‘search marker’ and ‘recognition algorithm’) on the well-known toxicogenomics 

dataset DrugMatrix [7], they were able to identify genomic patterns specific to chemical 

compounds regardless of dose or time. Three: Several studies have attempted to implement 

mixture modelling in transcriptomics analysis to better understand the interactions of 

combined chemicals [8-10], a topic considered of utmost relevance if we are to appreciate 

the true impact environmental chemicals can have on human health [11, 12]. Although our 

understanding of the molecular and cellular responses to complex mixtures remains lacking 

– and the use of classical mixture toxicity models to predict mixture effects from 

toxicogenomics data is still in its infancy [13] – we predict great advances in this area within 

the near future.  

 

Genomics in the twenty-first Century 

Modern genomics has seen enormous advances within a relatively short space of time. 

What seemed like impossible less than two decades ago is now possible even for a small 

research laboratory. Today one can sequence a person’s genome in two days for less than 

$4,000, as well as analyse the transcriptome of single cells from complex tissues. In 

comparison, the first human genome took 13 years to complete at a cost of upwards of $1 

billion [14]. Hence, the main challenge seems no longer to be what data we can extract, but 

what to do with the information once it has been collected.  
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Advances in ultra-high-throughput sequencing technologies have greatly reduced the overall 

cost of running these assays, and thus also greatly boosted their use [15]. Today, RNA 

sequencing (RNA-seq) is the dominant technique in transcriptomics and has several 

advantages over other approaches such as the early Sanger sequencing or microarray-based 

methods. Indeed, RNA-seq has quickly proven to produce accurate quantification of gene 

expression and to correlate well with other technologies to eventually outperform the 

alternative methods in terms of accurately quantifying low-abundance transcripts [16-18]. 

Because of the many advantages coinciding with parallel development of more 

sophisticated software and algorithms to handle ever larger data sets, RNA-seq has opened 

up possibilities for comprehensive characterization of the genomic landscapes to the point 

of transcriptome data at single-cell resolution by Single-cell RNA-sequencing (scRNA-seq). 

This has made it possible to catalogue the expression of individual genes in individual cells 

from a given tissue with reasonable accuracy. This powerful tool can ultimately reveal the 

inherent variability between cells, both in normal and disease states [19]. These advances 

can give access to a vast amount of information that will allow us to address a myriad of 

scientific questions regarding cell differentiation and lineage specification, cellular 

heterogeneity, and development of disease from earliest of stages, all within one tissue 

from one individual. The potential applications to biology, toxicology and medicine are 

enormous.  

 

Another recent development in genomics is Digital Gene Expression (DGE) profiling, a 

variant of the SAGE method using ultra-high-throughput sequencing techniques [20]. Simply 

put, DGE can be used to quantify levels of expression by directly counting reads from raw 

data obtained from sequencing the short fragments located at the 3' poly(A) of RNA 
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messenger, as opposed to RNA sequencing which covers the entire genome. This technique, 

originally developed to study scRNA-seq or small cell populations, provides a reliable 

estimate of the gene expression level at extremely low costs – €30-50 per sample – 

compared with conventional “bulk” RNA sequencing [21]. 

 

Together these emerging genomics technologies can be applied across many biomedical 

research fields, including diagnostics [22], disease profiling [23], gene function and 

annotation [24], as well as response to environment and toxicants [25]. Below, we will 

discuss more how transcriptomics can be used in toxicology to both advance our knowledge 

of modes of action and perform better risk assessments at lower costs than previously 

possible. 

