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ELASTIC- Enabling Massive-Antenna for Joint Spectrum Sensing and
Sharing: How Many Antennas Do We Need?

Hussein Kobeissi*, Youssef Nasser*, Oussama Bazzi, Amor Nafkha, and Yves Louët

Abstract—Massive Antenna and Cognitive Radio (CR) tech-
nologies have attracted many research interests due to the
additional resources offered in striving against the spectrum
crisis. In this paper, we propose a general framework to EnlabLe
mASsive anTenna exploItation for spectrum sensing and sharing
in CR (ELASTIC). Using random matrix theory and moment
matching method, we derived a simple approximation of the
distributions of three eigen-value based detectors namely the
Largest Eigenvalue (LE), the Scaled LE (SLE), and Standard
Condition Number (SCN). This has led to a simple analytical
formulation and optimization of the number of antennas and the
number of samples to reach a target performance. To exploit the
large number of antennas, we proposed two sensing scenarios.
The first is based on full antenna exploitation and guarantees
an optimal performance despite the transmission conditions. The
second is based on partial antenna exploitation, which determines
the exact number of antennas and samples required to reach the
target performance. We have shown that the framework offers
an additional degree of freedom in the selection of the optimal
system parameters, namely the number of antennas, while the
remaining antennas are exploited for sharing in other dimensions
of the spectrum hypercube.

Index Terms—Cognitive radio, MIMO systems, Eigenvalue
based detector, Spectrum sensing, Wishart matrix.

I. INTRODUCTION

5G, the fifth generation of mobile networks, is expected to
accommodate new demands and high data-rates that are

growing at an unprecedented pace requiring a large amount
of radio frequency resources. To fulfill these requirements, the
Cognitive Radio (CR) technology has been introduced to offer
a more efficient use of spectrum and thus reduce its scarcity
[1]. A CR device can sense an unused channel and adjust its
transceiver parameters accordingly.

In CR networks, Spectrum Sensing (SS) is the task of
obtaining awareness about the spectrum usage. It concerns
two scenarios of detection: (i) detecting the absence of the
Primary User (PU) in a licensed spectrum and (ii) detecting
the presence of the PU to avoid interference. Hence, SS plays
a major role in the performance of the CR technology for both
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the PU and Secondary User (SU). In this regard, several SS
algorithms have been proposed [2]. These techniques include
energy detector, matched filter detector, cyclostationary feature
detector, etc [3]. SS techniques with superior performance and
robustness were also designed using the eigenvalues of the
received signal’s covariance matrix. These detectors, classified
under the name eigenvalue based detector (EBD), rely on the
use of random matrix theory (RMT) and different eigenvalue
properties of the sample covariance matrix in decision making.
The key advantage of the EBD lies in the fact that it can reach
a high sensing performance without necessarily requiring
knowledge about the primary signal and the noise power.
EBD techniques include, but are not limited to, the largest
eigenvalue (LE) detector [4]–[7], the scaled largest eigenvalue
(SLE) detector [7]–[15], and the standard condition number
detector (SCN) [4], [6], [16]–[20].

In the context of massive antenna deployment (up to few
hundred in the literature), it is very likely for CRs to exploit
the advantages offered by the multiple-input multiple-output
(MIMO) technologies to improve secondary communications
[21]–[26]. For instance, massive antenna technology allows
the secondary users exploiting the angle-of-arrival dimension
in the transmission hyperspace using beamforming [27]–[30].
As such, CR could be combined with massive MIMO through
the additional degree of freedom offered by the large number
of antennas to identify the unused channels while achieving
a significant increase in the performance of the SS detector.
It might be also enough to use a fewer number of antennas
for the sensing process while the rest could be used for other
purposes. Hence, two scenarios could be considered:

1. Full Antenna Exploitation (FAE) scenario: Therein,
the CR module may use all of its antennas to detect
primary users and hence it reduces the number of samples
required to perform spectrum sensing. Thus, the sensing
time overhead is reduced.

2. Partial antenna exploitation (PAE) scenario: the CR
module may set a certain number of antennas to per-
form primary users detection and use the rest of the
antennas for other purposes (mainly transmission). It
may also dynamically change the number of antennas K
and/or the number of samples N according to predefined
performance, and use the remaining antennas for other
purposes.

Accordingly, the calculation of the minimum number of
antennas and/or the minimum number of samples required to
reach a given target performance is very important. However,
these values are directly related to the statistics of the spectrum
sensing approach and its corresponding performance metrics
and mechanisms.
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In this paper, we mainly consider the framework to En-
labLe mASsive anTenna exploItation for spectrum sensing
and sharing CR (ELASTIC). We firstly introduce the LE,
SLE and SCN detectors, and we propose new approximations
for their distribution based on the generalized extreme value
(GEV) probability density function (PDF). These detectors are
then considered and studied in the two antenna exploitation
scenarios, i.e. FAE and PAE. The main contributions of this
paper can be summarized as follows:

• Proposition of a new approximation for the cumulative
distribution function (CDF) and the PDF of the LE
detector.The proposed approximation provides a simple
formulation of the proposed analytical framework and al-
lows an optimization of the number of antennas as stated
by ELASTIC. To the best of the authors knowledge,
this approximation has not been proposed in literature
including our previous works.

• Extension of our previous work in [14], [19], [20] to
provide key design metrics for the operators to optimize
the CR network. Indeed, in our previous works, we have
derived new approximations of the PDF EBD detectors.
These approximations led to simple formulations that
could be exploited in the design of a system with multiple
antennas. In ELASTIC, we exploit these formulations
to set and derive key design metrics depending on the
required system performance given in terms of probability
of false alarm and detection. In other words, this work
proposes a simple analytical tool to tune these metrics
(such as detection threshold) in terms of the network
transmission parameters (as the number of antennas 1.

• Derivation of the optimal decision thresholds for the three
detectors in both FAE and PAE scenarios. The latter is
given in terms of probability of false alarm Pfa and
probability of detection Pd.

• Derivations of the minimum requirements in number of
antennas K and number of samples N that achieve a
target detection performance.

Note 1: This work shows that a reduced number of antennas
is needed to sense a channel. Accordingly, in a massive
antenna environment, a large number of channels can be
sensed simultaneously.
Note 2: It is worthy that the exact distributions of the three
detectors have been derived in literature. However, these
distributions are too complicated to be used in the analytical
optimization of the system metrics. For instance, a Marchenko-
Pastur (MP) law is used for the SCN distribution [4] but its
expression is hard to be analytically exploited.
To the best of the authors knowledge, this work is a first of
its kind in literature and will definitely open new research
pathways to exploit the analytical derivations provided in this
paper to other applications such as spectrum sharing, cognitive
user capacity analysis, mmWave base station massive sensing
capabilities in vehicular networks [31], etc.

