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Abstract
Evolutions of the Internet of Things (IoT) in the next years are likely to boost mobile video demand to an unprecedented
level. A large number of battery-powered systems will integrate an HEVC video codec, implementing the latest encoding
MPEG standard, and these systems will need to be energy efficient. Constraining the energy consumption of HEVC encoders
is a challenging task, especially for embedded applications based on software encoders. The most efficient approach to
reduce the energy consumption of an HEVC encoder consists in optimizing the quad-tree block partitioning of the image
and trade-off compression efficiency and energy consumption by efficiently choosing the near-optimal pixel block sizes.
For the purpose of reducing the energy consumption of a real-time HEVC Intra encoder, this paper proposes and compares
two methods that predict the quad-tree partitioning in “one-shot”, i.e. without iterating. These methods drastically limit
the computational cost of the recursive Rate-Distortion Optimization (RDO) process. The first proposed method uses a
Probabilistic approach whereas the second method is based on Machine Learning approach. Experimental results show that
both methods are capable of reducing the energy consumption of an embedded HEVC encoder of 58% for a bit rate increase
of respectively 3.93% and 3.6%.

Keywords HEVC · Intra · Quad-tree prediction · One-shot · Machine learning · Energy · Real-time

1 Introduction

With the progress of microelectronics, many embedded
applications now encode and stream live video contents.
The HEVC [33, 34, 42] standard represents the state-of-
the-art video standard. When compared with the previous
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ISO/IEC Moving Picture Experts Group (MPEG) Advanced
Video Coding (AVC) standard, HEVC Main profile reduces
the bit rate by 50% on average for a similar objective video
quality [35, 37]. This gain reduces the energy needed for
transmitting video. On the other hand, the computational
complexity of the encoders has been significantly increased.
The additional complexity brought by HEVC is mostly
due to the new quad-tree block partitioning structure
of Coding Tree Units (CTUs) and the increase in the
number of Intra prediction modes, which exponentially
impact the Rate-Distortion Optimization (RDO) process
[20].

The main limitation of recent embedded systems,
particularly in terms of computational performance, comes
from the bounded energy density of batteries. This
limitation is a major constraint for image and video
applications, video encoding and decoding being for
instance the most energy-consuming algorithms on smart
phones [3]. A large share of systems are likely to integrate
the HEVC codec in the long run and will require to be energy
efficient, and even energy aware. As a consequence, energy
consumption represents a serious challenge for embedded
HEVC real-time encoders. For both hardware and software
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codecs, a solution to reduce energy consumption is to
decrease the computational complexity while controlling
compression quality losses.

To reduce the computational complexity of HEVC

encoders, several algorithmic solutions have been proposed
at the level of quad-tree partitioning. Indeed, choosing
the right encoding block sizes is necessary to obtain a
good compression ratio but this choice is difficult and
usually results from a costly RDO process. The exhaustive
search partitioning solution is the optimal one, obtained by
testing all possible partitioning configurations and selecting
the one that minimizes the Rate-Distortion (RD)-cost.
This process is the most time consuming operation in an
HEVC encoder and thus it offers the biggest opportunity
of complexity reduction (up to 78% in the considered
embedded encoder) [20]. Complexity reduction solutions at
the quad-tree level consist in predicting, without encoding,
the adequate level of partitioning that offers the lowest
RD–cost.

As examples of related works, authors in [31] and [4]
propose to use the correlation between the minimum depth
of the co-located CTUs in the current and previous frames to
skip computing some depth levels during the RDO process.
Authors in [1, 9, 15, 25, 40] use CTU texture complexities
to predict the quad-tree partitioning. All these solutions
are based on reducing the complexity of an offline (i.e.
non-real-time) costly reference encoder called HEVC test
Model (HM). In this paper, we target energy reduction in
a real-time context of an optimized software encoder. A
real-time encoder such as Kvazaar is up to 10 times faster
than HM [39]. The complexity reduction performance of
state-of-the-art solutions based on HM are biased since they
are measured with respect to a large compression time.
The complexity overhead of state-of-the-art solutions is thus
comparatively higher in the context of a real-time encoder.

We propose in this paper two energy reduction methods
for HEVC Intra encoders based on a CTU partitioning
prediction technique. We then compare these methods
that drastically limit the recursive RDO process. The first
method exploits the correlation between CTU partitioning
and the variance of the CTU luminance samples to predict
the quad-tree decomposition in one-shot. The second
method uses a Machine Learning approach to perform the
same prediction. Machine Learning is an interdisciplinary
subfield of computer science that aims to replace the
manually engineered solutions for extracting information
from sensored data in all application fields. The two
methods are compared in terms of prediction accuracy of
the quad-tree partitioning as well as in terms of compression
performance.

The rest of this paper is organized as follows. Section 2
presents an overview of the HEVC intra encoder and goes
through State-of-the-Art methods of complexity reduction

techniques. Section 3 details the first proposed probabilistic
algorithm of quad-tree partitioning prediction based on
variance studies. Section 4 presents the second proposed
Machine Learning algorithm of quad-tree partitioning
prediction. The two proposed energy reduction schemes are
then compared in term of quad-tree partitioning accuracy
and performance in Section 5. Finally, Section 6 concludes
the paper.

2 Related works

2.1 HEVC Encoding and its Rate Distortion
Optimisation

An HEVC encoder is based on a classical hybrid video
encoder structure that combines Intra-image and Inter-
images predictions. While encoding in HEVC, each frame is
split into equally-sized Coding Tree Units (CTUs) (Fig. 1).
Each CTU is then divided into Coding Units (CUs),
appearing as nodes in a quad-tree. CUs gathers the coding
information of a block of luminance and 2 blocks of
chrominance (in 420 representation). In HEVC, the size,
in luminance pixels, of CUs is equal to 2N × 2N with
N ∈ {32, 16, 8, 4}. The HEVC encoder first predicts the
units from their neighbourhood (in space and time). To
perform the prediction, CUs may be split into Prediction
Units (PUs) of smaller size. In intra prediction mode, PUs
are square and have a luminance size of 2N × 2N (or
N × N only when N = 4), which can be associated to a
quad-tree depth range d ∈ {0, 1, 2, 3, 4}, as illustrated in
Fig. 1.

