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Ker-ONE: a New Hypervisor Managing FPGA
Reconfigurable Accelerators

Abstract

In the last decade, research on CPU-FPGA hybrid architectures has become a

hot topic. One of the main challenges in this domain is to efficiently and safely

manage Dynamic Partial Reconfiguration (DPR) resources. This paper focuses

on the management of reconfiguration by a custom hypervisor named Ker-ONE,

on an ARM-FPGA platform. Using a virtualization approach, virtual machines

(VM) may access resources independently, being unaware of the existence of

other VMs. Our custom hypervisor guarantees the independence and isolation

of VM domains. The purpose of our work is to provide an abstract and trans-

parent interface for virtual machines to access reconfigurable resources, while

meeting real-time constraints. This means that software engineers do not need

to focus on implementation details. In this paper, we present a complete ar-

chitecture in which hardware accelerators are seen as virtual devices which are

universally mapped in each VM space as ordinary peripherals. The hypervisor

automatically detects VMs’ requests for DPR resources and handles them dy-

namically according to a preemptive allocation mechanism. We also evaluate

the efficiency of our framework by measuring the critical overhead during DPR

management and allocations. The results demonstrate that our mechanisms are

implemented with low overhead compared to other approaches and that they

are compatible with real-time scheduling.
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1. Introduction

Today, the concept of CPU-FPGA hybrid processors has become more and

more popular in both academic and commercial worlds. Unlike in traditional

FPGA devices in which CPU cores are synthesized in the FPGA fabric as soft

processors, the hybrid approach provides System on Chip (SoC) architectures5

with CPU and FPGA domains that are independently implemented. CPU-

FPGA hybrid processors have several advantages. First, general purpose pro-

cessors are able to implement complex and flexible computing systems, with

a huge variety of applications. Second, FPGA accelerators offer a constant

improvement in performance of intensive computations and act as a powerful10

support for processors. Additionally, the dynamic partial reconfiguration (DPR)

technology on FPGA has been playing an important role in high performance

adaptive computing [1].

Meanwhile, in the embedded computing domain, virtualization has gained a

lot of interest and achieved enormous progress. This technique allows to separate15

tasks into isolated domains without extra porting efforts. It has been proven

that it can provide users with increased energy efficiency, shortened develop-

ment cycles and enhanced security [2] [3]. Therefore, we made the assumption

that the combination of both DPR and virtualization is an interesting idea to

significantly accelerate applications and guarantee flexibility.20

While considered as quite promising, the exploitation of DPR-enhanced vir-

tualization also brings up new challenges. In virtualization, guest OSs usually

run in strongly-isolated environments called virtual machines (VM). Each VM

has its own software tasks and virtual resources which abstract physical re-

sources. In this context, the use of hardware accelerators by VMs must be25

dynamic and independent. Note that these accelerators could be shared by

multiple VMs. This means that an abstract and transparent layer has to be

provided so that the isolation of virtual machines will not be undermined.

Ideally, the actual allocation and management should be performed by an

hypervisor, and should remain hidden from guest OSs. Furthermore, in addition30
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to the complex problem of real-time scheduling that is often met in embedded

systems, the sharing of FPGA resources among multiple virtual machines may

significantly increase the management complexity. This constitutes a real chal-

lenge for designers to guarantee real-time capability.

In this paper, we address these challenges by proposing a framework ex-35

tending virtualization with DPR management. This framework features a new

resource mapping and management mechanisms to provide transparent virtual

FPGA resources to the VMs. Ideally, the FPGA accelerators are designed to

fit in the reconfigurable area and are implemented with dedicated preemption

mechanisms and context save/restore methods. Then, virtual machine tasks40

may be programmed to access these accelerators as native devices. No further

details are required for the user to deploy tasks in virtual machines.

The major contributions of this paper are listed as follows:

• We propose a lightweight micro-kernel that is compatible with real-time

constraints.45

• We describe a new approach for FPGA resource virtualization which maps

resources as native accelerators in the VM domains to ease the program-

ming of user tasks.

• We present an original FPGA management framework and a new hardware

accelerators model which enable preemptive scheduling of FPGA resources50

among multiple VMs.

• We run extensive experiments on an ARM-FPGA platform [4] to evaluate

the performance of our proposed approaches. Analysis and proof of the

real-time capability of our framework are also provided.

The remainder of the paper is organized as follows: section 2 presents the55

related works. Section 3 describes the architecture of the proposed hypervisor.

In Section 4 the mechanisms of the DPR management in a virtual environment

are presented. Section 5 shows the performance of the micro-kernel and performs

some comparisons with existing architectures. In Section 6, we demonstrate the
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feasibility of the proposed system with practical hardware/software applications60

and analyze the results.

2. Related Works

An hybrid CPU-FPGA architecture generally features CPUs that are dedi-

cated to the embedded system domain. For example, Xilinx released the Zynq-

7000 series which features an ARM-FPGA SoC. ARM processors have also been65

introduced in Cyclone-V and Arria-V Altera families. Intel has proposed its

Atom processor E600C Series, which consists of an Intel Atom processor SoC

and an FPGA within the same chip. Recently, Intel has taken a further step by

releasing a Xeon/FPGA platform dedicated to data centers.

In the academic domain, embedded CPU-FPGA based systems have also70

been massively studied. Numerous works have tried to provide current reconfig-

urable FPGA devices with OS support ([5],[6][7],[8]). One successful approach

in this domain is ReconOS [9], which is based on an open-source RTOS (eCos)

that supports multithreaded hardware/software tasks. ReconOS provides a clas-

sical solution for managing hardware accelerators in a hybrid system. However,75

virtualization is not fully discussed in these works.

In [10], reconfiguration management is implemented by providing the OS4RS

framework in Linux. Virtual hardware allows the same devices and the same

logic resources to be simultaneously shared between different applications. How-

ever, this approach is proposed for a single OS only, without considering vir-80

tualization. Another study is described in [11]. This was one of the earliest

researches in this domain. The authors tries to extend the Xen hypervisor to

support FPGA accelerator sharing among several virtual machines. However,

this research proposes an efficient CPU/FPGA data transfer method, with a rel-

atively simple FPGA scheduler that provides a FCFS (first-come, first served)85

sharing of the accelerator, without including DPR technology.

DPR virtualization is much more popular on cloud servers and data centers,

which generally have a higher demand for computing performance and flexibility.
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For example, in [12], authors use partial reconfiguration to split a single FPGA

into several reconfigurable regions that are managed as a single Virtual FPGA90

Resource (VFR). Based on the same principle, the work of RC3E [13] provides

several vFPGA models, allowing users to access DPR resources as full FPGA,

virtual FPGA or background accelerators. However, DPR virtualization on

these platforms are inappropriate for embedded systems, in which available

resources are drastically limited compared to those available in servers or data95

centers.

Another interesting research [14] proposed a framework dedicated to hard-

ware task virtualization on a hybrid ARM-FPGA platform. In this work, the

authors modified the CODEZERO hypervisor to manage reconfigurable acceler-

ators. In this work, the classical DPR technology is not exploited for hardware100

reconfiguration. Instead, reconfigurable computing components are quite sim-

ple and seem more appropriate to systems with light but frequently-switched

computations.

In this paper, we propose an original approach for DPR virtualization on an

embedded hypervisor named Ker-ONE, an updated version of a custom micro-105

kernel [15]. Efforts have been made to provide efficient DPR resource sharing

among virtual machines, while meeting the applications’ constraints.

3. The Ker-ONE Architecture

3.1. Overview

In this section, we describe the design and implementation of the Ker-ONE110

micro-kernel, which lays the foundation of our framework by offering the manda-

tory virtualization capabilities. Ker-ONE outperforms other approaches since

it is very small and fast. Moreover, it provides enhanced real-time support.

Currently, the design of Ker-ONE is based on few assumptions:

• In a first research step, we only have considered single-core architectures,115

leaving multi-core systems to future prospects.
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Figure 1: Ker-ONE consists of a micro-kernel and of a Virtual Machine Monitor running at a

privileged level. The User environment executes in a non-privileged level

• We mainly deal with virtualization of simple guest OSs such as µC/OS

or FreeRTOS, instead of complex systems such as Linux, since para-

virtualizing these types of OS would be quite expensive and error prone.

