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ABSTRACT 

Purpose of review: Pneumocystis pneumonia (PCP) is a frequent opportunistic infection 

associated with a high mortality rate. PCP is of increasing importance in non-HIV 

immunocompromised (IC) patients, who present with severe respiratory distress with low 

fungal loads. Molecular detection of Pneumocystis in broncho-alveolar lavage (BAL) has 

become an important diagnostic tool, but quantitative PCR (qPCR) needs standardization.   

Recent findings: Despite a high negative predictive value, the positive predictive value of qPCR 

is moderate, as it also detects colonized patients. Attempts are made to set a cut-off value of 

qPCR to discriminate between PCP and colonization, or to use non-invasive samples or 

combined strategies to increase specificity. 

Summary: It is easy to set a qPCR cut-off for HIV-infected patients. In non-HIV IC patients, a 

gain in specificity could be obtained by combining strategies, i.e. qPCR on BAL and a non-

invasive sample, or qPCR and serum beta-1,3-D-glucane dosage. 

 

 

 

Keywords: Pneumocystis jirovecii, Pneumocystis pneumonia, immunocompromised patients, 

molecular diagnosis, PCR
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INTRODUCTION 

Pneumocystis jirovecii (Pj) is responsible for Pneumocystis pneumonia (PCP), a life-threatening 

fungal infection in immunocompromised patients, ranking first among opportunistic 

pathogens revealing the HIV-positive status (1,2) and in HIV-infected patients who do not 

comply with antiretroviral therapy or anti-Pneumocystis prophylaxis (3). Over the last decade, 

PCP has been also recognized as a major opportunistic infection in non-HIV 

immunocompromised patients, such as transplant patients, patients with hematological 

malignancies or solid cancers, and patients receiving corticosteroid therapy or other 

immunosuppressive drugs (4). The growing number of immunosuppressive procedures led to 

an increasing frequency of PCP diagnoses in non-HIV compared to HIV-infected patients 

(3,5,6). The heterogeneity of immune background in this non-HIV population can influence 

the clinical and radiological signs, which can be misleading, since they are often less typical 

than in HIV patients (2,7). 

Mortality in the non-HIV-infected immunosuppressed population is generally higher than that 

in HIV infection, reaching 50% in some studies (8,9). Whether this poor outcome is due to the 

patient immune background itself, or to gaps in diagnosis or management of patients at risk, 

is unclear. However, it is now widely recognized that evolution of the disease is more acute 

than in HIV-infected patients, with rapid clinical deterioration even with low fungal loads (2). 

Therefore, rapid and reliable diagnosis is of critical importance.  

As Pj cannot be cultured, diagnosis relies on its detection in broncho-alveolar lavage (BAL) or 

other lung specimens, by microscopic examination and PCR. While microscopy is helpful to 

diagnose PCP in HIV-infected patients who usually harbor high fungal loads, molecular 

diagnosis is critical to detect low Pj counts in non-HIV patients (6), and PCR has been included 

in the guidelines for the diagnosis of PCP in patients with hematological malignancies (10). Pj 

PCR is assumed to have a 100% negative predictive value (NPV). Meanwhile, these sensitive 

methods have highlighted the possible colonization of hospitalized patients with Pj, thus 

limiting the positive predictive value (PPV) of PCR result. Therefore, continuous efforts are 

ongoing to improve the interpretation of molecular results or to develop new strategies of 

amplification that would be more specific of acute infection.  
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In this article, we provide a review of the literature on the molecular diagnosis of PCP, with 

special emphasis on the interpretation of results and possible complementary diagnostic 

tools.  

 

MOLECULAR DIAGNOSIS OF PCP: TECHNICAL ASPECTS AND DIAGNOSTIC IMPACT 

Gene targets and PCR methods: what’s new? 

Many gene targets have been described for the molecular diagnosis of PCP and have been 

assessed in clinical series (Table 1) (11–33). The mitochondrial large sub-unit of ribosomal RNA 

(mtLSU) has been the first target for PCP diagnosis (11) and it is still the most widely used and 

reported in the literature. Among the multiple gene targets described, mtLSU, mtSSU and the 

major surface glycoprotein (MSG) are the only gene targets to be repeated in Pneumocystis 

genome, and thus are associated to a very high sensitivity of detection, compared to single-

copy targets. Actually, single copy loci such as 5.8SrRNA, DHFR, DHPS, TS and beta-tubulin 

have been also investigated for PCP diagnosis, but they are more often used for Pj genotyping 

in epidemiological studies (34). The use of conventional amplification techniques has been 

supplanted by real-time PCR, which offers improved specificity and allows to quantify fungal 

loads in fluid samples. However, no clear correlation has been made to date between parasite 

concentration and severity of infection, probably, at least partially, because of a variable 

number of copies of the targeted genes (32)**.  