The HEVC intra-frame prediction is complex and
supports in total Npm = 35 modes performed at the level
of PU including planar (surface fitting) mode, DC (flat)
mode and 33 angular modes [33]. Each mode corresponds
to a different assumption on the gradient in the image. To
achieve the best RD performance, the encoder performs
an exhaustive search process, named Rate-Distortion
Optimization (RDO), testing all possible combinations of
quad-tree partitioning and the 35 Intra prediction modes.
The Quantization Parameter (QP) impacts the RDO process
to tune quality and bitrate. For a given CTU, an RDO
exhaustive search tests Nt different decompositions and
prediction modes where:

Nt = Npm×
4∑

d=0

22d = 35×(1+4+16+64+256) = 11935

(1)

This set of tests is the main cause of the HEVC encoding
complexity and the target of the energy optimization process
developed in this paper.
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Figure 1 Quad-tree structure of a Coding Tree Unit (CTU), divided
into Coding Units (CUs) and Prediction Units (PUs) (dimensions in
luminance pixels).

2.2 Software Real-Time HEVC Encoder

For embedded applications, hardware encoding solu-
tions [27] consume much lower energy than software solu-
tions. However, when the considered system does not embed
a hardware coprocessor, a software HEVC encoder [13,
24, 36, 38] can be used, for instance the HEVC refer-
ence software model (HM). HM is widely used, as it has
been designed to achieve an optimal coding efficiency (in
terms of RD). However, the computational complexity of
HM is high and not adapted to embedded applications. To
fill this gap, the x265 [24], f265 [38] and Kvaazar [36]
HEVC software encoders provide real-time encoding solu-
tions, leveraging on parallel processing and low-level Single
Instruction Multiple Data (SIMD) optimizations for different
specific platforms.

This study is based on the Kvaazar HEVC encoder
[36] for its real-time encoding capacity of Ultra High
Density (UHD) videos. The conclusions of this study can
however be extended to other real time software or hardware
encoders, as they all depend on a classical RDO process to
reach high compression performance.

2.3 Complexity Reduction of the Quad-Tree
Partitioning

As shown in [20], in a real-time software HEVC Intra
encoder, two specific parts of the encoding algorithm
provide the highest opportunities of energy reduction; the
Intra prediction (IP) level offers at best 30% of energy
reduction whereas the CTU quad-tree partitioning level has
a potential of energy reduction of up to 78%. Previous
studies on low complexity CTU quad-tree partitioning can
be classified into two categories: the early termination
complexity reduction techniques which are applied during

the RDO process to dynamically terminate the process
when further gains are unlikely, and the prediction-
based complexity reduction techniques which are applied
before starting the RDO process and predict the quad-
tree partitioning with lower complexity processing. In this
paper, we focus on prediction-based complexity reduction
techniques.

Authors of [4, 31, 44] propose to reduce the complexity
of the HEVC encoder by skipping some depth levels of
the quad-tree partitioning. The skipped depths are selected
based of the correlation between the minimum depth of
the co-located CTUs in the current and previous frames.
Results in [4] show an average time savings of 45% for a
Bjøntegaard Delta Bit Rate (BD-BR) increase of 1.9%. For
the algorithm from [31], results show an average complexity
reduction of 21%. Concerning [44], experimental results
show that the method can save about 48% encoding time for
a BD-BR increase of 2.9%. In this paper, the objective of the
study is to demonstrate a drastic energy reduction in a real-
time encoding setup by predicting the CTU partitioning. As
a consequence, higher energy reductions are obtained at the
expense of higher BD-BR increases.

Works in [1, 9, 15, 25, 40] use CTU texture complexities
to predict the quad-tree partitioning. Min et al. [1] propose
to decide if a CU has to be split, non-split or if it is
undetermined, using the global and local edge complexities
in four different directions (horizontal, vertical, 45◦ and
135◦ diagonals) of CU and sub-CUs. This method provides
a computational complexity reduction of 52% (in the non-
real-time HM) for a BD-BR increase of 0.8%. Feng et al. [9]
use information entropy of CUs and sub-CUs saliency maps
to predict the CUs size. This method reduces the complexity
by 37.9% (in HM) for a BD-BR increase of 0.62%.

Khan et al. [15] propose a method using texture variance
to efficiently predict the CTU quad-tree decomposition. The
authors model the Probability Density Function (PDF) of
variance populations by a Rayleigh distribution to estimate
some variance thresholds and determine the quad-tree
partitioning. This method reduces the complexity by 44%
(in HM) with a BD-BR increase of 1.27%. Our experiments
have shown that the assumption of a Rayleigh distribution is
not verified in many cases. For this reason, our Probabilistic
proposed method, based on the variance, does not consider
the Rayleigh distribution and thus differs from [15].

In [26], Penny et al. propose the first Pareto-based energy
controller for an HEVC encoder. From [26] are extracted
the following results which are the average results on one
sequence of each video class (A, B, C, D et E). For an energy
reduction from 49% to 71% (in HM), authors achieve a
BD-BR increase between 6.84% and 25%, respectively.

Several works have been proposed that use Machine
Learning based optimization to reduce the complexity of
the HEVC encoding process. Authors of [29, 30] present
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Figure 2 Merge prediction of a CU of depth d (belonging to a group
of 4 neighboring CUs in the Z-scan order) into a CU of depth d − 1.

an Intra CU size classifier based on data-mining with an
offline classifier training. The classifier is a three-node
decision tree using mean and variance of CUs and sub-
CUs as characteristics. This algorithm reduces the coding
time by 52% (in HM) at the expense of BD-BR increase of
2%. Duanmu et al. [7] present a fast CU partitioning using
Machine Learning for screen content video compression.
Authors use several characteristics such as CU luma
variances, color Kurtosis of CU, gradient Kurtosis of CU.
Shen and Yu [32] propose a CU splitting early termination
algorithm based on a Support Vector Machine (SVM). The
RD cost losses due to the misclassification are used as
features (weights) during the SVM training. In [43], authors
model the coding tree determination in HEVC with a three-
level hierarchical decision problem using SVM predictors.

These studies are all based on complexity reduction of the
HM software encoder and their performance can not be directly
translated to real-time encoders. The two methods proposed
in the next sections are studied within a real-time optimized
encoder and demonstrate high prediction efficiency.

3 Probabilistic Approach for Predicting
an HEVC Quad-Tree Partitioning

The aim of the techniques proposed in this paper is to
replace the brute force scheme usually employed in HEVC

Low variance
Large blocks

High variance
 Small blocks

Figure 3 Quad-tree partitioning of the 6th HEVC intra coded frame
of the BasketballDrive sequence. The green (resp. blue) circle shows
that the lowest (resp. highest) variance regions tend to be encoded with
larger (resp. smaller) units.

encoders by a low complexity algorithm that predicts in
one-shot the CTU partitioning for Intra prediction without
testing all possible decompositions. Following a bottom-up
approach (from CU 4 × 4 to 32 × 32), the main idea is
to determine the best partitioning of a given CU between
2N × 2N pixels and N × N pixels sub-blocks. Figure 2
illustrates the classification problem which predicts whether
the CU of the depth d has to be merged in CU of the depth
d − 1.