• In order to provide strong protection to critical tasks, we made sure that all120

critical real-time tasks execute in one specific guest real-time OS (RTOS).

The less critical tasks execute in general-purpose OSs (GPOSs). There-

fore, Ker-ONE is designed to co-host a single guest RTOS and one or

multiple additional guest GPOSs.

The Ker-ONE framework is shown in Figure 1. It consists of a host micro-125

kernel and a user-level environment. Ker-ONE follows the principle of minimal

authority and low complexity. The micro-kernel is the only component that

runs at the highest privilege level, in the supervisor mode. Only the basic

features that are security-critical have been implemented in the micro-kernel:

the scheduler, memory management, the inter-VM communication, etc. All130

non-mandatory features have been eliminated, so that the micro-kernel’s Trust

Computing Base (TCB) is reduced. The Trust Computing Based corresponds

to pieces of software and hardware on top of which the system security is built.

Normally, a smaller TCB size corresponds to higher security since it reduces

the system’s attack surface. In our case the TCB is kept small, which leads to135

improved security.
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The user environment runs in user mode and is composed of additional

system services, such as device drivers, file systems, VM bootloaders, which run

as server processes (see Figure 1). Note that this framework is designed to be

scalable and easily-adaptable to extension mechanisms.140

Multiple virtual machines (VM) run on top of the user environment and Ker-

ONE is based on para-virtualization. In this technique, a guest OS is modified

to explicitly make calls (i.e. hyper-calls) to the hypervisor or a virtual machine

monitor in order to handle privileged operations. Each virtual machine may host

a para-virtualized OS (i.e. guest OS) or a software image of a user application,145

which has its own independent address space and executes on a virtual piece of

hardware.

The Ker-ONE framework relies on a virtual machine monitor(VMM) to sup-

port the execution of guest OSs in their associated virtual machine. It handles

virtual machines hyper-calls, emulates sensitive instructions and provides vir-150

tual resources to the virtual machines.

In the following, we briefly introduce our approach to virtualize some basic

system resources.

3.1.1. Memory Virtualization

Ker-ONE offers three memory privilege levels: host, for the VMM, guest155

kernel for guest OS kernels and guest user for guest OS applications. For

each VM, an independent page table is created. In this table, the host space

is configured to be only accessible to the micro-kernel and cannot be directly

accessed by VMs.

We then leverage the Domain Access Control functionality in the MMU to160

forbid the access from pieces of software running in the guest user space to

the guest kernel. This guarantees that a guest OS kernel is protected from

guest user applications. We also avoid complex shadow mapping techniques

since our targeted guest OSs only have single-domain page tables, e.g. uC/OS-

II. According to the para-virtualization concepts, guest OSs may update page165

table mapping by sending hyper-calls to the VMM.
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3.1.2. Interrupt Virtualization

The ARMv7 architecture features a Generic Interrupt Controller (GIC) to

control interrupts. For VMs, virtual interrupts are generated by the VMM. In

order to maintain the guest OS original interrupts handling routine, a virtual170

GIC (vGIC) has been designed with virtual registers that are similar to the

physical GIC registers.

The vGIC stores the state of virtual interrupts for each VM and emulates the

GIC behavior by handling virtual interrupt states. When a physical interrupt

is generated, the VMM handler generates a corresponding virtual interrupt in175

the vGIC, which will insert a virtual interrupt to the VM and forced it to jump

to its local exception vector.

Note that the states of virtual interrupts are consistent and independent in

each VM. For example, a virtual interrupt can be disabled or masked by one

VM, while the corresponding physical interrupt can still be collected by other180

VMs.

3.2. Ker-ONE Optimzation

One important issue that influences the real-time capability of an OS is the

kernel critical path, i.e the kernel code that cannot response to any events or

be preempted. Longer and uncertain kernel critical paths will make an OS185

unsuitable for hard real-time tasks. For example, for a monolithic OS kernel

such as Linux, the costly and unpredictable kernel path severely undermined

its real-time capability [16]. This can only be solved by patching the kernel to

make it fully preemptive or to use the concept of micro-kernel [17].

In micro-kernels, this problem is naturally relieved due to the simplicity of190

the kernel. In our research, by applying a series of new optimization methods,

we improved our micro-kernel to obtain higher performance by shortening the

kernel critical paths.
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3.2.1. Shared Memory Region

For a guest OS, any access to privileged resources is trapped into the VMM in195

order to manipulate the corresponding virtual resources. This mechanism can

be quite costly if the guest OS accesses such resources frequently and causes

considerable overhead due to numerous hyper-calls.

To address this problem, we chose to implement virtual resources that are

frequently used in a VM/VMM shared memory region, in which guest OS can200

directly access the virtual resources without making hyper-calls. In other words,

the VMM does not need to be aware of such state updates immediately. Instead,

the VMM checks and emulates the virtual resources only when necessary and

asynchronously.

One obvious advantage of this policy is that a guest OS can perform oper-205

ations on these resources without generating hyper-calls, which greatly reduces

overheads. Though this approach requires extra coding at both VM and VMM

sides, it is still the preferred optimization since it considerably shortens the

execution path to access resources.

Here we focus on the two most frequently accessed resources by a guest OS.210

the first consists of the PSR registers, including CPSR and SPSR, which are

used for common OS operations such as context switch, synchronization and

mode change. The second is the virtual GIC registers.

In an RTOS, the access to these resources may noticeably influence the IRQ

handling overhead. As shown in Figure 2, we use a data structure to store the215

virtual contents of PSR and vGIC in a shared memory region to optimize the

overall performance.

Dedicated macros are used to patch the source code of guest OSs and to

replace the hyper-calls that are trying to access these registers. Guest OSs

perform operations on these registers via macros, which translate them into220

read/write processes from/to the virtual registers that are in shared memory.

The VMM only manipulates the current state of virtual PSR and vGIC when

necessary. For example, when a VM switch is performed or when a physical
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Shared Memory Region

vCPSR

vSPSR

VGIC
Interface

OS Kernel

Patched Macros

VGIC

VCPU

VMM

Figure 2: Implementation of the virtual PSR and vGIC interface in a VM/VMM shared

memory region.

interrupt arrives, the VMM will check the shared memory region and handles

the events according to the state of the virtual registers.225

3.2.2. Optimized Inter-VM Communications

The issue of IVC can be interpreted as the classical inter-process communica-

tion (IPC) problem in micro-kernels. In Ker-ONE, we use simple and optimized

asynchronous communication methods instead of classic synchronous IPC model

to achieve lower complexity. An IRQ-based IVC mechanisms is implemented in230

our system. Ker-ONE leverages the VMM/VM shared memory region to facil-

itate asynchronous IVC. For each VM, a shared memory page is created that

can be accessed from both VMM and VM sides. The sending and receiving pro-

cesses of IVC mechanisms are performed with only several lines of read/write

instructions on the shared memory. Therefore, this approach is shorter and235

lightweight compared to the simplified fast IPC model in L4 micro-kernels [18].

3.3. Real-Time Capability

Ker-ONE has been designed to host one RTOS and several GPOSs. The

RTOS tasks are considered as critical with real-time constraints. We assume

here that users are responsible for defining a scheduling strategy for the real-240

time task set with a suitable scheduler (Rate Monotonic, EDF, server-based,

etc). Ker-ONE is responsible for guaranteeing real-time constraints with no or

at least minimal modification of the original RTOS scheduling settings.
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Timer features:

 Independent physical timers with priority.

 Direct access to timers.
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Figure 3: Management of 3 independent physical timers by the VMM, RTOS and non-RTOSs

respectively. For a single guest OS, only one timer interface is mapped in the corresponding

memory space.

This requires several features: the scheduling accuracy for the RTOSs, the

guarantee of efficient CPU bandwidth for these RTOSs and the compliance245

with the RTOSs’ original scheduler. These characteristics will be discussed in

the following subsections.

3.3.1. Timer Virtualization

A RTOS scheduler relies on timer ticks to determine if a specific task is

ready to execute. In classic virtualization, a physical timer is managed by a250

VMM, and VMs are provided with virtual timers that may be be accessed by

traps or hyper-calls. This method is generally problematic. First, trapping into

the hypervisor at each timer operation may imply high performance overhead

[19]. Second, the VM timer resolution is bounded by the timer period of the

hypervisor. For example, with an hypervisor period of 10ms, a guest OS with255

1ms timer accuracy may not work correctly. In Ker-ONE we propose a high

accuracy timer virtualization approach to improve the RTOS schedulability.