1The paper does not reproduce our previous work but provides a reminder
on the main derivations that have been stated to assure a smooth readability
of the current work. These derivations are then extended to optimize the
Massive-MIMO CR parameters.

The rest of this paper is organized as follows. In section
II, we present the main rationale behind ELASTIC framework
and give the benefits of these approaches. Section III intro-
duces the system framework, system model and defines the
main parameters for EBD. In Section IV, the largest eigenvalue
detector is firstly introduced and then followed by the proposed
approximation of its PDF in different scenarios. In Sections V
and VI, the SLE and and SCN detectors are introduced and
then followed by the proposed PDF distributions respectively.
Full and partial antenna exploitation scenarios are analytically
considered in section VII. Threshold derivation and optimiza-
tion are considered along with optimal system requirements
in Section VIII. Results are validated and discussed in section
IX while the conclusion is drawn in section X.

Notations: Vectors and Matrices are represented, respec-
tively, by lower and upper case boldface. The symbols |.|
and tr(.) indicate, respectively, the determinant and trace of
a matrix while (.)1/2, (.)T , and (.)† are the square root,
transpose, and Hermitian symbols respectively. In is the n×n
identity matrix and 1KN is a K ×N ones matrix. Symbol ∼
stands for ”distributed as” and E[.] stands for the expected
value.

II. THE RATIONALE BEHIND ELASTIC
As stated earlier, two main scenarios could be considered:

the FAE and the PAE. While the full antenna exploitation
scenario is using all of the antennas at the same time for
spectrum sensing, the partial antenna exploitation scenario
could be decomposed into two different approaches: (i) exploit
a fixed number of antennas for SS and thus use the rest for
other purposes, it will be labeled fixed PAE (FPAE) and (ii) a
dynamic approach in which the CR does not set a predefined
number of antennas but it dynamically allocates a certain
number of antennas for SS according to certain constraints,
labeled dynamic PAE (DPAE).

The division into approaches could be justified by the simple
fact that a trade-off between spectrum sensing performance
and exploitation of available antennas for other targets could
exist. This depends on the different metrics and performance
objectives. In this work, the following approaches could be
considered:
• Sensing multi-channels simultaneously [32], [33]: Within

the framework of ELASTIC, a new approach is consid-
ered: the antennas are clustered so that each set is used
to sense certain channel and/or certain direction. Hence,
several spectrum holes could be found at the same time.

• Sense and transmit simultaneously: Contrarily to the con-
ventional sensing techniques [34], simultaneous sensing
and transmission could be considered as a full duplex
approach in which two RF chains are required at the CR
receiver [35]. Likewise, the CR could maintain a set of
antennas for SS and the others for the transmission in a
full duplex scenario.

• Green radio: ELASTIC framework offers an energy effi-
ciency perspective in which a limited number of antennas
are switched-on while the others are in sleep mode [36].

• Reduce sensing time: The FAE scenario may not be the
optimal scheme to reduce the sensing time since PAE
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could offer the same performance with less antennas.
Hence, an optimal trade-off between the number of
antennas and the required number of samples to make
a decision may decrease the total sensing time.

• Increase system throughput: In general, using some or
all of these methods would increase the total system
throughput as the system will be able to transmit data
over the remaining time/antennas.

Consequently, the use of a fixed number or dynamic number
of antennas for spectrum sensing is extremely important for
CR with massive antenna technology. In both cases, the CR
technology has to optimize the number of antenna K and
samples N to perform primary users detection so that to
maintain a target performance for any transmission conditions
(given for e.g. in terms of Signal-to-Noise Ratio SNR). In both
cases, the remaining number of antennas will be used for other
transmission purposes.

III. ELASTIC FRAMEWORK

A. System Model

Consider a multiple-antenna CR system, say K antennas,
aiming to detect the presence/absence of a single PU during
a sensing period equivalent to NTs where Ts is the sampling
period. For this detection problem, there are two hypotheses:
the null hypothesis H0 corresponds to the absence of PU
transmission (i.e. spectrum hole); and the alternative hypoth-
esis H1 corresponds to the presence of the PU transmission
(i.e. spectrum being used). The received vector, at instant nTs,
under both hypotheses is given by:

H0 : y(n) = b(n), (1)
H1 : y(n) = h(n)s(n) + b(n), (2)

where y(n) = [y1(n), · · · , yK(n)]T is the observed K × 1
complex samples received from different antennas at instant
n. b(n) is a K × 1 complex circular white Gaussian noise
with zero mean and variance σ2

b . h(n) is a K × 1 vector that
represents the channels’ coefficients between the PU and each
antenna at the CR receiver and s(n) stands for the primary
signal sample at instant nTs, having a Gaussian distribution
with zero mean and variance σ2

s . In this paper, under H1, the
model represents a single PU transmitted over an independent
and identically distributed (i.i.d.) channel coefficients with zero
mean and variance σ2

h or equivalently the PU signal is sampled
subject to uncorrelated (fast) Rayleigh fading. This assumption
is in line with the literature works such [18] [24]. Moreover,
the channel coefficients h(n) are assumed to be i.i.d. at each
time instant n. After collecting N samples from each antenna,
the received signal matrix Y is written as:

Y =


y1(1) y1(2) · · · y1(N)
y2(1) y2(2) · · · y2(N)

...
...

. . .
...

yK(1) yK(2) · · · yK(N)

 (3)

Without loss of generality, we suppose that K ≤ N and we
define the received sample covariance matrix as W = Y Y †.

1) H0 hypothesis: Under H0 hypothesis, the entries of the
matrix Y are complex Gaussian with zero mean and variance
σ2
b . Therefore, the sample covariance matrix, W , is a K ×K

central uncorrelated complex Wishart matrix with N degrees
of freedom (DoF) and with statistical covariance matrix:

Σ = σ2
b IK (4)

and is denoted by W ∼ CWK(N, σ2
b IK).