It has been shown that the CTU partitioning during the
RDO process is highly linked to the QP value and the texture
complexity which can be statistically represented by the
variance of blocks in Intra coding [1, 15, 40]. Figure 3 shows
the CU boundaries of the 6th frame of BasketballDrive
video sequence. It is worth noting that the regions with the
lowest variance (smooth) tend to be encoded with larger
blocks, as illustrated by the green circle in Fig. 3, while
the blue circle shows a region with a high variance (high
local activity), which are encoded with smaller blocks. In
this section, we use this correlation between the pixel values
of a block (variance) and its CTU partitioning to predict
the quad-tree decomposition of a CTU and thus reduce
drastically the encoding complexity.

3.1 Variance-Based Decision for Quad-Tree
Partitioning

To study how to predict the quad-tree partitioning from the
variance values of CU luminance samples, two populations
of CUs at a current depth d are defined: Merged (M) and
Non Merged (NM). The CU belongs to the Non Merged
population when the full RDO process chooses to encode
the CU at the current depth d, while the CU belongs to the
Merged population when the RDO process choose to encode
the CUs at a new depth d ′ with d ′ < d. With a bottom-
up approach (i.e. d from 4 to 1), all CUs of the quad-tree
decomposition of all CTUs can be classified into one of
these two populations.

Figure 4 CDFs of the Merged population depending of CU size for
the sixth frame of the sequence BasketballDrive. Under a specific
probability �, a variance threshold can be extracted from the inverse
CDF curve to classify a block as Merged.
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Table 1 Variance thresholds
υth(�, d) of the 50th frame of
two example sequences versus
d and �.

Sequence name � d = 1 d = 2 d = 3 d = 4

PeopleOnStreet 0.3 31.8 31.1 51.4 97.0

0.5 40.8 40.1 66.4 127.0

0.7 49.8 50.1 84.4 166.0

0.9 58.8 61.1 109.4 219.0

ParkScene 0.3 41.2 24.3 29.1 53.5

0.5 51.2 31.3 37.1 70.5

0.7 62.2 40.3 48.1 90.5

0.9 74.2 50.3 62.1 117.5

Cumulative Distribution Function (CDF) of the Non
Merged population can be used to decide whether a CU
has to be merged or not. In our case, the CDF defines the
probability of the variance population of a given CU size
being less or equal to a given value.

Figure 4 shows the CDFs of CU variances depending
on CU size for the sixth frame of the BasketballDrive
video sequence. The CDF curves show that the probability
for a CU size to be selected during the RDO process
decreases when the variance of the CU increases. In other
words, it is rare for a CU to have a variance greater
than a certain threshold. From this observation, a variance
threshold υth(�, d) for each depth d can be extracted from
the inverse CDF curve for a specific probability �. For
example, Fig. 4 shows that 80% (� = 0.8) of CUs 8 × 8
(d = 3) have a variance less than 555 represented by the
green dotted lines in Fig. 4. � is the percentage of coding
units whose variance is under the threshold υth, i.e. the
variance threshold that triggers unit split.

Table 1 shows the thresholds υth(�, d) for d ∈
{1, 2, 3, 4} extracted from the CDFs for the 50th frame of
the two sequence PeopleOnStreet and ParkScene. The Table
illustrates that large variation of the threshold value across
different video contents. In fact, the thresholds depend on
the video contents and thus have to be determined on-the-fly
from a Learning Frame (FL).

3.2 Variance Threshold Modelling

Since the thresholds have to be adapted based on the
video content, they have to be determined on-the-fly
from Learning Frame, i.e. frames encoded with a full
RDO process (unconstrained). The modelling of thresholds
υth(�, d) could have been conducted using variance PDFs
with an approximation of the distribution based on a
commonly known probability distribution but we observed
that starting from a CDF curve is better performing [21].
An approximation of the thresholds directly from Non
Merged population input features provides good results for

the CDF curve. In Fig. 5, the variance thresholds υth(d =
3, � = 0.8) is plotted versus the mean μυ(d = 3)

and the standard deviation σV (d = 3) of CUs 8 × 8
variances. The values are extracted for 4 QP values 22,
27, 32 and 37 of 100 frames selected randomly from 5
different sequences: BasketballDrive, BQTerrace, Cactus,
ParkScene, PeopleOnStreet and Traffic. Similar results are
obtained for other CU sizes. The results show that for a
fixed value of �, υth(�, d) depends linearly on μυ(d) and
standard deviation συ(d), and this independently from the
QP value.

From this observation, υth(�, d) can be modeled using
the following linear relation:

υth(�, d) = a(�, d)·μυ(d)+b(�, d)·συ(d)+c(�, d) (2)

where a(�, d), b(�, d) and c(�, d) are coefficients
modelling the threshold for each probability � and for
each depth d. The coefficients are computed offline for
each � and d values using a linear regression on all
frames of BasketballDrive, BQTerrace, Cactus,ParkScene,
PeopleOnStreet and Traffic for 4 values of QP 22, 27, 32
and 37. The Rsq is a metric that quantifies the accuracy of
a predicting model. The average Rsq value is equal to 0.86,
which confirms that the model fits the υth(�, d), regardless
of the video content and QP value.

Figure 5 Variance thresholds υth(d = 3, � = 0.8) versus the mean
μυ(d = 3) and the standard deviation σV (d = 3) of CUs 8 × 8
variances. For a fixed value of �, the variance threshold values form a
plane (independently of the QP value).
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We can summarize the above analysis in the following
steps:

– Thresholds from CDFs of variances can be predicted
from reference Learning Frame (FL).

– Look-Up Tables (LUTs) requires light computation
and memory overheads for the determination of the
threshold.

– The prediction of thresholds is independent from the QP
value (Fig. 5).

– Threshold modelling is accurate with a mean Rsq of
0.86 for the different depths.

– Thresholds can be precomputed according to � value
as a parameter.

The next section describes our first proposed algorithm to
predict the CTU partitioning using a variance criterion and
the obtained thresholds υth(�, d).