First, three independent physical timers are provided: a system timer, a

RTOS timer and a GPOS timer (see Figure 3). The system timer is dedicated

to the host and can only be accessed by the micro-kernel. The RTOS timer260

is exclusively used by the RTOS VM. The GPOS timer is shared by the other

VMs.

Second, we allow VMs to access and program the timer directly without
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Figure 4: Priority-based Round-Robin Scheduling.

being trapped in the hypervisor. For each VM, only one timer interface is

mapped in its memory space, so that it can only access the allocated timer. A265

guest OS is free to configure its timer, e.g. the clocking period, the interval

value and interrupts.

This timer pass-through mechanism is especially advantageous for the RTOS

since it fully controls a native physical timer directly. Without virtualization

overhead, the performance of the RTOS scheduler is maximized.270

Moreover, the GPOS timer has to be virtualized to protect the timer state

of each GPOS, which includes saving and restoring the timers’ registers values.

Although this slightly increases the VM switch overhead, this mechanism is still

preferred for GPOSs since it avoids frequent hyper-calls or traps and facilitates

the VM timer emulation.275

3.3.2. Real-time Scheduling

Several researches on real-time scheduling in virtualization systems have al-

ready been led. For example, VMM schedulers based on compositional real-time

framework [20] and server-based scheduler [21] have been designed to be used

in RT-XEN and other micro-kernels. However, they either require additional280

model computation [20] or require modifications of the OS original scheduling

interface, which is against our intention.

In our work, we assume that users have already designed a workable schedule

for a given real-time tasks set executed on a native machine. The purpose of
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the VMM scheduler is to host real-time tasks according to the original schedul-285

ing settings. This strategy minimizes the additional workload on users, and

simplifies the micro-kernel.

The VMM scheduler follows the concept of background scheduling, which is

quite simple and reliable. Low priority tasks are only allowed to execute when

high priority tasks are idle. Ideally, low priority tasks have no influence on the290

execution of high priority tasks, since only the idle time is donated.

In Ker-ONE, a priority-based preemptive round-robin strategy is applied

(see Figure 4). GPOSs run at an identical low priority level, while the RTOS

is assigned a higher priority. Within the same priority level, the CPU is shared

according to a time-slice-based round-robin policy.295

The RTOS can always preempt the GPOSs as long as it is ready to run.

The events evoking RTOS include timer ticks pre-set by the RTOS scheduler

and sporadic interrupts for RTOS. In either case, RTOS will be immediately

scheduled and start running.Note that, system service threads automatically

inherit the priority of the caller VM, so that system services are also preemptable300

and will not block the RTOS scheduling.

With the proposed scheduling policy, and the accurate pass-through timer

introduced earlier, the influence on the original RTOS scheduler is minimized.

In section 5, we will demonstrate that the virtualization overhead on the RTOS

scheduler is negligible, and that the original scheduling settings are maintained.305

4. Dynamic Partial Reconfiguration Management

In this section, the CPU-FPGA architecture is studied, where CPU and

FPGA are tightly integrated. FPGA resources are connected to a CPU with

dedicated interfaces and can be mapped to its unified memory space. In this

context, the role of Ker-ONE is to host several simple guest OSs with different310

priorities.

In our architecture, we made the assumption that all critical tasks are hosted

in a high-priority VM, with high performance. Non-critical tasks run in low-
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Figure 5: Allocation of virtual devices to virtual machines

priority VMs, for which long latency and resource blocking may be tolerable.

To predict the behavior of critical tasks, we also assume that the FPGA315

resources are always sufficient for the high-priority VM, whereas they can also

be shared and re-used by low-priority VMs. This assumption seems reasonable

in practice, since critical tasks are pre-determined in most embedded systems.

4.1. Accelerator Mapping

In our system, reconfigurable accelerators are hosted in different partial re-320

configuration regions (PRR), which can be seen as containers. These accelera-

tors are denoted as hardware (HW) tasks.

Each HW task is an instance of an accelerator algorithm and can be im-

plemented in different reconfigurable regions by downloading the corresponding

bitstream into the targeted area via the PCAP interface [4]. HW tasks are pre-325

sented as virtual devices (VD) in the VM domain, and completely abstract the

implementation details.

Figure 5 describes the way virtual devices are mapped to fixed addresses in all

guest OSs. A unified interface, i.e. a standard structure of registers, is provided

to users. Like any other peripherals in ARM systems, OSs access these devices330

by reading/writing from/to the address of the corresponding device interface.
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Note that the physical positions of these virtual devices are not determined since

they can be implemented in different PRRs.

An interface component (IF) has been implemented on the FPGA side. This

interface can be seen as an intermediate layer between the logical virtual devices335

and the actual accelerators. It is in charge of connecting the virtual machines

with accelerators so that software can control their behavior. Each IF is exclu-

sively associated to a specific virtual device in a specific VM. Therefore, mapping

of reconfigurable accelerators is performed in two steps.First, the IF is statically

mapped to the VM address space as a virtual device interface. Second, the IF340

is dynamically connected to the target PRR that implements the corresponding

device function. The second mapping is performed on the FPGA side.

As shown in Figure 5, IFs are initiated on the FPGA side and are assigned

to physical memory addresses on the processor side. Their physical addresses

are configured to be aligned to 4KB memory pages. The VMM manipulates the345

page table of each VM to map IFs to the VM’s guest physical address space as

independent device interfaces. IFs that offer the same virtual device function are

mapped to identical address spaces in different VMs. For example, in Figure 5,

though the QAM accelerator is mapped to the same virtual address for all VMs,

it has different IFs in the FPGA.350

As the mapping between a particular IF and the VM space of a virtual device

is fixed, an IF can be identified with two identifiers: vm id and dev id (i.e.

referred to as IF(vm id, dev id)), which indicates the VM and the accelerator

algorithm to which it is associated. An IF has two states: connected to a certain

PRR or unconnected. When it is connected, the corresponding virtual device355

is implemented in the PRR and is ready to be used. Being in the unconnected

state means that the target accelerator is unavailable.

We leverage the ARM paging mechanism to control the VMs access to IFs.

When an IF is connected, its registers are mapped as read/write so that a VM

can directly control the accelerator. On the other hand, for unavailable devices360

(with an unconnected IF), the registers are set as read-only and whenever a

VM configures or commands a virtual device by writing to its IF, a VM exit
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is triggered. This mechanism guarantees the unique use of accelerators, and

automatically detects any VM’s request on unavailable FPGA resources.

See the example in Figure 5. In VM #1, an application is free to program365

and command Dev #1 (FFT-2048) as the associated IF is currently connected

to PRR #1, where the HW task is implemented. Meanwhile, VM #1 cannot

give orders to Dev #2 and #3 since these their IFs are currently read-only. Any

writing on these IFs will cause a page-fault exception to the VMM. This type

of exception will be handled as a VM’s request for FPGA resources, which is370

automatically detected.

4.2. Hardware Task Model

HW tasks are accelerator instances running in PRRs containers. PRRs pro-

vide FPGA resources to implement their algorithms. A given PRR may not be

compatible if its area (i.e. amount of resources) is insufficient to implement the375

corresponding accelerator algorithm of virtual device function. Therefore, the

compatibility information of HW tasks must be foreseen beforehand. An HW

Task Index table is created to provide a quick look-up search for HW tasks.

In this table, the compatible PRRs for each virtual device are listed. For each

compatible PRR, a HW Task Descriptor structure is provided, which stores380

the information of the corresponding bitstream, including its identifier, memory

address and size. This information is used to correctly launch PCAP transfers

and perform reconfiguration.

