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Optimal Adaptive Quantization based on Temporal
Distortion Propagation model for HEVC

Maxime Bichon, Student Member, IEEE, Julien Le Tanou, Michael Ropert, Wassim Hamidouche, and Luce Morin

Abstract—Optimal adaptive quantization is one of the key
points to optimize the coding efficiency of video encoders. Latest
block-based video compression standards, such as High Efficiency
Video Coding (HEVC), extensively use predictive coding techni-
ques that create dependencies between blocks and increase the
complexity of optimal block quantizers search. Specifically, the
motion compensation is responsible for a dependency network
connecting all blocks of the same GOP together. In this paper,
this dependency network is estimated by a temporal distortion
propagation model and an accurate estimation of Inter and Skip
modes probabilities. Optimal quantizers are then designed per
block in order to achieve the global optimization in terms of Rate-
Distortion efficiency. By implementing the algorithm into the
HEVC reference Model (HM), we report −16.51% PSNR-based
and −26.26% SSIM-based average bitrate savings compared to
no adaptive quantization. The proposed algorithm outperforms
several related methods from state-of-the-art. Moreover, along
with the demonstration of optimal quantizer solution, we propose
an in-depth analysis of the algorithm behavior. This analysis
includes, among others, the relative distribution of rates between
frames and the control of quantizers dynamic range.

Index Terms—Local Quantization, Rate-Distortion (R-D) Op-
timization, HEVC, Temporal Distortion Propagation, Skip pro-
bability.

I. INTRODUCTION

THE total amount of video traffic over Global IP, cellular
or satellite networks is in constant growth. The emerging

video contents bring more immersive visual experience to
the end users by developing new video technologies from
acquisition to display such as Ultra High Definition (UHD),
High Dynamic Range (HDR) and 360◦. This large scale data
brings new compression challenges to ensure efficient storage
and transmission while preserving high quality for these
contents. Moreover, the current diversity of video services
offered by different platforms (social networks, on demand
TV, 5G) increases the demand of end users for high quality,
remotely and immediately accessible contents. This dynamic
environment is the key motivation for achieving real-time and
high efficiency coding.

The High Efficiency Video Coding (HEVC) [1] standard
was released in 2013 by the Joint Collaborative Team on
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Video Coding (JCT-VC) established jointly by the ITU-T
Video Coding Experts Group (VCEG) and the ISO Motion
Picture Expert Group (MPEG). HEVC enables up to −50%
bitrate savings [2], [3] for equal perceptual video quality
compared to the previous Advanced Video Coding (AVC) [4]
standard. This significant coding gain is achieved by the new
coding tools introduced in HEVC. This standard relies on
the common hybrid video coding scheme performing either
Intra or Inter predictions at the block level to get benefits
from spatial or temporal redundancies, respectively. HEVC
encoders such as the reference software model (HM) [5] and
the real time encoder x265 [6] aim to minimize the video
distortion D subject to the total rate constraint R ≤ RT . The
Rate Distortion Optimization (RDO) [7] usually minimizes the
R-D cost function J = D + λR where λ is the Lagrange
multiplier used to turn the constrained optimization problem
into an unconstrained one [8]. λ controls the trade-off between
distortion D and rate R.

There are mainly two approaches to enhance coding effi-
ciency in the context of video standards. The first way consists
in developing more efficient coding tools within the standar-
dization process to build the next generation video standard.
The Joint Video Exploration Team (JVET) has been recently
investigating several new coding solutions [9] to show the
evidence of developing a new standard with coding capability
beyond HEVC. These new tools enable to increase the coding
efficiency by up to 40% compared to HEVC [10]. However,
this gain comes with a significant complexity increase of 10
times the HEVC complexity at both encoder and decoder
sides [11], [12]. Moreover, this approach is a long term
solution and usually requires a decade to release a new video
standard.

The second approach aims to enhance the coding efficiency
of existing standard encoders without changing the syntax
of the decoder. Common implementations of RDO consist in
independent optimization of each block by testing all coding
configurations and selecting the set of modes that minimizes
the R-D cost. However, these consecutive local optimizations
do not necessarily lead to the performance of global R-D cost
minimization of the source signal [13]. Instead, the design
of dependent models allows to reach higher coding efficiency
with involving only encoder-side modifications. These solu-
tions often use a look-ahead analysis of the video source,
which introduces a manageable complexity increase. Indeed,
the look-ahead usually runs in parallel with the encoder thanks
to an efficient use of multi-threading on multi-core architecture
. Apart from some delay, it significantly lowers the impact of
look-ahead processing with respect to the encoding.
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Our previous works [14] and [15] present a global R-
D optimization solution for the HEVC encoder. First, the
temporal distortion propagation is modeled at the block level,
called Coding Unit (CU) in HEVC. Propagation is introduced
by temporal predictions between frames within the Group
of Pictures (GOP) structure. Second, we accurately estimate
the probability of a CU to be temporally predicted (i.e.
Inter coded) and the probability of a CU to use the special
coding mode named Skip based on a look-ahead analysis. The
distortion propagation model and the probabilities enable to
build an analytical solution deriving optimal local quantizers
within a GOP at the CU granularity.