3.3 Probabilistic Prediction of the CTU Partitioning

A description of the CTU partitioning is needed to explicitly
depict the prediction of the quad-tree and then force
the encoder to only encode this specific decomposition.
Figure 6a illustrates the chosen representation of a CTU
partitioning in the form of a CTU Depth Map (CDM) matrix
8 by 8. Each element of the matrix represents the depth d

of a 8 by 8 square samples of the CTU. Since the CTU size
is 64 × 64 and the minimum size of CU is 4 × 4, a matrix
8 by 8 can be used to describe all partitioning of a CTU. A
depth of 4 in the CDM corresponds to 4 CU 4×4 in the CTU
decomposition.

The following section describes the proposed algorithm
and the prediction scheme that predicts in one-shot the CTU
partitioning using a variance criterion and the thresholds
υth(�, d) described in Section 3.1.

3.3.1 Computing the CTU Depth Map

For a given CTU, let υd(i, j) be the variance of the
luminance sample blocks of size 26−d × 26−d at the depth
level d and the local coordinates (i, j) into the CTU as
illustrated in Fig. 7.

Algorithm 1 describes our proposed Probabilistic algo-
rithm that predicts in one-shot the CTU partitioning. The
algorithm takes as inputs the luminance samples of CTU
and the table of thresholds υth previously computed by
Eq. 2 to generate the CDM associated to the input CTU.
In other words, the goal of this algorithm is to deter-
mine from the variance of the luminance samples the
CDM matrix of the CTU. Then, the encoder only has
to use the predicted depths instead of running an RDO
process to encode the video, reducing significantly the
complexity.

Algorithm 1 Probabilistic CTU Depth Map (CDM)
generation
Data: Samples of CTU,
Result: CDM matrix

1 CDM 4 [0 7]
// Initialization

2 Compute: 4 [0 15] // cf Eq. 3
3 for do
4 // CDM matrix block size
5 for 8 do
6 for 8 do

// Test if the 4 neighbor
blocks have the same
depth when 4

7 if CDM &&
CDM 2 &&
CDM 2 &&
CDM 2 2 then

// Test if the variances
of blocks are lower
than the threshold

8 23 23

if &&
&&
&&

then
// Block merging in the

CDM

9 CDM 1

10 Compute:
// cf Eq. 4

First of all, the full CDM is initialized with the depth
value 4 (line 1) and all the variances υ4(x, y) of the CU
4 × 4 (line 2) are computed using Eq. 3 where px,y(i, j) is
the luminance component of the samples at the coordinate
(i, j) in the CU 4 × 4 at the position (x, y) and p̄x,y the
average value of the block.

υ4(x, y) = 1

16

3∑

i=0

3∑

j=0

(px,y(i, j) − p̄x,y)
2 (3)

Then, the algorithm explores the CTU decomposition with
a bottom-up approach: from d = 4 to d = 1 (line 3).
For the current depth d, the algorithm browses the CDM

(lines 5–6) taking the block size δ in the CDM (line 4) into
account. Afterwards, the algorithm tests if the 4 neighbor
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blocks in the Z-scan order have the same depth d, except
when d = 4 (line 7). The algorithm does not try to merge
neighbor blocks if they have different depths as illustrated
in Fig. 8.

Algorithm 2 CTU depth map refinement
Data: CDM matrix
Result: RCDM matrix

1 if CDM 0 then
2 RCDM // Set RCDM

at 0

3 else
4 for do
5 for do
6 if CDM 4 then
7 RCDM 3 // Automatic

merge

8 else
9 CDM // Get the

depth

10 24 // CDM matrix block
size
// Test if it is the last

blocks in the Z-scane
order for the depth

11 if &&

2 then
// Test if the three

other blocks have
the same depth

12 if CDM &&
CDM &&
CDM then

13 RCDM

// Fill
the RCDM

Since the algorithm is bottom-up, there is no need to test
the condition when d = 4 because the CDM is initialized at
d = 4 which is the starting depth of the algorithm. If the
previous condition is true, then the algorithm tests whether
the blocks have to be merged or not using the variance
criteria (line 8) previously detailed in Section 3.1. If the
4 blocks variances υd are lower than the given threshold
υth(�, d) then the blocks are merged and the corresponding
elements in the CDM are set to d − 1 (line 9) and the
variance of the merged block is calculated three times using
the combined variance Eq. 4.

υa∪b = (2n − 1)(υa + υb) + n(μa − μb)
2

4n − 1
(4)

Equation 4 computes the variance of two sets of data a and b

containing the same number of observations n with μ and υ

corresponding to the mean and the variance of the specified
data set, respectively [5].

3.3.2 Refining the CTU Depth Map

To increase the accuracy of the one-shot depth map
prediction with a limited impact on the complexity, a second
algorithm is designed that refines the CDM.

The algorithm, described by Algorithm (2), takes as input
a CDM matrix from Algorithm (1) and generates a second
CDM called RCDM. The RCDM is the result of merging
all groups of four neighboring blocks (in the Z-scan order)
having the same depth in the input CDM. Algorithm (2)
details the process as follows.

The first step checks whether the input CDM depth is
equal to 0, if so then no merge can be applied and thus
the RCDM is also set to 0 (line 2). If not, the CDM is
analysed element by element (lines 4–5). Due to the fact
that a depth of 4 in a CDM corresponds to 4 CUs 4 × 4,
they are always merged to a depth 3 and thus the value
in the RCDM is automatically set to 3 (line 7). For the
general case (i.e d ∈ {1, 2, 3}), if the evaluated element
in the matrix correspond to the fourth block (in the Z-scan
order) of the given depth d (line 11) and if the 3 others
blocks have the depth d (line 12), then the algorithm fills
the corresponding blocks of the RCDM with the upper depth
d − 1 (line 13).

Figures 6 show an example of a CDM (Fig. 6a) and its
associated RCDM (Fig. 6b) matrices. The grey blocks in the
RCDM Fig. 6b represent the merged blocks. The next section
describes our Probabilistic energy reduction scheme.

3.3.3 Resulting Probabilistic CTU Prediction Method

Based on the previous elements, we propose to limit the
recursive search of the RDO process on the CTU quad-tree
decomposition by predicting the coding-tree partitioning
from video frame content properties. We introduce a prob-
abilistic variance-aware quad-tree partitioning prediction
method, illustrated in Fig. 9. First, the video sequence is
split into Groups of Frames (GOF). The first frame of a
GOF, called Learning Frame (FL) is encoded with a full
RDO process. From this encoding are extracted the vari-
ances υd according to the depth d ∈ {1, 2, 3, 4} selected
during the full RDO process. Then, the two following sta-
tistical moments according the depth d are computed: the
means μυd and the standard deviations συd of the variance
populations υd . According to the parameter �, the set of
thresholds υth(d) are calculated using Eq. 2 and the LUT
of the coefficients a(�, d), b(�, d) and c(�, d) computed
off-line (cf. Section 3.2).
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Figure 6 CDM and its associate
RCDM matrices of the CTU
partitioning of Fig. 1.