Figure 6 depicts the model of HW tasks and its interaction with VMs. As

shown in this figure, VMs access HW tasks via IFs. We proposed a standard385

register structure to facilitate the multiplexing of PRR resources, denoted as

the partially reconfigurable (PR) accelerator interface. It is implemented in the

IF, and conveys the register values from the IF to HW task. Once the IF is

connected to an HW task, a VM can operate on the IF registers to control the

HW task behavior.390

In Table 1, the structure of the PR accelerator interface is listed. VMs

start the HW task workload by setting the START flag. When the required
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Figure 6: Reconfigurable accelerator model

computation is over, the OVER flag is set and the result is returned in the

RESULT register. Additionally, HW tasks can be programmed to perform a

DMA transfer or to generate interrupts.395

Note that, since a PR accelerator interface structure is implemented in the

IF, its register values are persistent for the VM. When an IF is disconnected

from a PRR, the state of the corresponding virtual device (e.g. results, status)

is still stored in this IF and can be read by the VM. In this way, the consistency

of the virtual device interface is guaranteed.400

4.3. Hardware Task Preemption

Considering that multiple VMs share FPGA resources, the RTOS tasks may

be unexpectedly blocked when resources are occupied by GPOS tasks. To guar-

antee the timing constraints of real-time tasks, the HW tasks should be pre-

emptible so that resources can be re-assigned to RTOS tasks when necessary.405

We denote the VM corresponding to a HW task as a client.

HW tasks inherit the priorities of their VM clients, meaning that virtual

devices in RTOS and GPOS have different priorities. In our policy, the execution

of low-priority HW tasks can be preempted when RTOS virtual devices require

more FPGA resources. Note that HW tasks with the same priority level cannot410

be preempted.

The preemption mechanism requires to address several issues to make sure
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Table 1: Ports Description in the PR accelerator interface

Register Width Description

STAT 32-bit HW task status register

START 8-bit Start flag

OVER 8-bit Computation Over flag

CMD 32-bit Command register

DATA ADDR 32-bit Data buffer address register

DATA SIZE 32-bit Data buffer size register

RESULT 64-bit Computation result register

INT CTRL 32-bit Interrupt controller register

Custom Ports 8*32-bit Provide 8 IP-defined ports

HW tasks can be safely stopped and resumed. First, to protect data integrity,

accelerators may only be stopped when they reach some point in their execution,

for example, the interval of data frames in communication processing. These415

points are denoted as consistency points where the execution path is safe to be

interrupted and can be resumed without a loss of data consistency. Designers

of HW tasks have to identify the consistency points that allow the accelerators

execution to be preempted and to save the interrupt state.

Additionally, the context of HW tasks must be properly handled. We define420

the HW task context as the accelerator logic and the register states in the

accelerator. The logic is stored in the bitstream file and is indexed in the HW

Task Index table. On the other hand, the registers states depend on the design

of accelerators.

As shown in Figure 6, in each IF, a 1KB buffer is implemented to store the425

accelerator context when preempted, which can later be used to resume its exe-

cution. Since the format of the saved context depends on the accelerator design,

it is the designer’s work to implement the save/restore routine of an accelerator.

This routine is registered and called back by the VMM when preemption occurs.
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Preemption is performed by making a context switch on a PRR i.e. stopping430

one HW task and reloading another. A complete context switch includes: (1)

the reconfiguration of the accelerator logic by downloading a bitstream into the

target PRR; (2) the saving and resuming of the corresponding register states,

following user-designed routines. In the following we introduce how a PRR is

designed to facilitate the preemption policy.435

4.3.1. PRR State Machine

As a container, a PRR is allocated to HW tasks to provide FPGA resources

and behaves as a state machine. The state determines if a PRR can be allocated

to a specific HW task, and how it could be allocated.

Six states exist:440

• Idle : The PRR is idle without any ongoing computation and is ready for

allocation.

• Busy : The PRR is in the middle of a computation.

• Preempt : The PRR is running, but the computation will be stopped

(preempted) once it reaches a consistency point.445

• Switch : The PRR is in the middle of a context switch.

• Reconfig : The PRR is in the middle of reconfiguration.

• Hold : The PRR is allocated to a VM and is preserved for a certain

amount of time.

The PRRs’ behaviour can be described according to the flow chart given in450

Figure 7. As depicted in this figure, a PRR can be allocated in two states: Idle

and Busy. It can only be directly allocated to VMs when it is in Idle state

and requires no reconfiguration. In other situations, the PRR changes to the

Preempt state to stop the current running task and to the Reconfig. state when

performing PCAP reconfiguration.455
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Figure 7: PRRs state machine

We have also introduced the Hold intermediate state. PRRs that are allo-

cated to a VM will first enter this state. This indicates that the PRR is reserved

for a certain VM client. PRRs in the Hold state will block any re-assignment

and will wait to be used by the VM. PRRs will be released and return to the

Idle state when the preset waiting time Expire runs out.460

A PRR holds the essential information in a PRR Descriptor data structure.

This list indicates the PRR state (see Figure 7). It also includes the information

of the currently-hosted HW task: the client VM ID, the virtual device ID (i.e.

accelerator ID) and the HW task priority, which are used to make allocation

decisions. Note that, in our context, the bitstreams size is strictly pre-defined465

by the size of the reconfigurable area. Therefore, the reconfiguration time of

each PRR can be easily predicted. This factor is also included in the PRR

Descriptor.

4.4. Management Mechanism

One major characteristic of virtualization is that VMs are totally indepen-470

dent from each other. In our case, however, VMs share reconfigurable resources.

This can unfortunately lead to resource sharing issues that are well known in

computing systems. In traditional OSs, such a problem can be solved by apply-

ing synchronization mechanisms like semaphores or spin-locks.

For Ker-ONE, such mechanisms are not suitable since they may undermine475

the independence of VMs. Therefore, our system introduces additional manage-

ment mechanisms to dynamically handle the VMs’ request for PRR resources.
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Figure 8: Overview of the DPR management framework in Ker-ONE

Note that such requests may occur randomly and are unpredictable.

In Figure 8, the proposed management mechanism is described, which mainly

involves two components: a Virtual Device Manager on the software side and a480

PRR Monitor in the FPGA hardware.

The Virtual Device Manager is a particular software service implemented in

an independent VM domain, which aims at detecting and handling the requests

coming from VMs that want to use their virtual devices. This is performed

through an Inter-VM Commnunication (IVC) mechanism.485

The PRR Monitor is running in the static part of the FPGA and is in coop-

eration with the Virtual Device Manager to dynamically monitor reconfigurable

accelerators and search proper solutions to the VMs’ requests.

4.4.1. PR Resource Requests and Solutions

As described earlier, every time a VM tries to use an unavailable virtual490

device, a page-fault exception is triggered and then handled by the Virtual

Device Manager as a partially reconfigurable (PR) resource request: Request

(vm id, dev id, prio), which is composed of the VM ID, the device ID and a

request priority. The device ID identifies the accelerator functionality. The

request priority is equal to the priority of the calling VM. Note that, when a495

running HW task is preempted, the interrupted task is automatically composed

as a request, indicating the corresponding virtual device still has unfinished
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computation workloads.

The PPR Monitor on the FPGA side is responsible for searching appropriate

allocation plans for such requests. This plan is referred as a solution. A complete500

solution is formatted as:

Solution{vm, dev,Method(prr id), Reconfig}, (1)

which includes the target VM, the required device, the actual allocation method

and reconfiguration flag. The different methods include:

• Assign(prr id): this solution directly allocates the returned PRR (i.e.

prr id), which is Idle, to the request VM. If the requested device dev id is505

not implemented in this PRR, a Reconfig flag is also added.

• Preempt(prr id): all PRRs are Busy and none can be directly allocated,

but the returned PRR (i.e. prr id) can be preempted and re-allocated.

If the requested accelerator (dev id) is not implemented in this PRR, a

Reconfig flag is also added.510

• Unavailable : currently no PRR is available for Request(vm id, dev id,

prio).

The PPR Monitor searches for the best solution by checking the PRR De-

scriptors (see Figure 7). For a given Request (vm id, dev id, prio), the PRR

Monitor first obtains the list of compatible PRRs for the target device (dev id)515

by checking the HW Task Index table.

The states of these compatible PRRs are then checked for possible solutions.

If multiple solutions are found, the best one is chosen according to the selecting

policy.

In our algorithm, assigning Idle PRRs are considered to be best solutions.520

Preemption is chosen only when no Idle PRR exists. Besides, the selector

always chooses the solution with a minimal PRR size since it causes the minimal

reconfiguration overhead and power consumption. However, these policies can

be easily modified and adapted.
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Figure 9: Solution searching in the PPR monitor

Figure 9 depicts the interaction between the PPR Monitor and the Virtual525

Device Manager. Normally the selected solution is sent to the Virtual Device

Manager for further handling. However, if there is no valid solution (i.e. Un-

available), this unsolved request is added to the Search List, which is a waiting

queue of all unsolved requests.