 

Toxicogenomics in the twenty-first Century 

Depending on endpoint to be evaluated, many toxicity assessments use intact animals or 

cell cultures to measure several parameters, including morphometric and histopathological 

evaluations, cell viability, cytotoxicity, hepatotoxicity, or nephrotoxicity. These classical 

approaches can detect toxicity and be used to assess points-of-departure levels (POD) for 

specific chemicals. Data generated by omics technologies on the other hand, are envisioned 

to detect toxicities that may not be observable by conventional assessment strategies, 

thereby facilitating more accurate and predictive decision-making based on toxicity 

mechanisms [26]. It comes with certain challenges, however, for example lack of uniform 

study designs, multiplicity of normalization and analysis strategies [27], reproducibility of 

microarray data across platforms [28], absence of data quality control measures and 

standards, and lack of effective data sharing and reporting standards. 
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The ability to profile global transcriptional responses has become a valuable resource in 

toxicology. One challenge, however, is that in vivo toxicity studies that include 

transcriptomics rarely exceed 10-12 samples. It is close to impossible to detect robust 

toxicogenomic signatures in humans with such small samples sizes [29, 30]. To overcome 

this problem, a viable alternative is to use low-cost sequencing technologies such as DGE to 

allow for the study of larger collection of samples in order to detect stronger toxicogenomic 

signatures with greater statistical power. This would also help discriminate sub-groups of 

individuals based on their susceptibility to disease, making it possible to identify common 

constitutional factors. 

 

Susceptibility to an adverse effect may also exist within cellular subpopulations within a 

defined tissue. Classical “bulk” transcriptomic technologies cannot detect this phenomenon 

at the organ level. Recent advances in scRNA-seq approaches make it possible to study the 

impact of chemical exposure at the level of cellular subpopulation, as well as to identify 

specific biomarkers [31] to enhance the toxicological characterization and underlying 

mechanisms at the cellular level. Single-cell technologies have already been used 

successfully in studies on tumor heterogeneity. In a landmark study by Dalerba and 

colleagues [32], scRNA-seq revealed that multi-lineage cell differentiation determines the 

transcriptional diversity of cancer tissues. With regard to toxicology, scRNA-seq has been 

highlighted as a potential powerful approach to discover new biomarkers that reflect the 

efficacy, metabolism, pharmacodynamics, absorption and toxicology of chemicals [31]. 

 

Using toxicogenomics to bridge the gaps between rodent and human data 
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For more than a century, rodents have been indispensable for experimental medicine, drug 

development and toxicology. Rats and mice continue to serve as model organisms in drug 

design, biomarker discovery and chemical risk assessment, but the use of animal models is 

also under increasing pressure, both from an ethical point of view and for not necessarily 

providing human-relevant data. Several studies have shown that rats and humans share a 

high degree of genomic and physiologic similarities [33, 34], but simultaneously, important 

differences have been reported, including functional differences within non-

pharmacokinetic metabolism. Such differences could influence how and if a compound 

induce toxicity or elevate a biomarker [35, 36]. It is thus paramount that we characterize 

any differences between rodents and humans if we are to accurately interpret animal 

studies used for biomarker discovery, toxicity testing or comparative toxicogenomics 

analyses [37, 38]. To this, transcriptomic analyses can help reveal inter-species similarities 

and differences [39].  

 

Efforts have been put towards setting up large, comprehensive collections of comparable 

rodent and human transcriptomic data. New computational methods for integrating gene 

expression measurements into genome-scale network reconstruction have also been 

developed. ‘Systems toxicology’ approaches rely on the integration of multiple toxicology 

data (e.g. transcriptomic, metabolomic, epigenomic) with quantitative analysis of large 

networks of molecular and functional changes occurring across multiple levels of biological 

organization. It can be used to study the full spectrum of toxicological responses from 

xenobiotic insult, as well as enable comparative predictions across individual patients, 

treatment conditions, tissue types and species [40, 41]. These efforts have been made 

possible by the implementation of services for toxicogenomics data management. 
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Potential impact of toxicogenomics on ‘uncertainty factors’ in chemical risk assessment  

In order to account for uncertainties when using effect assessment data for human chemical 

risk assessment, so-called assessment factors (AF; also referred to as uncertainty factors) 

are used to take into account inter- and intra-species variabilities and uncertainties [42]. 