The other frames of the GOF, called constrained frames
(FC), are encoded with a limited RDO process. For each
CTU, Algorithm (1) is applied using the sets of thresholds
previously computed for the FL to generate the CDM.
However, the CDM generated with Algorithm (1) is very
restrictive for the RDO process as it allows only one depth
to be searched for each CU of a CTU. To increase the
accuracy of the depth map prediction with limited impact on
the complexity, the CDM is then refined by Algorithm (2) to
generate a second CDM called RCDM. To finish, the HEVC

encoder is forced to only apply the RDO process between
the two CDMS.

To conclude this section, our proposed probabilistic
energy reduction scheme takes as input the parameter �

to generate CDMS and RCDM. Then, the HEVC encoder is
forced to only apply the RDO process between the CDM and
the RCDM. The next section details the competing Machine
Learning method.

Figure 7 υd(i, j): variance of the luminance sample blocks of size
26−d × 26−d of a CTU versus the depth level d.

4Machine Learning Approach for Predicting
an HEVC Quad-Tree Partitioning

This Section presents our second quad-tree prediction
method based on Machine Learning. This quad-tree
prediction is then used to drastically simplify the brute force
algorithm usually employed in HEVC encoders.

4.1 Machine Learning Based Decision

As in the probabilistic method (Section 4), the Machine
Learning-based quad-tree prediction follows a bottom-up
approach (from CU 4×4 to CU 32×32). The classification
problem remains to determine whether the CU of the depth
d has to be merged in CU of the depth d − 1 as illustrated
in Fig. 2. The next section details the training set-up of the
learning algorithm.

4.1.1 Training Set-Up for the Coding Tree Structure
Determination

Machine Learning efficiency is very linked to the diversity
of data serving for the training. Video sequences used to
train the Machine Learning framework are chosen to cover
a vast space of content types. To select this training data set
including a large range of video contents and complexities,
the Spatial Information (SI) and Temporal Information (TI)
metrics [12] are used to characterize video sequences. The
TI and SI give respectively the degrees of motion and
spatial details in the video sequence. Since compression
complexity is highly linked to these two spatio-temporal
parameters, the set of training sequences for the Machine
Learning feature evaluation should span a large range of
both SI and TI.

Figure 10 shows the SI and TI for the video sequences
according to the classes (from A to E). The chosen training
sequence set (circled in Fig. 10) is composed of one video
sequence of each class, well distributed in term of SI and
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Figure 8 Probabilistic
bottom-up Algorithm (1)
example. Algorithm (1) does not
try to merge neighbor blocks if
they have different depths.
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TI: Traffic (class A), Cactus (class B), BQMall (class C),
BasketballPass (class D) and Johnny (class E).

Overfitting, i.e. overspecializing a model to a training
set, constitutes one of the main risks for the quality of an
Machine Learning-based model [6]. Thus, the dataset used
for training should result in a low bias. In our case, due
to the broad range of resolutions and frame rates across
the training sequences, the total number of CTU for each
class is not equally distributed. For instance, sequences with
high resolution contain a high number of CTUs with low
texture complexities when compared to sequences with low
resolution. To avoid such bias, datasets used for training are
forced to be composed of a fixed number of CTUs from
each class. To avoid the temporal bias, which would lead
to redundant information, the sampled CTUs come from
frames uniformly distributed throughout the sequences: 13
frames of the class A, 25 frames of class B, 55 frames for
class E, 125 frames of class C and 500 frames of class D.
For each depth d, 80000 instances are randomly sampled
from the previous defined data pool, composed by 40000
instances of each prediction decision at each depth d.

The open source Waikato Environment for Knowledge
Analysis (WEKA) Machine Learning framework is used for
the training process [11]. Weka is chosen for its popularity
and extensive set of documentations. It includes a large
number of Machine Learning algorithms for data mining
tasks, such as REPTree, LMT, RandomForest, BFTree and
C4.5 among others. WEKA also provides several useful

tools for features evaluation that use strategies according to
a search algorithm so as to rank the features depending on
their usefulness. For the current study, features have been
selected using the information gain provided by the WEKA
software. Information gain is based on the Kullback-
Leibler Divergence (KLD) [18], also called relative entropy,
which measures the divergence between two probability
distributions.

4.1.2 Decision Trees-Based Partitioning Decisions

State-of-the-art studies described in Section 2.3 gather many
characteristics used to predict the coding tree decomposition
of a CTU. To predict the coding tree in one-shot, only
characteristics independent from the encoding process with
a limited overhead of computation are considered.

The choice of these features is detailed in [23]. They
have been deduced from an extensive study of two factors:
the information gain provided by the WEKA software and
the overhead of computation under a real-time encoder. The
features vector for CU at coordinates (x, y) and depth d

of a given CTU, Fd
x,y , is composed of the following 12

features:

– CU var [7, 15, 21, 25, 29, 30] : the variance of the CU
luminance samples of depth d (1 features).

– Lower-CU var [7, 15, 21, 29, 30]: the variances of the 4
sub-CU luminance samples of depth d + 1 (4 features).

Variance
Computation

Moments
Computation

Thresholds
Computation

Variance
Computation

Depth Maps
Generation 

Depth Map
Refinement 

Unconstrained
HEVC Encoding

Constrained
HEVC Encoding

Encoded
Frame

Input
Frame

CTU Partitioning

Learning Frame FL?

yes

no

FL

Figure 9 Diagram of the Probabilistic proposed energy reduction
scheme. The Learning Frames (FL) are encoded with a full RDO pro-
cess (unconstrained) and the block variances of the resulting quad-tree
decomposition are used to compute the set of thresholds υth(d). The

constrained frames (FC ) use these thresholds to generate the CDM. The
CDM is then refined to generate the Refined CTU Depth Map RCDM

and the encoder is finally constrained to only apply the RDO process
in the interval formed by the two CDMS.
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Figure 10 SI and TI of the
video sequences according the
classes. The chosen training
sequence set is circled.
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– Upper-CU var [15, 21, 25, 29, 30]: the variances of the
upper CU luminance samples of depth d−1 (1 features).

– Nhbr-CU var [7, 15]: the variances of the neighbouring
CU luminance samples of the depth d in the Z-scan
order (3 features).