The PPR Monitor keeps searching solutions for requests in this queue on530

the FPGA side, and acknowledges the Virtual Device Manager whenever a new

solution is found. The searching runs in parallel with VMs, following a priority-

based FIFO principle, so that when a requests conflict occurs, the PPR Monitor

always chooses the highest priority request.

4.4.2. Virtual Device Manager535

The Virtual Device Manager is a special service provided by Ker-ONE, run-

ning in an independent VM. This service stores all the HW task bitstreams in

its memory and is the only component that can launch PCAP reconfigurations.

The main tasks of this manager are: (1) to communicate with VMs and manage

the virtual devices in their space; (2) to correctly allocate PRRs to VMs.540

As already explained, if any VMs try to use an unavailable virtual device,

this will automatically be detected by the VMM, and then forwarded to the

Virtual Device Manager.

In Figure 10, the full flow to allocate an accelerator to a VM is depicted.

In this example, after a given Request(vm01, dev01, prio01), a solution {Assign545
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Figure 10: Execution flow for accelerator allocation

(prr01), non-Reconfig} is found. We assume that PRR #1 was previously used

by VM #2 and that it is currently in the Idle state. In this case, it can then be

directly re-allocated following these steps:

a) The Virtual Device Manager calls the user-registered context-save routine to

save the states of VM #2’s dev01. The IF Disconnect command is sent to550

the PRR Monitor to disconnect the IF of VM #2. Meanwhile, the PRR#1

PRR descriptor entry is erased.

b) The no-more-available device IF is set as read-only in VM #2’s page table

(via hyper-call).

c) The Virtual Device Manager calls the user-registered context-resume routine555

to restore the states of VM #1’s dev01. IF Connect is used to connect

the PRR to the IF of VM #1. The PRR Monitor also updates the PRR

descriptor entry with the new VM #1 client.

d) The VM #1’s dev01 IF is changed as read-write (via hyper-call).

e) The VMM suspends the Virtual Device Manager and resumes VM #1 to560

the exception point. VM #1 keeps on using this device.

Regarding guest OSs, the best solution in terms of latency is {Assign, non-

Reconfig} in which a PRR can be immediately allocated. For other solutions
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requiring reconfiguration or preemption, the Virtual Device Manager informs

the requesting VM with IPC messages, and suspends itself to wait for the end of565

reconfiguration or preemption. Meanwhile, the PRR Monitor keeps track of the

unfinished solutions on the FPGA, and sends interrupts to the Virtual Device

Manager whenever further operations are required.

This mechanism is explained in details in Figure 11, which demonstrates

the role of the Virtual Device Manager. The program is composed of a main570

function Run Solution() and two interrupts service routines (ISR) for interrupts

IRQ PRR Stop and IRQ PCAP Over.

Preemption and reconfiguration solutions are performed in two steps: First,

the manager launches the reconfiguration or preemption and then enters an idle

state, Second, the manager is awakened to complete the unfinished solution in575

ISR. Note that for the Preempt solution, the manager first stops the preempted

accelerator, and then handles it as a standard Assign solution.

In Figure 11, different signals are used to facilitate the allocation process

and help synchronization among components. Some communication signals are

destined to requesting VMs, and indicate the state of the required device. Others580

25

Acc
ep

ted
 m

an
us

cri
pt



Table 2: Communication signals for PRR Allocations, among Virtual Device Manager (VDM),

PRR Monitor (PM) and VM.

Signal Type Send Recv. Message

IPC WAIT IPC VDM VM Device is currently unavailable

IPC READY IPC VDM VM Device is ready

IPC PREEMPT IPC VDM VM Device is preempted

IRQ New Solution IRQ PM VDM New solution is found

IRQ PCAP Over IRQ PM VDM Reconfiguration is over

IRQ PRR Stop IRQ PM VDM Preemption is complete

are sent from the PRR Monitor to the Virtual Device Manager, to acknowledge

the events for unfinished solutions. These signals are listed in Table 2.

4.5. User Programming Model

A major purpose of our framework is to considerably simplify the coding

aspects of software applications by making the access to devices as transparent585

as possible. Ideally, the manipulation of virtual devices is only performed by

read/write operations from/into the interface registers, without knowing the

resource management at lower level. This is called the native programming

model. In this case, the IPC WAIT and IPC READY signals are just ignored.

Alternatively, guest OS may follow the guest programming model, meaning590

the OS is aware of the true state of virtual devices. For example, when a virtual

device is unavailable, the guest OS may be programmed to stop the waiting task,

run other tasks and only resumes the suspended task when the IPC READY

signal is received.

For the RTOS tasks which are running at higher-priority level, they can595

always claim more FPGA resources when necessary, meaning that any request

from them can be immediately solved by directly allocating or preempting PRRs

from lower-level tasks. More importantly, once an RTOS is allocated with an

accelerator, it is guaranteed to complete its computation since no preemption
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is allowed600

Therefore, RTOS tasks are safe to use native programming model, as if

running on a native machine. This normally results in a longer execution time

since the task can be blocked by the preemption and context switch of HW tasks.

But the execution time is still deterministic since we avoid the unpredictable

resource blocking caused by other VMs. On the other hand, in some special cases605

where the context switch involves a very long reconfiguration latency, the extra

overhead may become costly. RTOS tasks can then use the guest programming

model to avoid long CPU blocking.

For GPOS tasks, using native programming model is also workable, but

can be unwise if the FPGA resources are relatively tight and their request for610

PRRs can always be blocked by RTOS tasks, which will cause unpredictable

blocking time. Therefore, using the guest programming model is more appro-

priate for GPOS if FPGA resources are intensely shared. Additionally, with

the IPC PREEMPT signal, a GPOS is aware of its deprivation of FPGA re-

sources. Advanced programming policies can be applied to improve the QoS of615

its tasks. For example, GPOS tasks can move the computation workload from

the accelerator to the CPU, to avoid the long blocking of specific computations.

5. Ker-ONE Virtualization Performance Evaluation

In this part, the performance of our micro-kernel is provided. Several ex-

periments have been led to measure the impact of virtualization and make sure620

that such a system can be used in very small real-time embedded systems.

The first experiment has focused on measuring the overhead of fundamental

virtualization functions, such as VMM scheduling, hyper-calls, interrupt man-

agement, etc. Then the impact of virtualization on the RTOS execution has

been quantified by measuring the overhead that is due to the VM schedul-625

ing. This study has been led using a standard RTOS benchmark. Finally, our

platform has been used to implement specific applications taken from standard

benchmarks to demonstrate its feasibility.
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Our experiments were performed on the ARM Cortex-A9 processor of Xilinx

ZedBoard (i.e. the Zynq-7000 SoC), and the frequency has been set as 667 MHz.630

In order to evaluate the performance of our platform, we have implemented

multiple guest OSs (i.e. Mini-µC/OS-II) on top of Ker-ONE. These guest OS

had to execute specific applications on a huge number of samples. Two main

benchmarks have been considered, Thread-Metric [22] and MiBench [23].

In all our tests, the VMM scheduling period was set to 33 ms. Guest OSs635

used a 1 ms timer tick for their own schedule. These values are quite common

timing configurations in this context and especially for µC/OS-II [24]. Guest

OSs were either configured as GPOS or RTOS according to the experimental

requirements.

5.1. Basic Virtualization Functions Overhead640

The different measurements that have been performed in the experiments

allowed us to identify the most critical VMM functions. The platform has been

configured to host four similar µC/OS-II at the same priority level. These

were considered as GPOS and scheduled according to a round-robin strategy.

Software tasks were running in the guest OSs and making hyper-calls. The645

overheads of the corresponding VMM services that were required to handle these

hypercalls have then been recorded by a background monitor during several

hours. Figure 12 depicts the experiments results, where minimal, average and

maximum overheads are presented in microseconds.

The overhead latency that is required to generate an hyper-call, to process650

this hyper-call in the VMM and to return back to a virtual machine has been

evaluated. This corresponds to the VM entry/exit latency overhead. At this

point, it is important to note that hyper-calls are generally performed by the

guest OS and rarely by user tasks.