2) H1 hypothesis: Under H1, we assume the presence of a
single PU. Consequently, W follows a central semi-correlated
complex Wishart distribution, denoted by W ∼ CWK(N,Σ),
with N DoF and statistical covariance matrix Σ given by [37]:

Σ = σ2
shh

† + σ2
b IK (5)

The statistical covariance matrix Σ is a rank 1 perturbation
of the identity matrix, then it belongs to the class of spiked
population model first introduced by [38]. Since the rank of
σ2
shh

† is 1, then all but one of the eigenvalues of Σ are still
σ2
b . Denoting the average SNR by:

ρ =
σ2
sσ

2
h

σ2
b

, (6)

and by using the property that the trace of a matrix equals the
sum of its eigenvalues, the eigenvalues of Σ are given by:

σ = σ2
b [Kρ+ 1,11,K−1]. (7)

B. Eigenvalue Based Detector

EBD could be divided into two classes: detectors that
require the knowledge of noise variance and detectors that
do not require this knowledge. LE detector is the optimal
detector when noise variance is perfectly known while SLE
detector is the optimal under the generalized likelihood ratio
(GLR) criterion when noise variance is unknown [7], [10].
Other EBD techniques such as the SCN detector provide
good performance while they don’t require channel knowledge
or primary user information. For a given decision threshold
λ̂EBD, the general EBD algorithm is given by:

Algorithm 1: Eigenvalue Based Detector

Input: Y , λ̂EBD
Output: DEBD

1 compute W = Y Y † ;
2 get [λ1, · · · , λK ] of W using EVD ;
3 evaluate XEBD ;

4 decide DEBD = XEBD

H1

≷
H0

λ̂EBD ;

where [λ1, · · · , λK ] is the vector of eigenvalues of the
covariance matrix W , XEBD is the EBD metric used for
detection and DEBD is its decision.

C. Performance Probabilities

The performance of any spectrum sensing technique is
usually expressed in terms of its false-alarm probability and
its missed-detection probability, both known as the error
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probabilities. The probability of false-alarm probability (Pfa)
and the probability of missed-detection (Pmd) are defined as
follows:

Pfa = Pr(X ≥ α/H0) (8)
Pmd = Pr(X < α/H1) (9)

where X denotes the statistical EBD metric.

D. Operation Conditions of the EBD Derivations

In this paper, two different conditions will be distinguished.
1) Asymptotic Condition (AC): The AC is given by:

(K,N)→∞ with K/N → r ∈ (0, 1), (10)

2) Critical Condition (CC): The critical condition is related
with the SNR requirement by:

ρ > ρc =
1√
KN

, (11)

IV. LARGEST EIGENVALUE DETECTOR

The LE statistical metric is defined as the ratio between the
largest eigenvalue of the received covariance matrix and the
noise power. It can be expressed as follows:

XLE =
λ1
σ2
b

. (12)

Its exact distribution is derived in literature in the form of
matrix determinant (see, for instance, [39], [40]).

A. LE Detector in Asymptotic Regime

The asymptotic regime is defined in this paper when (10) is
verified. Asymptotically, XLE metric follows a Tracy-Widom
(TW) distribution for central uncorrelated Wishart matrices
(i.e. H0) and a Gaussian distribution for sample covariance
matrices of spiked population model (i.e. H1) [41]. However,
for a fixed K and as N → +∞ then the metric XLE converges
to a Gaussian distribution [42].

1) Null Hypothesis Case: By considering the AC in (10),
XLE , properly centered and scaled, follows asymptotically a
TW distribution of order 2 (TW2) as follows:

X ′LE =
XLE − a1(K,N)

b1(K,N)
∼ TW2, (13)

where a1(K,N) and b1(K,N) are respectively the centering
and scaling coefficients defined by:

a1(K,N) = (
√
K +

√
N)2, (14)

b1(K,N) = (
√
K +

√
N)(K−1/2 +N−1/2)

1
3 . (15)

2) H1 Hypothesis Case: Under the asymptotic condition
in (10) and the critical condition in (11), it has been shown
that XLE follows a normal distribution such that [43]:

P (
XLE − a2(K,N, σ)√

b2(K,N, σ)
≤ x) =

1√
2π

∫ x

−∞
e−

u2

2 du, (16)

with

a2(K,N, σ) = σ1(N +
K

σ1 − 1
) (17)

b2(K,N, σ) = σ2
1(N − K

(σ1 − 1)2
) (18)

where σ1 is the largest eigenvalue of (7). Definitely, if ρ < ρc,
the null hypothesis case stands in which XLE , under (10),
follows the TW2 distribution [43]. Accordingly, the PU signal
has no effect on the eigenvalues and could not be detected.

B. Approximating XLE distribution under H0

It has been shown that, for a fixed K and as N → ∞,
XLE follows a normal distribution [42]. However, from a
FAE perspective, i.e. both K and N are large and AC is
satisfied, XLE follows the TW2 distribution rather than the
normal distribution. TW2 distribution requires, from one side,
the calculation of complex derivations that include special
functions and, from the other side, these derivations depend
on many transmission parameters. Hence, these derivations
are not analytically tractable for the CR system metrics opti-
mization (for instance optimal K and N ). Accordingly, two
alternatives may be used to avoid this expensive calculation: (i)
use a lookup table (LUT) approach or (ii) approximate its PDF
by simpler expression. The LUT is interesting as it provides an
off-line calculation of the system metrics however it might be
too expensive in case of dynamic antenna exploitation. In this
paper, we propose a new approximation for XLE distribution
by using the GEV distribution and the moment matching
method. Our objective is to find a simpler form that could
be analytically used in the optimization problem of both FAE
and PAE. Now, considering the asymptotic condition in (10),
the mean, variance and skewness of the XLE are given by the
following Corollary:

Corollary 1. Let W ∼ CWK(N, σ2
b IK) be a central uncor-

related complex Wishart matrix with N DoF and correlation
matrix σ2

b IK . If K and N obey (10), then the mean, variance
and skewness of XLE associated to W are given, respectively,
by:

µXLE = b1(K,N)µTW2 + a1(K,N), (19)

σ2
XLE = b21(K,N)σ2

TW2, (20)
SXLE = STW2, (21)

with µTW2 = −1.7710868074, σ2
TW2 = 0.8131947928 and

STW2 = 0.2240842036 are, respectively, the mean, variance
and skewness of the TW2 distribution [44].