– Var of lower-CU mean [29, 30]: the variance of the
mean of the 4 sub-CU luminance samples of the depth
d + 1 (1 feature).

– Var of lower-CU var [29, 30]: the variance of the
variance of the 4 sub-CU luminance samples of the
depth d + 1 (1 feature).

– QP: the QP of the frame (1 feature).

The training of the decision trees is performed with the
C4.5 algorithm [28] because the trees it generates are light
weight. In terms of information gain, the C4.5 algorithm
uses KLD to select the best features for each decision. The
C4.5 algorithm is iterating among all training instances and
searches for each features the threshold that achieves the
best classification, i.e. with the highest information gain.
Then, the features and its corresponding threshold are used
to divide the training instances into two subsets. Finally, the
process is recursively iterated on the two different subsets
of training instances.

To measure the accuracy of the decision trees, a 10-fold
cross-validation is performed on the training instances. The
cross-validation technique evaluates a predictive models by
partitioning the original instances into a training set to
train the model, and a test set to evaluate it. In 10-fold
cross-validation, the original instances are randomly split
into 10 equally sized subsets. Among the 10 subsets of
instances, one subset is used as the validation instances
for testing the model, and the remaining 9 subsets are
used as training instances. The cross-validation process is
then repeated 10 times (called folds), with each of the 10
subsets used exactly once as the validation instances. Let the
Percentage of Correctly Classify Instances (PCCI) given by
the 10-fold cross-validation be the accuracy of the decision
trees.

Two types of classifiers are defined for each depth d:
the Merge and Split decision trees. These two decision trees
solve the same classification problem illustrated in Section 3
by Fig. 2 but differ in their input features. The Merge
decision trees use the features linked to CU of depth d to
predict if the 4 CUs of the d have to be merged in the CU of
depth d − 1. The Split decision trees use the features linked
to CU of depth d −1 to predict if the current CU of the d −1
have to be split in 4 CUs of depth d.

Table 2 Decision trees
dimensions and accuracy
(PCCI) according to the depth
d. The accuracy of both Merge
and Split decision trees are over
than 80% of good decisions

Merge decision trees

Depth d = 4 d = 3 d = 2 d = 1

Nb leaves 18 15 10 9

Size 15 13 13 15

PCCI 81.39% 80.52% 80.19% 81.26%

Split decision trees

Depth d = 3 d = 2 d = 1 d = 0

Nb leaves 18 15 10 9

Size 35 29 19 17

PCCI 82.24% 80.89% 80.87% 80.83%
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Table 2 summarizes the trained tree sizes, number of
leaves and the PCCI of the 8 decision trees. Results in
Table 2 show that the accuracy of both Merge and Split
decision trees are over than 80% of good decisions.

The next sections describes how we use decisions trees
to predict CTU partitioning.

4.2 Formalisation of the CTU Partitioning Decisions

Let PS(Fd
x,y) and PM(Fd

x,y) respectively be the prediction
results of the Split and Merge trees for the features vector
Fd

x,y . The prediction decision Dd(x, y) is defined as the
prediction resulting of the best combination of the decision
trees at the depth d by Eq. 5:

Dd(x, y) =
⎧
⎨

⎩
P

{1,2}
M (x, y) ∧ (PS(Fd−1

� x
2 �,� y

2 �) if d ∈ {1, 2}
P

{3,4}
M (x, y) ∨ (PS(Fd−1

� x
2 �,� y

2 �) if d ∈ {3, 4}
(5)

with P
{1,2}
M (x, y) and P

{3,4}
M (x, y) such as:

P
{1,2}
M (x, y) = PM(Fd

x,y) ∧ PM(Fd
x+1,y)

∧PM(Fd
x,y+1) ∧ PM(Fd

x+1,y+1) (6)

P
{3,4}
M (x, y) = PM(Fd

x,y) ∨ PM(Fd
x+1,y)

∨PM(Fd
x,y+1) ∨ PM(Fd

x+1,y+1). (7)

In other words, for the high depth d ∈ {1, 2}, the algorithm
will merge the four CUs at the depth d if all the five
decision trees predict to merge. In contrast, for the low
depth d ∈ {3, 4}, the algorithm will merge the four CUs
at the depth d if at least one decision tree predicts to
merge.

4.2.1 Machine Learning Prediction Algorithm for CTU
Partitioning

Algorithm (3) describes our proposed bottom-up algorithm
that predicts the CTU partitioning using a Machine Learning
approach. The algorithm takes as inputs all the features Fd

x,y

defined in Section 4.1.2 previously computed to generate
the CDM associated to the input CTU.

First of all, the full CDM is initialized with depth
value 4 (line 1). Then, the algorithm explores the CTU
decomposition with a bottom-up approach: from d = 4
to d = 1 (line 2). For the current depth d, the algorithm
browses the CDM (lines 4–5) taking the block size δ in
the CDM (line 3) into account. Afterwards, the Machine

Learning Algorithm (3) differs from the probabilistic
Algorithm (1) and does not test if the 4 neighbor blocks
in the Z-scan order have the same depth d, as illustrated
in Fig. 11. Indeed, better results are obtained without this
condition, contrary to the probabilistic case.

Then the algorithm tests whether the blocks have to be
merged or not using the merge and split decision trees
prediction respectively PM(Fd

x,y) and PS(Fd
x,y) previously

detailed in Section 4.1.2 and the combination defined by
Equation 5 (line 7). If the prediction is true, the blocks are
merged and the corresponding elements in the CDM are set
to d − 1 (line 8).

Algorithm 3 Machine learning CTU depth map
inference
Input: // All features of the CTU
Result: CDM matrix

1 CDM

// Initialization
2 for do
3 // CDM matrix block size
4 for do
5 for do
6 // idx

// Test the condition of
merge decision cf
eq. 5, 6 and 7

7 if then
// Block merging in the

CDM

8 CDM 1
1]

4.2.2 Resulting Machine Learning CTU Prediction Method

Figure 12 presents a high-level diagram of our resulting
Machine Learning CTU partitioning prediction technique.
Thanks to the offline training of the decision trees, all the
frames are constrained and no learning frame is needed,
in contrast to the probabilistic approach (cf Section 3).
The features detailed in Section 4.1.2 are computed for
the whole frame to minimize the computational complexity
overhead. Then, Algorithm (3) is applied using the
features to generate the CDM. As with the Probabilistic
approach, to increase the accuracy of the depth map
prediction with limited impact on the complexity, the
CDM is refined using Algorithm 2 to generate the RCDM.
Finally, the HEVC encoder is forced to only apply the
RDO process between the previously generated CDM and
RCDM.
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Figure 11 Machine Learning bottom-up Algorithm (3) example. Algorithm (3) do not take into account the decisions taken at the previous depth.