Since Ker-ONE is mapped to the VMs’ address space, no switch between655

VM is required. Hyper-calls entries and exits are relatively low cost processes

since they only involve the save/restore of the CPU context.
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Figure 12: Basic virtualization functions overhead in microseconds (µs) with minimum, aver-

age and maximum values.

Another important metric is the virtual IRQ emulation latency that repre-

sents the cost of emulating a virtual interrupt for a VM. This functionality is

critical for event-driven OSs and this latency has a huge impact on the events’660

response time. This metric is also closely related to the guest OS’ scheduling

overhead since a guest OS is driven by a virtual timer tick to handle virtual

time. This overhead is measured from the physical event’s arrival time until

the time at which the VM is forced to its local exception vector. This process

involves the handling of physical IRQ and the emulation of the virtual GIC665

interface registers.

The virtual machine switch latency represents the cost of switching from

one VM to another and may be relatively heavy. The overhead of the virtual

machine switch is one of the key metric in most virtualization approaches, as
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it is usually quite cumbersome, and has a huge impact on the VMM efficiency.670

In Ker-ONE, this switch is performed when a VM consumes its time quantum

and moves to its successor, or when it suspends itself and the VMM schedules

another VM or process. This switch includes several major procedures: (1)

re-scheduling; (2) vGIC context switch; (3) timer state update; (4) address

space (page table) switch; and (5) CP15 registers update. Note that changing675

the address space causes a higher TLB/cache miss rate and thus increases the

switch latency.

Usually, the VMM uses these functions for management and emulation pur-

poses and they are of great importance. Virtualization efficiency is closely re-

lated to the performance of these functions. In our case, we can note that these680

functions exhibit low overheads. As shown in the results, frequently-called func-

tions, i.e. hyper-calls and vIRQ emulation can be handled in less than 1 µs.

Furthermore, the virtual machine switch overhead, which constitutes the most

expensive process, could be limited to 1 µs.

5.2. RTOS Virtualization Evaluation685

In this section, we quantify the impact of virtualization mechanisms on the

performance of guest RTOSs. This includes the OS kernel services as well

as scheduling overhead. In order to estimate the impact of virtualization, a

controlled experiment has been performed. The control group implements a

native RTOS on an ARM Cortex-A9 processor, while in the experimental group,690

the same RTOS is implemented on top of Ker-ONE. Differences in terms of

performance have been measured.

In our experiments, Mini-µC/OS-II has been implemented as an RTOS in

a VM. Three other VMs were used to host another instance of Mini-µC/OS-II,

which plays the role of a GPOS. Benchmarks have run as applications in the695

RTOS and a comparison between native execution and execution on a VM has

been performed for each test.
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5.2.1. Benchmarking

We chose the Thread-Metric benchmark suite for the RTOS performance

measurement [25]. Thread-Metric has been developed by Express Logic in 2007700

and has been applied in several works to measure and compare the performance

of multiple RTOSs [26].

In our experiment one RTOS and three GPOSs (all Mini-µC/OS-II) run on

top of Ker-ONE. The Thread-Metric suite is executed on the RTOS. In order

to obtain the performance loss due to virtualization, the benchmarks results on705

the native µC/OS-II are also collected and used as reference.

To provide an extensive evaluation, the XEN-ARM hypervisor has been

evaluated to achieve a comparison with our micro-kernel. The XEN-ARM hy-

pervisor Version-3.0 [27] has been ported to our platform that is based on a

Zyng-7000 device. A para-virtualized µC/OS-II (denoted as xeno-µC/OS), that710

is available on the XEN website as been used as reference. The Thread-Metric

benchmark has been executed on this kernel. Note that, since µC/OS-II runs

on a single protection domain, no multiple page tables are necessary. Although

XEN-ARM and Ker-ONE have different memory virtualization techniques, both

virtualization contexts of µC/OS-II are similar in this case. The XEN’s sup-715

port of user-level multiple protection-domains has not been used to provide fair

comparison.

The role of the Thread-Metric benchmark is to provide a set of common

kernel services to compare different RTOS in terms of performance. These

services mainly deal with context switch, interrupts handling, message passing,720

memory management, etc. For each OS service to be tested, the corresponding

function as well as its dual function have been executed in pairs, e.g. allocating/

de-allocating memory, or sending/receiving messages. These functions were

executed continually and the number of iterations has been evaluated. Finally,

the number of iterations has been recorded every 30 seconds and denoted as725

test score. A high score means a low overhead in the OS kernel function and

obviously better performance. The tests provided by Thread-Metric are:

31

Acc
ep

ted
 m

an
us

cri
pt



• Calibration Test : A basic single-task rolling counter function to set up a

performance baseline for comparisons.

• Preemptive Context Switching : Five tasks of different priorities are cre-730

ated. Staring from the lowest priority task, each task resumes the next

higher priority task and suspends itself. The sequence of OS scheduling

(i.e. OSTaskSuspend, OSTaskResume, OSSched in µC/OS-II ) is evalu-

ated.

• Message Processing : One task is created to repeatedly send and receive735

message through the OS message queue (i.e. OSMessagePost, OSMes-

sagePend).

• Memory Allocation: One task that allocates and releases memory through

the OS memory block (i.e. OSMemGet, OSMemPut ).

• Synchronization Processing : One task that pends and posts semaphores740

(i.e. OSSemPost, OSSemPend).

• Interrupt Handling : One task is created to generate software IRQ. The

semaphore mechanism is used in the IRQ handler routine to guarantee the

handling completion.

• Interrupt Preemption: Two different priorities tasks are created. The745

lower priority task generates a software IRQ and while it is executing its

IRQ handler routine, the other task is resumed and preempts the low

priority one.

Based on the experiments above, the metric Performance Ratio has been

defined and denoted as RP , which is computed as:

RP =
Svm

Snative
× 100%, (2)

where Svm is the benchmark score obtained by the guest OS, and Snative con-

cerns the native OS. RP measures the influence caused by virtualization. A750

better virtualization technology means less performance loss and thus a higher
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RP value. Table 3 presents the experimental results of the Thread-Metric bench-

marks running on both Ker-ONE and native environments, and the correspond-

ing performance ratios.

Table 3: Thread-Metric benchmarks results for both native and virtual µC/OS-II

Test Object Native µC/OS-II VM µC/OS-II Performance Ratio (%)

Calibration Test 764458 753879 98.6

Preemptive Context Switching 32113328 28927171 90.1

Message Processing 18431136 16748720 90.9

Memory Allocation 104601611 85091278 81.3

Synchronization Processing 108589466 90893213 83.7

Interrupt Handling 32541832 25768399 79.2

Interrupt Preemption 19089282 16425610 86.0

As shown in Table 3, µC/OS-II has lower performance when virtualized.755

This is predictable since the benchmark tests include intense executions of sen-

sitive instructions and privilege operations on protected system resources. One

typical operation is the context switch in a guest OS. Originally, this is per-

formed with only a few lines of assembly code. However, in a para-virtualized

implementation, this operation is normally re-directed to a bunch of assembly760

lines of code and involves multiple hyper-calls and VMM handling. In our test,

when a context switch is performed frequently, a noticeable extra overhead is

caused compared to the original code.

Timer and interrupt virtualization also degrade the performance. The em-

ulation of such mechanisms is particularly expensive if guest OS executes very765

fast or/and require frequent interrupts. This may be noticed in the Interrupt

Handling and Interrupt Preemption benchmarks that are presented in Table 3.

In these benchmarks, a huge number of interrupts are generated and handled.

This results in a significant performance degradation and explains the relatively

low performance that is obtained in these tests.770
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Figure 13: Comparison of Thread-Metric Performance Ratio (RP ) for para-virtualized

µC/OS-II on Ker-ONE and XEN-ARM.

In Table 3, we can also notice that our micro-kernel performs well when

hosting RTOS. Regarding the services that are evaluated in the benchmarks,

most losses are under 20%. For some functions such as task scheduling and

message processing, the performance is even better and close to those obtained

with native OS: only 10% of performance loss. This is due to the fact that, in the775

Ker-ONE design, virtualization of resources have been optimized using a shared

memory region (see Section 3.2.1), which reduces the number of hyper-calls and

provides significant improvement in terms of performance.