A reverse-transcriptase PCR assay targeting the mRNA from a gene encoding a Pneumocystis 

HSP70 was also investigated with the aim to detect only viable organisms (27,35), to monitor 

treatment. It was evaluated on a HIV-infected cohort, but despite good performances on BAL 

compared to microscopy (100% concordance), the detection rate strongly decreased in 

induced sputum (IS) and oral wash (OW) samples (65% and 35%, respectively), thus hampering 

the use of less invasive specimens to monitor treatment efficacy after initial diagnosis.  

Over the last decade, several commercial quantitative PCR (qPCR) assays have been 

developed, all targeting mtLSU or MSG gene (Table 2) (36–40). MycAssay Pneumocystis (36–

40), BioEvolution PCR (39,41) and Amplisens (39,42) have been the most evaluated. Sasso et 
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al. compared these 3 assays with an in-house RT PCR targeting MSG and found excellent 

performances of all assays excepted BioEvolution kit, to detect very low fungal burdens (39). 

Over the past 2 years, a growing number of assays have been commercialized and evaluated 

in clinical series, yielding heterogenous performances with sensitivity and specificity ranging 

from 60 to 100% and from 82 to 100%, respectively (42–46).  

To date, only 2 real-time assays have been adapted on fully automated platforms combining 

DNA extraction and multiplex real-time PCR, allowing on-demand molecular testing (47–49*). 

The BD MAX system was prospectively evaluated and yielded similar sensitivity as a reference 

qPCR assay (47). Moreover, samples from patients with colonization had significantly higher 

median amplification cycle threshold (Ct) values than samples from patients with PCP (32.0 vs 

25.7; p = 0.002). The Genecube platform was evaluated on BAL and IS samples and yielded 

similar sensitivity compared with “in-house” qPCR assay (92.3% versus 94.9%) (49)*.  

As an alternative method to PCR, the loop-mediated isothermal amplification (LAMP) 

technique has been described to amplify Pneumocystis DNA (22). Nakashima et al. 

retrospectively assessed LAMP performances in BAL and IS from 78 non-HIV 

immunocompromised patients and demonstrated LAMP to have sensitivity and positive 

predictive value of 95.4% and 91.3%, respectively, higher than that of nested PCR (72.7%, 

84.2%, respectively) (50). However, despite these interesting performances, clinical 

evaluations on larger cohorts are still needed and the absence of fungal load quantification 

does not help interpretation of Pj presence as colonizing or pathogenic agent. 

 

Sample types: which are best suited? 

BAL is considered as the “gold standard” procedure to diagnose PCP, since i) it provides the 

most appropriate sample to perform microscopic staining to detect trophic forms and cysts of 

Pj, and ii) it allows to retrieve Pj from the lower respiratory tract (LRT), thus most likely 

responsible for infection. Therefore, a fair amount of literature evaluated molecular diagnosis 

in BAL samples.  

However, if the patient cannot stand BAL which is an invasive procedure associated to 

potential complications, tracheal aspirates, induced sputum (IS), or oral washes (OW) can be 
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used, as well as nasopharyngal aspirates (NPA) for neonates (51–56). However, these samples 

from the upper respiratory tract are not suitable for microscopic examination, thus molecular 

diagnosis is essential, but must be carefully evaluated in clinical practice. Few studies have 

addressed prospectively a comparative evaluation of molecular diagnosis on paired samples 

of BAL and other sample types (Table 3). Alanio et al. found no significant difference in fungal 

DNA loads between IS and BAL fluid samples from immunocompromised patients (mixed HIV 

status)(57). Teh et al. in cancer patients obtained higher levels of Pj DNA detection in IS than 

in BAL, probably because it is less diluted, but found no link with the severity of infection (58). 

When comparing PCR on OW and BAL paired samples, the sensitivity was shown to be 

significantly reduced in the former, but the PCR specificity increased (Table 3). However, it is 

awkward that Juliano et al. found 11 false-negative results of PCR on OW out 61 paired BAL 

with positive microscopy, suggesting that this sample might be inadequate for the diagnosis 

of PCP in HIV-negative patients, who present frequently with PCP with negative microscopy 

(51).  