5 Probabilistic Approach versus Machine
Learning for One-Shot Quad-Tree Prediction

This section gives the experimental setup and the results
obtained for the two proposed energy reduction schemes on
the real time HEVC encoder Kvazaar [36].

5.1 Experimental Set-Up andMetrics to Evaluate
the Quad-Tree Partitioning Predictions

5.1.1 Experimental Set-Up and Parameters

To conduct the experiments, 18 video sequences [2]
that strongly differ from one another in terms of frame
rate, motion, texture and spatial resolution were used.
All experimentations are performed on one core of
the EmETXe-i87M0 platform from Arbor Technologies
based on an Intel Core i5-4402E processor at 1.6 GHz.
The used HEVC software encoder is the real time
Kvazaar [16, 17, 39] in All Intra (AI) configuration. Since
the configuration aims to be real-time, from [20], the Rate-
Distortion Optimisation Quantization (RDOQ) [14] and the
Intra transform skipping [19] features are disabled. Each
sequence is encoded with 4 different QP values: 22, 27, 32,
37 [2]. For the Probabilistic approach, previous experiments
showed that the best prediction is obtained with � ∈
[0.6, 0.7] [21]. For the following experiments, � is fixed to
0.6 and GOF size is fixed to 50, which is shown in [22] to
be an appropriate value for drastic energy reductions.

Bjøntegaard Delta Bit Rate (BD-BR) and Bjøntegaard
Delta Psnr (BD-PSNR) [41] are used to measure the
compression efficiency difference between two encoding
configurations. The BD-BR reports the average bit rate
difference in percent for two encodings at the same quality
in terms of Peak Signal-to-Noise Ratio (PSNR). Similarly,

the BD-PSNR measures the average PSNR difference
in decibels (dB) for two different encoding algorithms
considering the same bit rate.

To measure the energy consumed by the platform, Intel
Running Average Power Limit (RAPL) interfaces are used to
obtain the energy consumption of the CPU package, which
includes cores, IOs, DRAM and integrated graphic chipset.
As shown in [10], RAPL power measurements are coherent
with external measurements and [8] proves the reliability
of this internal measure across various applications. In this
work, the power gap between the IDLE state and video
encoding is measured. The CPU is considered to be in IDLE
state when it spends more than 90% of its time in the C7 C-
states mode. The C7 state is the deepest C-state of the CPU
characterized by all core caches being flushed, the PLL and
core clock being turned off as well as all uncore domains.
The power of the board is measured to 16.7W when the CPU
is in idle mode and goes up to 31W during video encoding
in average. RAPL shows that 72% of this gap is due to the
CPU package, the rest of the power going to the external
memory, the voltage regulators and other elements of the
board.

5.1.2 Experimental Metrics

The performance of the proposed energy reduction scheme
is evaluated by measuring the trade-off between Energy
Reduction (ER) in % and Rate-Distortion (RD) efficiency
using the BD-BR and BD-PSNR. ER is defined by Eq. 8:

ER = 100

4

∑

QPi∈{22,27,32,37}

ERef (QPi) − Ered(QPi)

ERef (QPi)
(8)

where ERef (QPi) is the energy spent to encode the video
sequence without constraint and Ered(QPi) the energy

Constrained
HEVC Encoding

Encoded
Frame

Input
Frame Features

Computation

Depth Maps
Refinement Machine Learning

CDM Inference

Figure 12 Diagram of the Machine Learning proposed energy reduc-
tion scheme. The features are firstly computed for the whole input
frame. The features are using to generate the CDM. The CDM is then

refined to generate the RCDM and the encoder is finally constrained to
only apply the RDO process in the interval formed by the two CDMS.
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to encode the same sequence with our proposed energy
reduction scheme, both with QP = QPi .

The main objective of Algorithms (1) and (3) is to
generate a CDM that minimises the prediction error when
compared to what the full RDO process would generate.
To evaluate the accuracy of our predictions, we define the
normalized L1 distance � between two CDMS in terms of
depth levels as follow:

�(A,B) =
⎡

⎣
7∑

i=0

7∑

j=0

|A(i, j) − B(i, j)|
⎤

⎦ /64 (9)

where A and B are the two compared CDMS. In other words,
the metric �(A,B) measures the average gap in number of
depth levels between two CDMS A and B of a given CTU.
Let use Fig. 6 as example, the distance � between the CDM

Fig. 6a, b is equal to � = (4 + 1 + 16)/64 = 0.3281.
In addition to the distance metric, we define the recall ρ

between two CDMS A and B:

ρ(A,B) =
⎡

⎣
7∑

i=0

7∑

j=0

δ(A(i, j) − B(i, j))

⎤

⎦ × 100

64
, (10)

with δ(x) =
{

0 if x 
= 0
1 if x = 0

(11)

The recall ρ(A,B) represents the share of correct quad-
tree decomposition in term of pixel area between predicted
CTUs A and reference CTUs B. Let us use Fig. 6 as
example, the recall between the CDM Fig. 6a (considered as
predicted) and Fig. 6b (considered as reference) is equal to
ρ = 43 × 100

64 = 67.19%.
The recall ρ(P,R) and the distance �(P, R) are used

in the following sections to evaluate the accuracy of the
prediction with P being the predicted CDM and R the
reference CDM,1 generated by a full RDO process (optimal).
The average of ρ(P,R) measurements gives the percentage
of good prediction in term of pixel area, it falls between
0% and 100% and the more ρ(P,R) is close to 100%, the
more the predicted CDMS accurately fit the reference CDMS.
The average distance �(P, R) represents the mean error in
term of depth between the predicted CDMS and the reference
one, the more �(P, R) is close to 0, the more precise the
predicted CDM P becomes.

5.2 Comparison of Probabilistic andMachine
Learning Approach for Predicting an HEVC Quat-Tree
Partitioning

Table 3 details the performance of the two proposed energy
reduction schemes: the Probabilistic and the Machine
Learning approaches, for 18 different sequences belonging

1Exhaustive search leading to the optimal solution.

to the 5 classes A, B, C, D and E, each one corresponding
to a specific resolution or video content. Two types of
metrics are detailed in Table 3. The first one is composed
by the ρ(P,R) measure and the distance �(P,R) defined
in Section 5.1.2 averaged across the four QP values which
evaluate the precision of the quad-tree prediction for all
constrained frames. The second one is composed by BD-
BR and BD-PSNR [41] that are the common metrics
used in video compression to measure the compression
efficiency difference between two encodings. The ER
values include the energy overhead due to the entire energy
reduction scheme (features or variance computation and
CDM prediction). In a real-time configuration (see Sec-
tion 5.1.1), the computational overheads in the real-time
encoder Kvazaar of our two proposed methods are between
1% and 1.9% for the Probabilistic approach and between
1.5% and 2.5% for the Machine Learning approach.