Proof: This result comes directly from (13).
Fortunately, the mean, variance and skewness expressions

of XLE have simple forms when asymptotic condition in (10)
is achieved. In this regard, the following proposition is useful.
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Proposition 1. Let N and K obey (10), i.e. under AC, then
the CDF and PDF of the LE under null hypothesis can be
accurately approximated respectively by:

F (x; θ, β, ξ) = e−(1+( x−θβ )ξ)
−1/ξ

(22)

f(x; θ, β, ξ) =
1

β
(1 + (

x− θ
β

)ξ)
−1
ξ −1e−(1+( x−θβ )ξ)

−1/ξ

(23)

where ξ, β, and θ are respectively the shape, scale and location
parameters of the GEV distribution and are given by:

ξ = −0.06393S2XLE + 0.3173SXLE − 0.2771 (24)

β =

√
σ2
XLE

ξ2

g2 − g21
(25)

θ = µXLE −
(g1 − 1)β

ξ
(26)

and the mean, the variance and the skewness of XLE are given
by Corollary 1.

Proof: The result can be found using Lemma 5 of [45].

It follows from Proposition 1 that TW2 distribution, itself,
could be approximated using GEV distribution by considering
the mean, the variance and the skewness of TW2 mentioned
in Corollary 1. Moreover, it will be shown through simulation
results that this approximation is valid even if K and N are
not asymptotically large.

C. Approximating XLE distribution under H1

For H1 hypothesis, XLE follows the Gaussian distribution
[42]; it is indeed simple to exploited and any approximation
in this case is useless.

V. SLE DETECTOR

The SLE detector is a blind detector that does not require
information about the noise power. The statistical metric is
defined as the ratio of the largest eigenvalue to the normalized
trace of the received covariance matrix, and it is given by:

XSLE =
λ1
Tn

=
λ1

1
K

∑K
i=1 λi

(27)

In the literature, the results on the statistics of the SLE are
relatively limited. They are based on tools from RMT [8],
[10], [46] and Mellin transform [11], [13], [46]. XSLE was
considered, asymptotically, to follow the same distribution
as the XLE (i.e. TW distribution) [10]. However, as a non-
negligible error still exists in this approximation, a new form
was provided based on the TW distribution and its second
derivative in [8].

1) Null Hypothesis Case: Under H0, both the XLE and
the normalized trace of the matrix W follow the Gaussian
distribution as N → +∞ which is realistic in practical
spectrum sensing scenarios. Accordingly, we have shown that
the SLE detector can be formulated using standard Gaussian
function as follows [14], [15]:

Theorem 1. Let XSLE be the statistical metric associated to
W ∼ CWK(N, σ2

b IK). Then, for a fixed K and as N → +∞,
the CDF and the PDF of XSLE are, respectively, given by:

F (x) = Φ(
xµTn − µλ1√

σ2
λ1
− 2xc+ x2σ2

Tn

) (28)

f(x) =
µTnσ

2
λ1
− cµλ1

+ (µλ1
σ2
Tn − cµTn)x

(σ2
λ1
− 2xc+ x2σ2

Tn)
3
2

× φ(
xµTn − µλ1√

σ2
λ1
− 2xc+ x2σ2

Tn

) (29)

with

Φ(v) =

∫ v

−∞
φ(u)du and φ(u) =

1√
2π
e−

u2

2 (30)

where µλ1 , µTn and σ2
λ1 , σ2

Tn are, respectively, the mean
and the variance of λ1 given by (19), (31) and (20), and Tn
given by (32). The parameter c is given by c = σλ1

σTnγ where
γ is the correlation coefficient between λ1 and Tn provided
by (33).

µTn = N, (31)

σ2
Tn = N/K, (32)

σ =
σTn
σλ1

· θ µXSLE − µλ1

θ + µTn
. (33)

and µXSLE is the mean of XSLE provided by (34) and θ is
given by (35).

µXSLE =
µλ1

µTn
(34)

θ = 1.01µTn − 0.2713σTn (35)

Proof: The CDF is given by (28) and the PDF is its
derivative in (29) [47]. The reader can refer to [14], [15] for
more details.

2) H1 Hypothesis Case: Under H1, the normalized trace
follows the Gaussian distribution as N → +∞ whereas the
LE follows the Gaussian distribution as (K,N)→ +∞ with
K/N → r ∈ (0, 1) and ρ > ρc = 1/

√
KN . Accordingly, the

distribution of the SLE is given by Theorem 2 [15].

Theorem 2. Let XSLE be the statistical metric associated
to W ∼ CWK(N,Σ). Then, as (K,N) → +∞ with
K/N → r ∈ (0, 1) and ρ > ρc = 1/

√
KN , the CDF

and PDF of XSLE are, respectively, given by (28) and (29).
Moreover, µλ1

, µTn and σ2
λ1

, σ2
Tn are, respectively, the mean

and the variance of λ1 and Tn given by (36), (38) and (37),
(39) respectively where σ1 is the largest eigenvalue of (7).
The parameter c is defined by c = σλ1σTnγ where γ is the
correlation coefficient between λ1 and Tn given by (40).

µλ1
= σ1(N +

K

σ1 − 1
), (36)

σ2
λ1 = σ2

1(N − K

(σ1 − 1)2
), (37)

µTn =
N

K
(σ1 +K − 1), (38)

σ2
Tn =

N

K2
(σ2

1 +K − 1), (39)

γ =
σTn
σλ1

· θ (µX + ε)− µλ1

θ + µTn
(40)
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and µXSLE is the mean of XSLE provided by (34), θ is given
by (35) and ε is a variable used to model the mean error.

Proof: Same as the proof of Theorem 1

VI. SCN DETECTOR

The SCN detector is another blind detector that uses the
eigenvalues of the sample covariance matrix in decision mak-
ing [6], [18], [48]–[50]. It is defined as the ratio of the largest
to the smallest eigenvalue of the covariance matrix as follows:

XSCN =
λ1
λK

(41)

In literature, the SCN metric was studied asymptotically in
[4] and the threshold was presented according to MP law. In
[6], the authors improved the accuracy of the asymptotic statis-
tical distribution of the SCN by using the TW distribution. This
work was further extended in [16] by using Curtiss formula
where both the largest and the smallest eigenvalues converge
to TW distributions when (K,N) → +∞ as shown in
[51], [52].However, all these distributions are not analytically
tractable. Hence, a simplification of these distributions is
required.