Figure 13 provides a comparison between two different systems that are

implemented in the same platform. The first is the Ker-ONE kernel. The780

second is the Xen-ARM hypervisor. We may also note that Ker-ONE performs

better than XEN-ARM when hosting the µC/OS-II guest OS.

At this point, it is important to notice that both kernels make use of a

share memory region. The difference in terms of performance is due to the fact

that Ker-ONE provides a simpler virtualization interface. All virtual resources785

are implemented with smaller structures of smaller size. Additionally, Ker-

ONE provides a dedicated physical timer pass-through for guest RTOS (see

Section 3.3.1), which largely simplifies the timer virtualization compared to

XEN system.

Regarding the Interrupt Handling and Interrupt Preemption benchmarks, we790
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may also note that XEN-ARM performs obviously worse compared to Ker-ONE.

This may be explained because of the virtual interrupts that are handled differ-

ently in XEN-ARM. In this hypervisor, these are manipulated as event channels

that separate physical IRQs from VM event ports. This strategy is efficient to

ensure isolation between virtual machines but is also more complex.In our ap-795

proach, Ker-ONE implements a simple virtual IRQ management that is oriented

towards the GIC emulation. A simple function forwards the physical interrupts

to the VMs. Moreover, the different VMs keep on using their own IRQ handlers,

which simplifies the system.

5.2.2. RTOS Virtualization Overhead800

Whereas the previous analysis has evaluated the performance of specific OS

functions with the Thread-Metric benchmark suite, we also created our own

custom benchmarks to estimate the scheduling and context switching overhead.

With these benchmarks, schedulability studies may be performed as described

in [28].During these tests, we carefully evaluated the worst-case RTOS task805

response time. We have noticed that this occurs when the RTOS preempts the

GPOS to get scheduled.

We define this response time as ResponseVM , which is composed of: delays

caused by the VMM critical execution (∆VMMcritical), by VMM scheduling

(∆VMMsched) and by RTOS task release (relEvVM ). These three types of810

overhead have an impact on the release delay of RTOS tasks as demonstrated in

[29]. In our experiment, these types of overhead have been measured respectively

and recorded during hours of execution.

A total number of 1,048,576 samples have been obtained during long time

experiments. For each measurement, we have evaluated the minimal, average815

and maximal overhead. In the following discussion, we consider the maximal ex-

perimental measurement as the worst-case execution time (WCET).The results

of the evaluation are shown in Figure 14.

The Critical Execution (i.e.∆VMMcritical) measures the overhead of the

VMM critical execution when IRQs are masked. Any events occurring in this820
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Figure 14: VM RTOS task response overhead in microseconds (µs) with minimum, average

and maximum values

period are delayed until the critical execution is over. When VMs run, the VMM

performs critical execution for various reasons, i.e. hyper-calls, IRQs, exceptions

or VM switches. In order to cover all possible critical execution overheads, we

have executed dedicated test software which helped trigger all possible hyper-

calls, IRQs and exceptions. As shown in Figure 14, the worst-case VMM critical825

execution has been estimated at 1.47 µs.

The RTOS Preemption (i.e.∆VMMsched) refers to the cost of an RTOS

preempting the current GPOS. This process is performed by the VMM and

includes several steps: (1) real-time event handling (timer tick interrupts in our

test), (2) rescheduling, (3) VM switch, (4) forwarding the timer interrupts to830

the RTOS. As described in Figure 14, RTOS preemption is completed after an

average delay of 0.98 µs, whereas the WCET is 1.19 µs.
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In Figure 14, the Task Release latency represents the time that is required

to handle a virtual timer tick in an RTOS and to schedule a new task. Two

latencies have been measured for native and VM corresponding to relEvNative
835

and relEvVM , respectively. A loss of performance is to be expected in virtu-

alization in the Task Release latency. This is mainly due to the emulation of

sensitive instructions that are required to handle interrupts and to perform a

context switch. It follows that the worst-case extra Release Event overhead can

be estimated as:840

∆relEv
VM = relEvVM

(WCET) − relEv
Native
(BCET), (3)

where relEvNative
(BCET ) is the best-case execution time of the native latency.

In this equation, ∆relEv
VM has been estimated at 0.42 µs. Therefore, the

equation that gives the total influence that virtualization causes on the RTOS

response time ∆Response
VM may be written as:

∆Response
VM = ∆VMMcritical + ∆VMMsched+ ∆relEv

VM . (4)

According to the experiment results, ∆Response
VM has been estimated at 3.08845

µs. Considering that, the scheduling tick is usually set as 1ms or 10ms in

RTOS, the virtualization overhead can be neglected in terms of the real-time

task response time. Therefore its influence on real-time schedulability can be

ignored.

6. Reconfigurable Accelerator Management Evaluation850

In this section we evaluate how the tasks’ execution time is influenced by

the FPGA resources sharing and determine the tasks WCET. To this purpose,

we define the allocation latency Lalloc, which corresponds to the delay that is

required before an accelerator (i.e. FPGA resources) is properly allocated and

ready to start. This latency can be seen as the response time of a virtual device855

and can be used to represent the increase of a task execution time when running
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Guest OS

KER-ONE Microkernel

Virtual Device Manager 

Wait for IRQ

Figure 15: Execution paths of DPR resources allocation

on Ker-ONE. Note that only RTOS tasks are considered here. In this configu-

ration, virtual devices can always demand resources and cannot be preempted,

meaning that the allocation latency can be determined via static analysis.

The allocation latency has two main sources: the allocation mechanism itself860

and the Ker-ONE micro-kernel functions. Additional overhead is to be deplored

if the allocated accelerator requires reconfiguration. Besides, the virtualization

mechanism takes up extra time. For example, the page-table faults handling,

IPCs and VM scheduling will noticeably contribute to the total allocation la-

tency. The models of execution paths in different solutions can be calculated865

according to the diagrams displayed in Figure 15.

In these models, the allocations consist of four different solution paths that

can be decomposed into the following list of smaller atomic execution overheads:

• Ttrap: Time required by Ker-ONE to detect a page-table exception in VM

domain and to invoke the Virtual Device Manager.870

• Tresume: Time required by Ker-ONE to schedule back to a VM.

• TPL irq: Time required by Ker-ONE to receive IRQs from the PRR Mon-

itor and to redirect them to the Virtual Device Manager.

• TSearch: Time required by the Virtual Device Manager to receive the VM

requests and to search for solutions.875
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• TSolution(1)(2)(3): Execution time to handle different solutions: (1) direct

assignment, (2) assignment with reconfiguration, (3) preemption.

• Tirq pcap, Tirq stop: Time required by the Virtual Device Manager to han-

dle the following IRQs (i.e. IRQ PCAP Over, IRQ PRR Stop).

• Tpreempt: Overhead due to the preemption of the current accelerator.880

Based on this model,the worst-case allocation latency can be determined as

follows:

Lalloc(WCET) = max
{
TPath1, TPath2, TPath3, TPath4

}
. (5)

In order to estimate and analyze the impact of Lalloc, an experiment has

been led and described in section 6.1.

6.1. Experimental Description885

As mentioned earlier, our experiments were performed on the Xilinx Zed-

Board (Zynq-7000 SoC). This SoC consists of two parts: the processing sys-

tem (PS) which provides a dual-core ARM Cortex-A9 processor, and the pro-

grammable logic (PL) which includes a partially reconfigurable FPGA fabric.

The CPU operating frequency has been set 667 MHz and the FPGA logic was890

driven by a 100 MHz clock.

The proposed experiment is shown in Figure 16. The FPGA fabric on PL

side has been initially implemented with three PRRs of different sizes. Four

hardware accelerators, i.e. QAM16, QAM64, FFT512, FFT1024, have been

implemented and stored into bitstream files. During the initialization stage of895

Ker-ONE, these files have been loaded into the RAM memory and are only

accessible by the Virtual Device Manager.

This experiment is taken from an OFDM receiver that is intended to be

very flexible by considering several configurations of modulators and mappers

according to the channel conditions. QAM blocks aim to take a complete frame900

of incoming bits into account and generate 16-bit width I and Q symbols. FFT

blocks work on the outcoming QAM I and Q symbols to perform demodulation.
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Figure 16: Experimental architecture for performance evaluation

To simplify the experiment, we assume that the FFT always works in se-

quence with QAM-16 algorithm. The data frame is set to be 18,800 bits, ac-

cording to the actual OFDM requirements. Therefore, the incoming frame sizes905

were 18,800 bits for QAM16/QAM64 and 4700 16-bit width symbols (as the

outcome of QAM16) for FFT512/FFT1024, respectively. In each PRR, a data

buffer keeps transferring frames from VM memory space to the accelerators.