In terms of quad-tree prediction accuracy in one-shot,
Table 3 shows that the Machine Learning energy reduction
techniques achieve better results (around 53% of ρ(P,R)

for a distance �(P,R) of 0.67 depth level) than the
Probabilistic energy reduction techniques (around 50% of
ρ(P,R) for a distance �(P,R) of 0.79 depth level).

The results show that both energy reduction techniques
achieve an average of 58% of energy reduction. In fact, the
overhead due to the unconstrained Learning Frame (FL)
and the variance computations of the Probabilistic approach
is approximately equal to the overhead of the features
computations of the Machine Learning approach. However,
even if the Probabilistic approach does not constrain all the
frames (only 49 every 50 frames), this approach causes more
encoding degradations: +0.33% of BD-BR and -0.02dB
of BD-PSNR, than the Machine Learning approach. These
results show that the two metrics ρ(P,R) and �(P, R) of
quad-tree prediction accuracy are well correlated with the
impact in encoding degradations.

It is noticeable in Table 3 than the Kimono sequence
has more degradations than the other sequences: 13.28%
of BD-BR increasing with the Probabilistic approach and
9.51% of BD-BR increasing with the Machine Learning
approach. This can be explained by the texture specificity
of the Kimono video sequence which is composed by a
traveling of trees and vegetation in the background. This
video sequence has the highest Spatial Information (54.1)
due to the details. Nevertheless, the results show that the
Machine Learning approach reduces the degradation of
3.77% of BD-BR compare to the Probabilistic approach.

The performance of state-of-the-art solutions (cf
Section 2.3) based on HM can not be directly compared to
these results. Indeed, they are measured comparatively to a
large compression time, far from real-time. The complexity
overhead of state-of-the-art solutions is thus comparatively
higher in the context of a real-time encoder. Previously
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Table 3 The recall ρ(P, R), distance �(P, R), BD-BR, BD-PSNR and ER of the Probabilistic and Machine Learning drastic energy reduction
schemes according to the sequences. For the same energy reduction, the Machine Learning energy reduction techniques achieve better results than
the Probabilistic energy reduction techniques for both quad-tree prediction accuracy and encoding degradation.

Probabilistic Machine learning

Sequence ρ (in %) � (in d) BD-BR (in %) BD-PSNR (in dB) ER (in %) ρ (in %) � (in d) BD-BR (in %) BD-PSNR (in dB) ER (in %)

Traffic 44.76 0.86 4.59 -0.24 60.16 46.96 0.79 4.05 -0.21 58.69

PeopleOnStreet 51.92 0.70 4.28 -0.24 59.06 51.34 0.72 3.73 -0.21 57.09

Kimono 18.87 2.06 13.28 -0.43 52.59 40.82 0.94 9.51 -0.31 61.33

ParkScene 38.66 1.24 4.29 -0.19 55.84 47.09 0.84 3.86 -0.17 60.28

BasketballDrive 47.68 0.76 3.69 -0.11 60.75 50.74 0.69 4.65 -0.13 60.16

Cactus 43.86 0.95 3.56 -0.13 60.40 50.03 0.73 3.79 -0.14 61.34

BQTerrace 51.83 0.66 2.25 -0.14 62.06 50.35 0.69 1.99 -0.13 58.93

RaceHorses480 46.86 0.91 3.11 -0.18 59.68 54.59 0.64 2.95 -0.17 60.37

PartyScene 55.38 0.56 1.88 -0.13 59.48 52.54 0.63 1.10 -0.08 57.10

BasketballDrill 51.40 0.64 2.74 -0.13 58.33 43.62 0.85 4.97 -0.24 62.26

BQMall 53.78 0.66 3.46 -0.19 57.54 52.62 0.66 3.16 -0.17 57.13

RaceHorses240 52.01 0.69 2.47 -0.15 59.07 57.88 0.54 1.93 -0.12 58.57

BQSquare 65.92 0.41 2.73 -0.21 57.81 67.81 0.42 1.00 -0.08 55.51

BlowingBubbles 55.70 0.55 1.45 -0.10 55.25 51.90 0.64 1.24 -0.08 53.54

BasketballPass 57.55 0.55 2.39 -0.14 59.20 57.46 0.56 2.31 -0.14 58.01

FourPeople 49.80 0.74 4.78 -0.27 55.70 50.03 0.73 4.51 -0.25 55.13

Johnny 53.61 0.67 5.76 -0.23 51.63 60.17 0.55 5.49 -0.22 52.26

KristenAndSara 58.50 0.56 4.10 -0.21 54.24 61.32 0.50 4.62 -0.23 53.39

Average 49.89 0.79 3.93 -0.19 57.71 52.63 0.67 3.60 -0.17 57.84

published results can thus not be directly applied to reduce
the energy consumption in a real-time encoder as the two
methods developed here.

To conclude, the Machine Learning approach achieves
better results on average than the probabilistic approach
and does not require unconstrained learning frames to predict
the quad-tree partitioning. These two points make the proposed
Machine Learning approach a good candidate to build
energy reduction methods for real-time HEVC encoders.

6 Conclusion

This paper proposes and compares two energy reduction
methods for real-time HEVC Intra encoders. These methods
are based on CTU partitioning prediction techniques that
drastically limit the recursive RDO process. The first
proposed method exploits the correlation between a CTU
partitioning and the variance of the CTU luminance samples
to predict the quad-tree decomposition in one-shot. The
second method uses a Machine Learning method to predict
in one-shot the quad-tree decomposition.

Experimental results show that the Machine Learning
method has a slight edge over the probabilistic method and
that this performance has a direct impact on the encoding
degradations. Both energy reduction techniques are capable
of reducing the energy consumption of the HEVC encoder
by 58% — including the additional algorithm overhead
under a real-time encoder — for a bit rate increase of
respectively 3.93% and 3.6%. The obtained energy gain
is substantial and close to the theoretical maximum of
78% gain that would be obtained if the perfect quad-tree
decomposition would be known in advance. Future work
will use one-shot quad-tree partitioning prediction to control
the energy consumption of an HEVC Intra encoder for a
given energy consumption budget.
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