1) Null Hypothesis Case: The SCN metric distribution can
be approximated using a simple and accurate GEV PDF given
by Theorem 3 [19]:

Theorem 3. Let XSCN be the statistical metric associated to
W ∼ CWK(N, σ2

bIK). If AC condition is satisfied, then the
CDF and PDF of XSCN can be asymptotically and tightly
approximated respectively by:

F (x; θ0, β0, ξ0) = e−(1+(
x−θ0
β0

)ξ0)
−1/ξ0 (42)

f(x; θ0, β0, ξ0) =
1

β0
(1 + (

x− θ0
β0

)ξ0)
−1
ξ0
−1e−(1+(

x−θ0
β0

)ξ0)
−1/ξ0

(43)

where ξ0, β0 and θ0 are defined respectively by:

ξ0 = −0.06393S2XSCN + 0.3173SXSCN − 0.2771 (44)

β0 =

√
σ2
XSCN

ξ2

g2 − g21
(45)

θ0 = µXSCN −
(g1 − 1)β

ξ
(46)

where µXSCN , σ2
XSCN

and SXSCN are defined in [19, Theorem
1] and gi = Γ(1− iξ).

Proof: Refer to [19] for the detailed proof.
2) H1 Hypothesis Case: Likewise, we introduce the fol-

lowing theorem which approximates the distribution of XSCN

using the simple GEV distribution under H1 hypothesis.

Theorem 4. Let XSCN be the statistical metric associated to
W ∼ CWK(N,Σ). If AC and CC conditions are satisfied,
then the CDF and PDF of XSCN can be asymptotically and
tightly approximated by:

F (x; θ1, β1, ξ1) = e−(1+(
x−θ1
β1

)ξ1)
−1/ξ1 (47)

f(x; θ1, β1, ξ1) =
1

β1
(1 + (

x− θ1
β1

)ξ1)
−1
ξ1
−1e−(1+(

x−θ1
β1

)ξ1)
−1/ξ1

(48)

where ξ1, β1 and θ1 are defined respectively by:

ξ1 = −0.06393S2XSCN + 0.3173SXSCN − 0.2771 (49)

β1 =

√
σ2
XSCN

ξ2

g2 − g21
(50)

θ1 = µXSCN −
(g1 − 1)β

ξ
(51)

where µXSCN , σ2
XSCN

and SXSCN are defined in [19, Theorem
2] and gi = Γ(1− iξ).

Proof: Refer to [19] for the detailed proof.

VII. FAE AND PAE: PERFORMANCE PROBABILITIES

The target of this section is to summarize the different
cases analyzed in this paper and provide the corresponding
performance metrics given here in terms of Pfa and Pd. The
latter will be used in the threshold optimization and the system
specifications within the ELASTIC framework.

A. Summary On the Proposed Analytical Derivations

It is very clear from the previous sections that the proposed
yet simple approximations could be directly applied within the
framework of ELASTIC. For the sake of simplicity, we give in
Table I, a summary of the proposed approximations. They will
be used in the optimization of the CR system metrics in both
the PAE and FAE scenarios with any transmission conditions.

B. Performance Probabilities of the LE Detector

In this section, we present the two mentioned scenarios of
antenna exploitation within the ELASTIC framework. In the
FAE scenario, the CR will use all of its antennas for the SS
process. Accordingly, the LE detector will be working in the
asymptotic regime of both K and N . On the other hand, in
the PAE scenario the CR will use a fewer number of antennas
for the SS process and thus the LE detector will be working
in the asymptotic regime of N only (i.e. N is relatively large
w.r.t K).

1) FAE Scenario: According to Proposition 1 and using (8),
the expression of Pfa is given by:

Pfa = 1− e−(1+(
λ̂XLE

−θ
β )ξ)

−1/ξ ). (52)

Similarly, by using (16) and (9) the expression of Pmd is given
by:

Pmd = Φ(
λ̂XLE − µ1

σ1
) (53)

where Φ is the CDF of the standard normal distribution, λ̂XLE
is the threshold of the LE detector, µ1 and σ1 are respectively
the mean and the standard deviation of the LE metric under
H1 given in (16).
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TABLE I
SUMMARY OF THE PROPOSED PDFS.

Metric Existing Dist. (under H0) Existing Dist. (under H1) Proposed Dist. (under H0) Proposed Dist. (under H1)
LE TW2 or Normal Normal Proposition 1 - GEV Normal

SLE using TW2 or Mellin Trans. using Mellin Trans. Theorem 1 - Gaussian function Theorem 2 - Gaussian function
SCN TW2 with Curtiss Formula TW2 with Curtiss Formula Theorem 3 - GEV Theorem 4 - GEV

2) PAE Scenario: Here, we consider the following:
• FPAE approach: in this case, the CR will use certain fixed

number K and N >> K.
• DPAE approach: here, the CR will use dynamic number

of antenna K and N >> K.
In both cases, K is finite and N is relatively large. Under

H0 hypothesis, XLE is approximated by Normal distribution
where the mean and the variance are approximated using
(19) and (20) respectively. Under H1 hypothesis, results in
[42] show that XLE could be approximated by Gaussian
distribution in (16) even for small values of K. Then, Pfa
and Pmd are expressed as follows:

Pfa = 1− Φ(
λ̂XLE − µ0

σ0
) (54)

Pmd = Φ(
λ̂XLE − µ1

σ1
) (55)

where Φ(.) is the CDF of the standard normal distribution; µ0

and σ0 are the mean and the standard deviation of XLE under
H0 hypothesis and are given by (19) and (20) respectively; µ1

and σ1 are the mean and the standard deviation of the XLE

under H1 hypothesis and are given by (17) and (18).

C. Performance Probabilities of the SLE and SCN Detectors

Using (8) and (28), the Pfa of the SLE detector is given
by:

Pfa(α) = Q(
λ̂XSLEµTn − µλ1√
σ2
λ1 − 2αc+ α2σ2

Tn

) (56)

where Q(.) is the Q-function. µλ1 , σ2
λ1 , µTn and σ2

Tn are
given respectively (19), (20), (31) and (32). Pmd is derived
the same way using H1 hypothesis. Using Theorems 3 and 4,
and using (8) and (9), the Pfa and Pmd of the SCN detector
are respectively expressed as:

Pfa = 1− e−(1+(
λ̂XSCN

−θ0
β0

)ξ0)
−1/ξ0

, (57)

Pmd = 1− Pd = e−(1+(
λ̂XSCN

−θ1
β1

)ξ1)
−1/ξ1

. (58)

VIII. THRESHOLD OPTIMIZATION

The target of this section is to derive the optimal decision
threshold for a desired Pfa and/or Pmd. However, as these
metrics depend on K, N , and maybe the SNR (in case of LE),
the optimization of this threshold will depend on these main
parameters. Hence, finding the optimal values of K, N for
a target Pfa and/or Pmd is analytically not straightforward.
To do so, the designer has to select a key performance or
run an algorithmic search as shown in Algorithm 2. In both
cases, the optimization is still easier than using of the exact

distribution (such TW2) of the sensing metric or using the
LUTs. Definitely, if the system parameters are to be changed
dynamically (i.e. DPAE), then the optimization problem turns
out to be finding the optimal value of K and/or N that fit
the performance requirements. It is worth mentioning that
the execution time of Algorithm 2 is too small in our
simulations. Despite this fact, the search of the optimal
solution could be made faster by specifying a range of
value for K and N . In this section, the optimal threshold is
given for a given K and N .