On the other hand, Samuel et al. (55) reported NPA to be of interest for PCP confirmation in 

young children. On a series of 147 NPA, they reported roughly similar DNA detection rates in 

NPA, compared to paired IS or BAL (49.6% versus 55.1%). 

Apart from respiratory specimens, the detection of circulating Pj DNA in peripheral blood has 

been considered in a few reports, based on the Pj transient passage from lung alveoli towards 

the blood compartment, that would occur during PCP. Whether Pj PCR in blood sample is a 

valuable tool to diagnose PCP remains controversial. Wang et al. (59)* recently demonstrated 

that despite a moderate sensitivity compared to BAL or sputum (68.6% versus 91.4-97.1%), 

PCR on serum had a higher PPV (96% versus 86.5-87.2%). Therefore, when BAL is not available, 

they emphasized the relevance of combining PCR on sputum and serum to reach similar 

performances. 

 

PERFORMANCE OF MOLECULAR DIAGNOSIS 

How to evaluate clinical performance? 
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The evaluation of the clinical performance of molecular diagnosis of PCP is a difficult task and 

should be made in each individual institution. Indeed, data from the literature are barely 

comparable, because i) lack of assays standardization (gene target, PCR method, type of 

sample and processing before DNA extraction), and ii) lack of standardized score to classify 

patients for the diagnosis of PCP (definite PCP, probable PCP or colonization), both influence 

the evaluation of PCR performances. Some authors use radiological and clinical findings 

associated to a positive microscopic and/or molecular detection of Pj to classify the diagnosis 

as PCP, while others also consider the clinical improvement after cotrimoxazole therapy. The 

interpretation of a positive PCR when direct examination is negative is particularly challenging 

when there is another possible cause for respiratory symptoms, and authors use variable 

criteria to define PCP in this setting. Additionally, the proportion of patients with probable PCP 

or colonization may vary according to the population study, i.e. the patients’ immune 

background. Whether Pj detection represents an aggravating factor leading to shortened 

survival, or only the reflection of colonization, may be difficult to appreciate, and can lead to 

underestimate the PPV of a molecular assay. Therefore it is important to keep in mind these 

limitations, as they might greatly impact the estimation of PCR specificity in clinical studies. In 

any case, the use of microscopic detection as gold standard, should now be definitely avoided. 

Sensitivity of PCR on BAL samples is usually considered to be as high as 100%, although 

unpredictable mutation at the site of probe hybridization can be an anecdotic source of false-

negative result (60). Consequently, the 100% NPV allows to use qPCR as an exclusion test, but 

positive qPCR results need careful interpretation when microscopy is negative. Therefore, 

attempts have been made to set up a threshold to distinguish between probable PCP and 

colonization, which is feasible on BAL samples only, provided that lavage volumes instilled are 

somewhat standardized. Given the absence of Pj international standard material, these cut-

offs are assay-specific and are expressed in various units (Ct of amplification or number of 

copies). As stated above, due to the variability in the number of copies per genome and the 

unknown proportion of cysts and trophic forms in a given sample, the significance of 

quantification is still debatable.  

Over the past decade, several studies have proposed to define cut-off values in relation to 

clinical diagnosis. Alanio et al (57) estimated the sensitivity and specificity of qPCR, using 

different qPCR cut-off values to discriminate between PCP and colonization: a >1900 trophic 
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form equivalent (TFEq) /ml value giving 100% PPV, and a <120 TFEq/mL value yielding a 100% 

NPV. A limited number of samples quantified within the grey zone were considered to be 

undetermined. Other authors proposed cut-off values expressed as cycle threshold (Ct) of 

amplification or number of gene copies per mL. As shown in Table 4, these thresholds are 

highly variable, depending on the gene target, the sample input for DNA extraction, the HIV 

status and the bronchial lavage volume according to local procedures of pneumologists 

(6,41,61–65). These findings underline the need to standardize analytical procedures to make 

comparison possible between hospital centers. Overall, the use of a threshold value is easier 

to handle for HIV-infected patients, but is awkward for non-HIV patients (6,41,62). 