Although the ‘default’ AF of 100 is often referred to (10x to account for differences in 

experimental animal to humans; 10x to account for individual differences in human 

population), there are in fact many different AFs employed within regulatory frameworks 

depending on experimental design and substances that are tested [42, 43]. AF values must 

be adjusted in cases where information is available that allows for greater certainty. Such 

amended AFs can be contentious however, and a source of debate [43]. In any case, it is 

likely that toxicogenomics can impact how AFs are determined in the future. For instance, 

by mapping the genetic differences between populations associated with susceptibility to a 

given disease, concomitant with elucidation of the detailed regulatory pathways that are 

affected by specific chemicals, there will be much higher certainty in the use of effect data 

for calculating health-based guidance values. Hence, the AF for intra-species (i.e. human) 

differences could be set much lower than the default 10x. This line of though can also be 

extended to default AFs for inter-species variations. By gaining more knowledge about the 

genomic landscape and how different species respond to the exposome, it is likely that 

more precise AFs can be set for individual species (e.g. rat), or even strains of the same 

species, depending on how well they relate to humans for any given effect endpoint.  

 

Toxicogenomics data management and online services 
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The sheer volume of available transcriptomic data has now grown so large that it starts to 

impose additional challenges to research communities, including toxicology; namely the 

complex tasks of processing, hosting and interpreting data [44]. Among the many practical 

points that should be considered when funding, planning and reporting toxicology studies in 

the future is improved data transparency [30, 45]. This should also include negative (read: 

no effect) data or contradictory results. The European Commission has started to address 

this issue by attempting to establish a model service for systems biology data management 

through the European Research Infrastructure Consortium (ERIC). Its objective is to make 

biological data FAIR: Findable, Accessible, Interoperable and Reusable. This demands that 

investigators make raw data publicly available. Although great efforts have been made to 

store raw data in public repositories [46, 47], the all-important processed data (e.g. list of 

regulated genes) remains inaccessible to the scientists (i.e. supplementary files provided by 

authors).  

 

To meet a growing demand of accessing pre-processed omics data without having to 

download and re-process raw data, several on-line resources have been developed (Table 

1). For example, the CTD [48], diXa [49], ToxDB [50], CEBS [51], Drug2Gene [52] and ToxCast 

[53], which have paved the way for improved storage, exchange, and analysis of 

toxicological data [54]. More recently, we launched TOXsIgN [55] as an innovative platform 

designed to share standardized processed data that also provide tools for predictive 

toxicology. The success of this and other repositories, however, ultimately depends on 

researchers’ compliance to the FAIR principles. But conversely, the success of FAIR depends 

on the availability of suitable repositories such as TOXsIgN. In essence, we encourage the 

uploading of toxicogenomic and toxicological signatures in dedicated repositories such as 
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TOXsIgN before submission of manuscripts for publication. This would increase both their 

visibility and accessibility.  

 

Table 1: List of toxicogenomics web resources 

Name Ressource 

type 

Address Ref 

Open TG-

GATEs 
Database http://toxico.nibio.go.jp/english/index.html 

[56] 

Drug Matrix Database https://ntp.niehs.nih.gov/drugmatrix/index.html [57] 

ChemDIS  Tool https://cwtung.kmu.edu.tw/chemdis/ [58] 

Toxygates Tool http://toxygates.nibiohn.go.jp/toxygates/ [59] 

CEBS 
Tool 

https://www.niehs.nih.gov/research/resources/databases/ce

bs/index.cfm 

[51] 

ChemProt Tool http://potentia.cbs.dtu.dk/ChemProt/ [60] 

LTMap Tool http://tcm.zju.edu.cn/ltmap [61] 

ToxDBScan 
Tool 

http://www.ra.cs.uni-

tuebingen.de/software/ToxDBScan/welcome_e.html 

[62] 