A. Threshold Optimization for the LE Detector

The performance probabilities depend on the decision
threshold (λ̂XLE ), hence it is necessary to choose an appropri-
ate value based on system requirements. The typical approach
for setting the threshold is given by the constant false-alarm
rate (CFAR) strategy in which the threshold is chosen in order
to guarantee a target false-alarm rate (p̂fa). Based on the
CFAR scenario, then the decision threshold is expressed using
the inverse of Pfa as follows:

1) FAE Scenario:

λ̂XLE = µ+
σ

ξ

(
−1 +

[
− ln(1− P̂fa)

]−ξ)
(59)

2) PAE Scenario: For finite K and relatively large N
and based on the CFAR scenario, the decision threshold is
expressed using the inverse of Pfa as follows:

λ̂XLE = µ0 + σ0Φ−1(1− P̂fa) (60)

The CFAR threshold selection strategy is not optimal since it
ensures a fixed false-alarm probability rather than a required
SS performance given in terms of both Pfa and Pmd. An
optimal threshold could be selected as to minimize the total
error probability of the system such that:

λ̂XLE = argmin
α

(w0Pfa + w1Pmd) (61)

where w0 and w1 are weighting coefficients that are chosen
according to system priority. In order to solve this minimiza-
tion problem, one can simply take the derivative equals to
zero and the second derivative positive (i.e. concave). One
can choose w0 = 0 or w1 = 0 to minimize one of the error
probabilities. However, it is typical to choose w0 = w1 = 0.5
to minimize the sum of the error probabilities. Then λXLE
should be selected such that it minimizes Pfa + Pmd, i.e. its
derivative is equal to zero:

(
1

2σ2
0

−
1

2σ2
1

)λ2XLE + (
µ1

σ2
1

−
µ0

σ2
0

)λXLE + (
µ20
2σ2

0

−
µ21
2σ2

1

− ln(
w0σ1

w1σ0
)) = 0

(62)
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The optimal threshold is then given by finding the roots of
(62):

λ̂XLE =

µ1σ2
0 − µ0σ2

1 +

√
σ2
0σ

2
1

(
(µ0 − µ1)2 − 2(σ2

0 − σ2
1)ln(

w0σ1
w1σ0

)
)

σ2
0 − σ2

1

(63)

Observations on (63):
• The optimal threshold in (63) requires the knowledge of

the SNR value.
• The weights w0 and w1 could be tuned according to the

required Pfa and Pmd. A reduced w0 means an improved
Pfa which requires a larger λ̂XLE . This is in line with
(63). The same conclusion could be derived on w1.

• It could be used in any of the scenarios to minimize the
error probabilities. However, in the dynamic case, i.e.
when K and/or N are to be selected dynamically, the
designer should set up the target Pfa and Pmd to be
obtained while the optimization will consist in finding
the minimal K and N . Accordingly, a fixed (P̂fa, P̂d) is
selected to evaluate the required K and N to achieve this
performance. This will be discussed next.

B. Minimum Requirements For the LE Detector with Dynamic
Parameters

For a target (P̂fa, P̂d) and at a given SNR ρ, the CR system
should optimize certain number of antennas for a certain
number of samples. By eliminating λXLE from Pfa and Pd
in (54) and (55) respectively, one can solve for K (or N ) the
following equation:

σ0Φ−1(1− P̂fa)− σ1Φ−1(1− P̂d) + µ0 − µ1 = 0 (64)

Hence, at a certain SNR value and for a target detection
performance (P̂fa, P̂d) the system can dynamically choose the
couple (K,N ) that most enhances its global performance (i.e.
throughput, power saving etc.). Note that finding a general
solution for (64) is not straightforward and thus we solve
for numerical values. Example 1: Consider the following
example, P̂fa = 0.1, P̂d = 0.9 and ρ = −15dB, then we
get Tables II and III.

TABLE II
REQUIRED K FOR A GIVEN N IN EXAMPLE 1.

N 200 300 350 400 450 500 600 1000
K 14 10 8 8 7 6 5 4

TABLE III
REQUIRED N FOR A GIVEN K IN EXAMPLE 1.

K 20 18 15 10 8
N 132 147 177 273 349

Table II provides, for each value of N , the corresponding
number K of antennas required in the sensing process to
achieve the target performance. On the other hand, Table
III provides for each value of K the corresponding number
of samples N that should be acquired by each antenna to

achieve the considered performance. It is worth mentioning
that the values of K and N evaluated using (64) are real
valued numbers and thus are rounded to +∞. The designer
can choose for instance K = 8 and N = 350 configuration
or K = 6 and N = 500. The system may also be expected to
have dynamic behavior in case of a change in the SNR values.
This could be also achieved using (64).

C. Extension to SLE and SCN Detectors

This section extends the dynamic antenna exploitation on
the LE detector and finds the minimum requirements for both
SLE and SCN detectors within ELASTIC framework.

1) SCN Detector: The threshold could be computed using
(57) and (58) according to a required error constraint. For
example, for a target Pfa, the threshold is given by:

λ̂XSCN = θ0 +
β0
ξ0

(
− 1 +

[
− ln(1− Pfa)

]−ξ0)
. (65)

For a target (P̂fa, P̂d), by considering the SCN detector and
eliminating λXSCN from both (57) and (58) we get:

θ0 −
β0

ξ0
− θ1 +

β1

ξ1
+
β0

ξ0

[
− ln(1− P̂fa)

]−ξ0 − β1

ξ1

[
− ln(1− P̂d)

]−ξ1 = 0

(66)

where θi, βi and ξi are the location, scale and shape parameters
of the GEV distribution where i = 0 refers to H0 hypothesis
and i = 1 refers to H1 hypothesis. Their expressions are
provided by Theorems 3 and 4.