Note that the compatibility table shows that PRRs are unsuitable to certain

accelerators. For example, PRR #1 cannot host an FFT module because of lack910

of resources. PRR #3 is incompatible with QAM since PRR #3 is of large bulk

of resources while QAM modules require little. In this case, hosting a QAM

modulator will cause a waste of resources.

Regarding the guest OSs running in virtual machines, we still use the modi-

fied µC/OS-II to execute on top of Ker-ONE. Two µC/OS-II guests are hosted915

with different priority levels as RTOS and GPOS.

For each guest OS, four available virtual devices have been implemented.

Two and three tasks run respectively in both guest OSs to periodically com-
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Table 4: Overhead measurement during DPR allocation

Micro-kernel Virtual Device Manager

Operation Overhead (µs) Operation Overhead (µs)

Ttrap 0.76 TSearch 0.50

Tresume 0.64 TSolution(1) 1.13

TPL irq 0.81 TSolution(2) 2.77

TSolution(3) 0.34

Tirq pcap 0.64

Tirq stop 0.28

mand virtual devices to process data frames containing 18,800 bits, which causes

requests for allocations during the experiment. Accelerators are then allocated920

at run-time. In order to respect the integrity of the OFDM process, both QAM

and FFT modules may be preempted only when their data frame is completely

processed.

The experiment ran for several hours continuously. A custom monitor has

been built to measure and record the various costs of allocation mechanisms on925

the RTOS tasks.

6.2. Overhead Analysis

The measurement results of atomic execution overheads are provided in Ta-

ble 4. According to this table, it may be seen that VM scheduling as well

as virtual interrupt emulation are performed with a low overhead that is less930

than 1µs. The highest overhead is obtained in TSolution(2), which occurs when

a PRR is assigned with reconfiguration. In this case, this process requires a

PCAP transfer which is time consuming since it consists of complex operations

to organize the download of bitstream files.

According to the performed measurements, the allocation latency of different935
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Table 5: Reconfiguration and preemption delays

Virtual

Device
δpre(µs)

1
TRCFG(µs)

PRR#1 PRR#2 PRR#3

QAM16 47.0 231 810 -

QAM64 31.0 231 810 -

FFT512 24.1 - 810 1,206

FFT1024 33.6 - - 1,206

1 The worst-case waiting time when a running accelerator is forcibly stopped.

solution paths, as modeled in Figure 15, can be estimated as:

TPath1 = 3.03µs,

TPath2 = 6.76µs+ TRFCG,

TPath3 = 5.10µs+ Tpreempt,

TPath4 = 9.96µs+ Tpreempt + TRFCG.

(6)

We may notice that a 3 µs latency is obtained for a direct allocation. Other

solutions have additional latencies due to preemption (Tpreempt) or reconfigu-

ration time. The costs of Tpreempt and TRCFG are mostly depending on the

implementation and application of accelerators.940

In Table 5, these costs are evaluated for all available accelerators. TRCFG

is determined by the size of the bitstream, and therefore corresponds to three

PRR areas. The preemption time Tpreempt is determined by the δpre of the

accelerator to be preempted. δpre corresponds to the worst-case waiting time

when preempted, and depends on the consistency points which are set as the945

interval of data frames.

In terms of WCET analysis (i.e. Tpreempt(WCET) and TRCFG(WCET)), it is

important to note that they not only depend on the implementation, but also

on the accelerators are being globally designed and used.

For example, considering the compatibility shown in Table 5, a QAM-16950
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accelerator cannot preempt a FFT1024 since there is no resource competition

between them, so Tpreempt(WCET)(QAM16) is calculated as:

Tpreempt(WCET)(QAM16) = max
{
δQAM16
pre , δQAM64

pre , δFFT512
pre

}
. (7)

Meanwhile, since QAM-16 can only be implemented in PRR #1 and #2, the

value of TRCFG(WCET)(QAM16) is determined as:

TRCFG(WCET)(QAM16) = max
{
TPRR1
RCFG, T

PRR2
RCFG

}
. (8)

Therefore, for each accelerator, its worst-case allocation latency Lalloc(WCET)

can be calculated by obtaining Tpreempt(WCET) and TRCFG(WCET) according

to the system design, and then following the equation 5.955

Note that, the implementation of the PRRs and accelerators are set before-

hand and the RTOS tasks’ access to accelerators are also known. For each

RTOS task, the impact of Lalloc(WCET) can be predicted and be added to its

WCET value for the RTOS schedulability analysis.

6.3. Discussions960

From Table 5 we can notice that for the accelerators used in our experiment,

Tpreempt is significantly lower than TRCFG. Therefore, from the RTOS point of

view, preemption is always the best solution since it encourages to benefit from

existing accelerators of low priority tasks, and reduces the need for reconfigura-

tion. However, for GPOS tasks, being preempted will block their execution.965

For a system in which preemptions may occur frequently, it is possible that

a GPOS may never get access to hardware resources. Hence, a trade-off should

be made regarding the allocation policy.

In our work, we made the assumption that allocating Idle PRRs is always better

than preempting them. The reason is that we want to make sure that low prior-970

ity tasks will not be infinitely blocked by FPGA resources. The PRR Monitor

has been designed accordingly. In a system that manages critical tasks of tight

timing constraints, a new policy may be followed that gives more importance

to preemption.
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Table 6: Comparisons between SW and HW implementation

Algorithm
THW (µs)

(per frame)

TSW (µs)

(per frame)
FPGA Resource Usage1

QAM-16 47.0 1,513 2%

QAM-64 31.0 1,174 2%

FFT-512 71.1 6,582 8%

FFT-1024 90.6 12,784 13%

1 For purpose of simplicity, we present the resource usage portion on the total

FPGA fabric, instead of the detailed amount of LUT, FF, etc.

In Table 6, we compare the HW acceleration approach with software. The re-975

sults show that the accelerator performance of heavy computation (i.e. FFT512/1024)

significantly surpasses software implementation. Even though these accelerators

suffer from allocation latency that may prolong the execution time, their bene-

fit is still considerable. On the other hand, for relatively light computation(e.g

QAM), although hardware accelerators are still faster, this advantage gets un-980

dermined when taking TRCFG into account. These results indicate that DPR

technology is more suitable for large complex computation algorithms.

Furthermore, in this example, the FPGA is capable of simultaneously provid-

ing total 8 virtual devices with only 3 PRR areas, whose total cost is around 23%

of the available resources (2%, 8% and 13% respectively). More importantly,985

from the above analysis it can be concluded that the real-time schedulability of

RTOS VM is not undermined. Considering traditional FPGA design, to support

both VMs, all 8 accelerators need to be implemented as static circuits, which

may take up to 50% resources. Therefore, in our approach, the usage of FPGA

is greatly reduced while the real-time safety can be preserved.990

7. Conclusion

In this paper we have introduced an hypervisor which facilitates the DPR

resource management in a system composed of several virtual machines. Our
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framework is based on Ker-ONE, a micro-kernel running on the ARMv7 archi-

tecture. This micro-kernel is able to host multiple OSs. In each virtual machine,995

DPR accelerators are mapped as universally-addressed peripherals, which can

be accessed as ordinary devices. Through dedicated memory management, our

kernel automatically detects the request for DPR resources and allocates them

dynamically. Dedicated management components are implemented on both soft-

ware and hardware sides to handle allocations at run-time. We also propose an1000

efficient preemptive allocation mechanism that emphasizes the sharing and en-

hances security for virtual machine systems. In this paper we have described

implementation details and presented extensive experiments to evaluate the

overhead of allocation in our framework. Through evaluations and analysis, we

have demonstrated that the proposed framework is capable of virtual machine1005

DPR allocation with low overhead and guaranteed real-time schedulability. As

prospects, we would like to evaluate our framework more deeply by applying

real-scenario implementations, e.g. complex communication systems with real-

time tasks, to discuss the capability and schedulability of hosted guest OSs. We

would also like to develop more sophisticated searching algorithms, so that the1010

overall performance may be improved.
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