Recently, Valero et al. (32)** quantified 4 different mitochondrial (mt) genes, and compared 

their copy numbers to two nuclear single-copy genes in 84 BAL samples from patients with 

various background. Interestingly, they observed a high variation in the copy numbers of mt 

genes and found no correlation with the immunofluorescence (IF) detection of Pj, nor the PCP 

diagnosis. For the six genes tested, there was an overlap in the Ct between IF-positive and IF-

negative samples, ranging from 34 to 54%, and a variation of the number of copies according 

to the fungal load in 5 out of 6. Taken together, mt small sub-unit (mtSSU) rRNA displayed the 

highest copy number and seemed to be the most stable, thus could be a more sensitive target 

to detect Pj and probably more robust gene to quantify fungal loads.  

In conclusion, as no qPCR assay currently allows to safely distinguish a colonized patient from 

an infected patient, the absence of Pj DNA detection can be used to rule out PCP, but the 

presence of Pj DNA in pulmonary samples must be interpreted according to the severity of 

clinical signs and the immune background of the patient.  

Use of qPCR result as a prognosis marker 

Although attributable mortality is difficult to evaluate, the co-infection or colonization with Pj 

could be an aggravating factor, possibly worsening prognosis or reducing survival of patients 

with cancer, and should be taken into account to improve survival (6). Additionally, several 

studies indicated that colonization with Pj could be the first step before the development of 

acute PCP in the following weeks or months, particularly in HIV-negative 

immunocompromised patients.  

Acc
ep

ted
 m

an
us

cri
pt



9 

 

On the other hand, Choi et al. reported that negative conversion of PCR result after specific 

therapy was associated with lower mortality rates (HR 0.433 [0.203-0.928], p<0.05) in HIV-

negative patients with severe PCP (66). They suggested that qPCR could be used to monitor 

treatment efficacy and to guide a switch of treatment, if first-line treatment does not result in 

negative PCR. Overall, they observed that patient outcome was poorer when time-to PCR 

negativation was longer. However, we presently lack other studies to validate these findings 

and to recommend patient monitoring by qPCR at a larger scale. 

 

FUTURE PERSPECTIVE: COMBINED DIAGNOSTIC STRATEGIES? 

Beta 1,3-D glucan (BDG) is a polysaccharide of the walls of most fungi, including Pneumocystis 

cysts. It can be detected in serum specimens from patients with PCP, thus has triggered recent 

interest as a noninvasive diagnostic test for PCP. Several studies have reported the 

performance characteristics of commercial BDG assays, with a sensitivity ranging from 90 to 

100% and a specificity of 78 to 96% (67), depending on the BDG kit and the patient population. 

As BDG is not specific for Pj, it should be associated to Pj qPCR to improve its specificity. 

Morjaria et al. (68)** recently reported a retrospective study on 438 cancer patients with 

suspicion of PCP, and found that in patients with a positive Pj PCR, BDG had a sensitivity, 

specificity, and PPV of 88%, 85%, and 96%, respectively. Therefore, combining qPCR and BDG 

would allow to benefit from the 100% NPV of qPCR, and to increase the PPV when qPCR and 

BDG are both positive. If such strategy is confirmed in other patient groups, it would greatly 

improve care management.  

Finally, new commercial real-time multiplex assays combine the detection of Pneumocystis 

together with dihydropteroate synthase (DHPS) point mutations responsible for resistance to 

sulfonamides drugs used for prophylactic and curative PCP therapy. PneumoGenius® assay 

(PathoNostics) has been recently shown to outpace “in-house” DHPS sequencing in terms of 

DHPS successful amplification (89 versus 72 BAL), and gave 100% concordant results (46). 

However, its sensitivity for diagnosing PCP was only moderate (70%).  

In conclusion, despite a significant body of literature on molecular diagnosis of PCP, there is 

still a need for innovative strategies to improve the PPV. Further studies would be welcome 
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to precise the interest of combining qPCR on pulmonary samples with serum BDG, and their 

respective cut-off to allow a reliable discrimination between colonization and active disease. 

Meanwhile, the search for new specific markers on non-invasive samples would be highly 

welcome. 

 

Key points:  

 

 Negative qPCR in BAL can rule out PCP 

 qPCR cut-off values are unreliable for patients with hematological malignancies 

 Negative qPCR result from non-invasive samples cannot rule out PCP whatever the 

patient background 

 Positive qPCR in BAL and BDG detection in serum is a promising strategy to target 

specific therapy 

 

Conflicts of interest: none 

Sources of funding: none  
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Table 1. Gene targets used in molecular diagnosis of Pneumocystis pneumonia (excluding typing studies) 
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Table 2. Performances of commercial quantitative PCR assays for Pneumocystis jirovecii diagnosis 
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