2) SLE Detector: Here, same derivations are provided.
Hence, we can write:

µH0
12 −∆2r0σ

H0
12

µ2

T
H0
n

−∆2σ2

T
H0
n

− µH1
12 − Λ2r1σ

H1
12

µ2

T
H1
n

− Λ2σ2

T
H1
n

+
∆
√
mH0
v − 2r0µ

H0
12 σ

H0
12 + ∆2[σH0

12 ]2(r20 − 1)

µ2

T
H0
n

−∆2σ2

T
H0
n

−
Λ
√
mH1
v − 2r1µ

H1
12 σ

H1
12 + Λ2[σH1

12 ]2(r21 − 1)

µ2

T
H1
n

− Λ2σ2

T
H1
n

= 0 (67)

where ∆ = Q−1(P̂fa) and Λ = Q−1(P̂d) with Q−1(.) is
the inverse Q-function; the expressions µHi12 = µ

λ
Hi
1
µ
T
Hi
n

,

σHi12 = σ
λ
Hi
1
σ
T
Hi
n

, mHiv = µ2

T
Hi
n

σ2

λ
Hi
1

+ µ2

λ
Hi
1

σ2

T
Hi
n

and Hi
refers to one of the two hypothesis H0 and H1 under which
the expressions are calculated. Similar to the LE detector
case, using (66) and (67) we can determine the minimum
requirements of the system that could be used to achieve a
target performance.

IX. SIMULATION AND DISCUSSION

In this section, we verify the analytical derivation results
through Monte-Carlo simulations. We validate the theoreti-
cal analysis presented in sections IV-B through VIII-C. The
simulation results are obtained by generating 105 random
realizations of Y .
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Fig. 1. Empirical Pfa of the LE detector in the asymptotic case and its
corresponding GEV approximation for K = 100 and different values of N .

A. Validation of Analytical Results

The asymptotic approximation provided by Proposition 1
is validated in Fig. 1. The results are taken for two different
values of N while fixing K = 100 and ρ = −10dB. The
results show a perfect match between empirical results and
the proposed approximation.

B. Full and Partial antenna exploitation scenarios

Figure 2 shows the empirical Pfa and Pd of the LE detector
and its corresponding target values (P̂fa = 0.01, P̂d = 0.9)
while changing the other parameters. In Fig. 2(a) we set
ρ = −20dB and we consider a variable N while in Fig. 2(b)
we set N = 500 and we consider a variable ρ, as summarized
by Algorithm 2. Simulation results show high accuracy of
the analytical results evaluated using (64). The empirical Pfa
is indeed 0.01 while the accuracy of the Pd increases as K
increases which reflects the effect of AC under H1 hypothesis.
The very small difference between the empirical and the target
performance is due to the rounding of K to +∞. The effect
of rounding of K could be clearly noticed in Fig. 2(b) for
ρ = −12dB where the exact value is K = 3.3 and the rounded
value is K = 4. Moreover, the results show that as N or
ρ increases the number of antennas required to achieve the
target performance decreases and hence these antennas could
be exploited for other use.

Algorithm 2: Dynamic K simulation algorithm for LE
detector

Input: Y , σ2
η , (P̂fa0.01, P̂d = 0.9), ρ, N

Output: (Pfa, Pd)
1 evaluate K w.r.t. ρ or N ;
2 compute λ̂LE w.r.t. K and N ;
3 generate (K ×N) matrix Y for H0 and H1 ;
4 get λ1 of W = Y Y † for H0 and H1;
5 evaluate XLEi = λ1

σ2
η

for H0 and H1;

6 if XLE0 > λ̂LE → Pfa;
7 if XLE1 > λ̂LE → Pd;
8 repeat;
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Fig. 2. Empirical Pfa and Pd of the LE detector and its corresponding target
values by using dynamic method.

Figure 3 shows a comparison between different scenarios,
full, dynamic and fixed antenna exploitation. Therein, we
consider a CR with K = 200 antennas. In the case of FPAE,
only 5 antennas are used while K is dynamic in DPAE.
In the latter, the value of K is calculated using (64) and
depends on the SNR. It is obvious in this figure that the
full exploitation of the antenna scenario achieves the best
performance, however it is exploiting all the antennas all the
time even if it not necessary. In this case, the threshold is
calculated using the GEV approximation in Sec. IV-A. The use
of a fixed number of antennas leads to a worst performance
as the transmission conditions get worse. However, if the
target performance is well defined then it can be achieved
all the time through an efficient use of the antennas. From
the figure, the results show a tremendous decrease in the
value of K as the SNR increases with approximately stable
Pd = 0.9. Using dynamic exploitation scenario, the CR system
will gain around 115 antennas that could be used for other
purposes. In addition, the computational complexity of the
sample covariance matrix and the eigenvalues in the detection
algorithm will be decreased since the received matrix size,
(K×N), is decreased. Moreover, results show that it is enough
to use K = 2 for N = 500 starting from ρ = −10dB.
Indeed, since K = 2 is the smallest value for the EBD then,
for ρ ≤ −10dB, the designer can fix K = 2 and starts to
minimize N accordingly. In this case, as N decreases the
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threshold could be computed using the GEV approximation
in the finite case (see Table I).
The SCN and SLE detectors are considered next using similar
approach as in Algorithm 2. The results are shown in Figures
4 through 7. Figures 4 and 6 show Pd and Pfa of the SCN and
SLE detectors respectively for different values of K. The latter
is changed according to the target (P̂fa = 0.01, P̂d = 0.9) and,
the variation of SNR or N . Figures 5 and 7 show the variation
of Pd with respect to SNR and K in the aforementioned
scenarios. In the SLE detector case, we suppose that the mean
error ε = 0. Results show high accuracy of the analytical
results evaluated using (66) and (67). Like the LE case, when
K takes small values, the negligible difference between the
empirical and target Pd is mainly due the rounding of K.
Moreover, it could be noticed from Fig. 5 that at ρ = −22dB
and using N = 500 then the required value of K is 203. In
this case and since the CR is equipped with 200 antennas,
then the designer must fix K = 200 and starts to increase
N accordingly to achieve the target performance. For larger
ρ, these expressions are very useful and accurate to make a
dynamic system in which the antennas are efficiently utilized.
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Fig. 3. Empirical Pd of the LE detector and the corresponding number of
antennas, K, used for sensing in Full, Dynamic and Fixed methods w.r.t ρ
and fixing N = 500.