Drug2Gene  Tool  http://www.drug2gene.com [52] 

Comparative 

Toxicogenom

ics Database 

(CTD) 

Tool / 

Database 
http://ctdbase.org 

 

[41] 

The 

Connectivity 

Map 

Tool / 

Database 
https://clue.io/cmap 

[63] 

LINCs Tool / 

Database 
http://www.lincsproject.org/ 

[64] 

diXa  Tool / 

Database 
http://www.dixa-fp7.eu 

[49] 

ToxDB  Tool / 

Database 
http://toxdb.molgen.mpg.de 

[50] 

TOXsIgN Tool / 

Database 
http://toxsign.genouest.org 

[55] 

ToxCast Tool / 

Database 
https://www.epa.gov/chemical-research/toxicity-forecasting 

[53] 

NFFinder Tool / 

Database 
http://nffinder.cnb.csic.es/ 

[65] 

 

 

Perspectives on modern toxicogenomics  
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Less than two decades ago, proposing to sequence the transcriptome at single cell-

resolution in a complex organ and use this data to extract a personalized toxicogenomic 

profile to predict future effects from exposure to a real-life mixture of environmental 

chemicals, would likely have been considered quixotic. With recent advances in genomics 

and computer technologies, however, this proposition does no longer seem exceedingly 

idealistic or delusional. Massive amounts of gene expression data are now available in the 

public domain, enabling new biological questions to be addressed through data re-use 

without the need for further experimentation [56, 57, 63, 64]. And we are optimistic that 

the future of toxicogenomics will deliver on many of its promises and thereby also aid 

contemporary toxicology to deliver on increasing demands from governing bodies and the 

public to safeguard human health against xenobiotic insults at ever lower costs and better 

predictability. To end, we like to highlight five points where we believe toxicogenomics will 

have significant impact in the coming years. 

 

• Enhance our knowledge about mechanism of action at the molecular and cellular levels 

induced by exposure to xenobiotics. 

• Enable the progressive implementation of the 3R-principles (replace, reduce, refine) for 

animal toxicity studies, not least by helping to verify the suitability of emerging 

technologies such as human-based organoids and organs-on-chip. Genomics 

technologies will likely play a major role in future chemical risk assessment. 

• Facilitate comparative studies between species, in particular with regard to human 

relevance and thereby enable more accurate extrapolations from model organisms to 

human risk assessment.  
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• Support the development of integrated approaches needed to advance the area of 

mixture risk assessment by offering more integrated knowledge about molecular and 

cellular responses to exogenous compounds.  

• Allow for the identification of susceptible sub-populations or individuals with regard to 

effects caused by chemical exposures. This could also include refinements to the 

arbitrary ’10x uncertainty factor’ used in risk assessments.  
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Figure Legends 

 

Figure 1 – Typical toxicogenomics analysis pipeline based on gene expression analysis. 

Several technologies such as RT-qPCR, microarray or RNA-Seq are used to evaluate the 

transcriptomic response following exposure to one chemical in one tissue or cell type, at a 

given time and dose. Various computational methods are used to measure differential gene 

expression and are considered significant based on pre-determined statistical cut-off values. 
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Using DGE, many analyses could be performed, for instance signature matching methods 

assuming that compounds which induce similar gene expression signatures will also have 

similar effects in a biological system; or the biological networking (i.e. co-expression 

network, protein-protein interaction), especially directed signalling networks, which allow 

scientists to follow the cellular response of a compound treatment from the compound’s 

target to the differentially expressed genes. From these methods, and using a sufficient 

dataset, there is an obvious opportunity to estimate the toxicity of a compound, its 

mechanism of toxicity, and a related Adverse Outcome Pathway. With increasing data 

becoming available, and increasing sophistication of methods, the aim is that this will, over 

time, result in decreased animal testing and decreased the number of failures during drug 

development.  
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