C. LE, SCN and SLE comparison

In this section, we provide a comparison between the
considered detectors. For the LE detector, the noise power is
supposed to be perfectly known while SCN and SLE detectors
are totally-blind and do not require this knowledge. Figure 8
plots the Region of Convergence (ROC) of these detectors
for N = 500, K = 5 and ρ = −15dB. Simulation results
show that the LE detector outperforms the SLE detector
and the SLE detector in turn outperforms the SCN detector.
Indeed, LE is the optimal detector when noise variance is
perfectly known while SLE detector is the optimal under
the generalized likelihood ratio (GLR) criterion when noise
variance is unknown [7], [10]. However, if noise power is
not perfectly known, the performance of the LE detector will
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Fig. 4. Empirical Pfa and Pd of the SCN detector and its corresponding
target values by using dynamic method.
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Fig. 5. Empirical Pd of the SCN detector and the corresponding number of
antennas, K, used for sensing in Full, Dynamic and Fixed methods w.r.t ρ
and fixing N = 500.

degrade and it might be even worse than the performance of
SLE and SCN detectors as shown in Fig. 8 where 0.2dB noise
variance uncertainty is considered.

Figures 9 and 10 show the minimum required number of
antennas K for the LE, SCN and SLE detectors to achieve
a target (P̂fa = 0.01, P̂d = 0.9) when changing ρ and
N respectively. Thee results are aligned with those of9. In
addition, it is also noticeable that the difference in K for LE
and SLE are close whereas K required of the SCN detector
is larger. Indeed, LE and SLE detectors are optimal when the
noise power is perfectly known and noise power uncertain
environments respectively. In this regard, it is worth men-
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Fig. 6. Empirical Pfa and Pd of the SLE detector and its corresponding
target values by using dynamic method.
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Fig. 7. Empirical Pd of the SLE detector and the corresponding number of
antennas, K, used for sensing in Full, Dynamic and Fixed methods w.r.t ρ
and fixing N = 500.

tioning that by considering LE detector with noise uncertain
environment its performance will degrade and thus the number
K of required antennas will increase.

D. Experimental Validation

The target of this section is to provide some experimental
results done in a laboratory environment. In our experiment,
we decided to adopt an off-the-shelf prototyping hardware,
called Universal Software Radio Peripheral (USRP), provided
by National Instruments to design a multi-antenna system.
However, as the number of available devices is limited to
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Fig. 8. ROC of the LE, SCN and SLE detectors when k = 5, N = 500 and
ρ = −15dB.
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Fig. 9. Required K of the LE, SCN and SLE detectors for dynamic antenna
exploitation w.r.t ρ and fixing N = 500, Pd = 0.9 and Pfa = 0.01.

6, the proof-of-concept has been done only in a selected
showcase. Moreover, as these devices require synchronization,
one USRP should be completely devoted for this purpose.
Other synchronization problems (time stamp misalignment,
common clock reference) have been also fixed. Finally, one
USRP has been selected to emulate the transmitter.
To realize the test bench shown in Fig. 11(a), the following

items have been used:
• 4 NI-USRP 2920 used as array elements
• 1 NI-USRP 2920 for synchronization
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Fig. 10. Required K of the LE, SCN and SLE detectors for dynamic antenna
exploitation w.r.t N and fixing ρ = −20dB, Pd = 0.9 and Pfa = 0.01.
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(a) Test Bench Process

(b) Test Bench Experiment

Fig. 11. Lab Experiment Setup

• 1 NI-USRP 2920 serving as transmitter
• A waveform generator

In this test bench, a 10 MHz sinusoidal signal modulated a
signal with carrier frequency of 915 MHz. The signal was
generated in intermittent times, each of 0.1 sec duration.
Fig.12 provides the histogram of the SCN measurements under
H0 and H1. It is very clear that the proposed GEV approxi-
mation fits very well the SCN measurements. Moreover, GEV
approximation outperforms the Gaussian distribution proposed
in literature. Finally, Fig.13 shows that the experimental ROC
curve is aligned with the theoretical derivations provided in
terms of GEV.

X. CONCLUSION

CR equipped with massive antenna technology will achieve
a significant increase in the performance of the multi-antenna
SS detector. However, it might be enough to use fewer number
of antennas for the sensing process and achieve a desired
performance. In this paper, we have considered the LE, SCN
and SLE detectors with two exploitation scenarios: FAE and
PAE. The latter is further decomposed into two options: (i)
fixed use and (ii) dynamic use. We extended our previous
work on the approximation of the distribution of the LE
detector as a GEV distribution for both finite and asymptotic
cases. Then, an optimized decision threshold that minimizes
the error probabilities of the LE detector has been derived in
both fixed and dynamic cases. Likewise, we used our recent
work on SLE and SCN to derive the necessary sensing metrics
and design parameters. This paper provided a mathematical
framework to compute the minimum requirements of the CR
system to achieve the desired performance of all exploitation
scenarios in a massive antennas environment. Finally, it has

(a) SCN under H0

(b) SCN under H1

Fig. 12. SCN Measurements and PDF Fitting Curves, ρ = −10dB, K = 4,
N = 500

Fig. 13. Experimental SCN ROC Curve
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been shown that the dynamic approach is the best solution for
an efficient antenna exploitation. In this case, the CR design
parameters should be dynamically tuned to meet the predefined
performance and specifications.
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largest eigenvalue in spectrum sensing: A simple form approach,” EAI
Endorsed Transaction on Cognitive Communications, vol. 3, no. 10,
2017.

[16] F. Penna, R. Garello, D. Figlioli, and M. Spirito, “Exact non-asymptotic
threshold for eigenvalue-based spectrum sensing,” Proc. IEEE 4th Int.
Conf. CROWNCOM, pp. 1–5, June 2009.

[17] F. Penna, R. Garello, and M. Spirito, “Probability of missed detection
in eigenvalue ratio spectrum sensing,” Wireless and Mobile Computing,
Networking and Communications, 2009. WIMOB 2009. IEEE Interna-
tional article on, pp. 117–122, Oct 2009.

[18] W. Zhang, G. Abreu, M. Inamori, and Y. Sanada, “Spectrum sensing
algorithms via finite random matrices,” IEEE Trans. Commun., vol. 60,
no. 1, pp. 164–175, January 2012.

[19] H. Kobeissi, A. Nafkha, Y. Nasser, O. Bazzi, and Y. Louët, “Simple and
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