In this paper, we provide better insights about the ana-
lytical solution. Important assumptions are discussed and
verified, such as the chosen Skip mode probability and rate
independence hypothesis. We also prove that optimal delta
quantizers are bounded and their dynamic is straightforward to
control. The model is also extensively analyzed based on the
rate distribution among several frames, the perceptual quality
influence within the model and the Target Bitrate Deviation
(TBD). Thanks to the development of a look-ahead within
the HEVC reference Model (HM), new experimental results
against close techniques from state-of-art are made possible.
Subjective quality assessment of the model is performed
showing consistent spatial and temporal quality improvements.
Encoding runtimes are also provided for fairness. Optimal
quantizers enhance the coding efficiency against no-Adaptive
Quantization (AQ), in terms of bitrate savings, by −23.53%
and −26.26% under the real time encoder x265 and the HM,
respectively.

The rest of the paper is organized as follows. Section II
gives an overview of the context and works related to global
R-D optimization solutions followed by the motivations of
this paper. The temporal propagation model considered in
this paper is presented in Section III. Section IV investigates
the proposed HEVC video optimization solution. Insights
on the proposed solution and implementation details under
two HEVC software encoders are provided in Section V.
Section VI gives experimental results showing benefits of the
proposed model within the two considered codecs. Finally,
Section VII concludes this paper.

II. CONTEXT & RELATED WORKS

A. HEVC standard and its codecs

In the HEVC standard, frames are first equally divided
into Coding Tree Unit (CTU), blocks of pixels processed in
raster scan order. Each CTU can be further recursively split
into multiple CU, based on a QuadTree decomposition. The
coding of such units is achieved by three operations performed
sequentially : prediction, transformation and quantization. One
of the most important part in an HEVC encoder is the
”decision core”, which sets parameters of these processes in
order to optimize the signal coding efficiency, under one or
more constraints.

Prediction aims to estimate pixel values in a CU from
previously coded data. In HEVC prediction is mainly based on
three main modes: Intra, Inter and Skip. Intra mode makes use

of spatial correlations in images to predict a CU by referencing
the spatial neighboring pixels. Inter mode takes advantage of
the temporal redundancy by referencing CUs from previously
coded frames for motion prediction and compensation. Both
Intra and Inter predictions are followed by transformation and
quantization of residues (prediction errors). Finally, the Skip
mode consists in Inter prediction, with no residue coding. This
special mode leads to near-zero bitrate while setting distortion
to its maximum, i.e. the prediction error energy. Note that, the
HEVC Merge mode is assimilated to Inter mode in this paper.

In hybrid encoders, quantization is applied on transformed
residue and it is controlled by the Quantization Parameter (QP)
which lies in the range [0..51] for HEVC. A low QP value
leads to low distortion, while a high QP value tends to suppress
the residue. Consequently, the Skip mode probability increases
along with the QP value. We point out that the information
removed by quantization in a CU may also be the redundant
part of the signal used to predict subsequent CUs temporally
or spatially. Therefore, ignoring Inter-CUs dependencies while
setting locally the QP may be globally ineffective.

In this paper, two HEVC encoders have been considered
for experiments: HM and x265. HM is the reference software
used by JCT-VC for standard development. It implements
all normative coding tools and it is based on a full RDO
implementation, leading to high coding efficiency at the ex-
pense of high computational complexity. x265 is an open-
source encoder developed by MulticoreWare to provide high
coding efficiency under real-time constraint. Unlike HM and
similarly to most of the real-time video encoders, x265 relies
on a look-ahead process to efficiently drive the decision
core. Commonly, a look-ahead mechanism consists in a video
source analysis without encoding decisions. It differs from
multi-pass approaches that perform multiple encodings of the
video, refining the coding parameters at each pass. It is too
computationally complex to suit real-time encoding.

B. Global RDO Solutions

Global RDO solutions in state of the art can be classified
into two categories: exhaustive dependency exploration and
dependency modeling.

1) Exhaustive dependency exploration: Methods that fall
in this category proceed in an exhaustive exploration of
the dependencies inherent to the coding scheme. It usually
results in intractable computational complexity for real-time
applications.

Ramchandran et al. [16] consider the frame bit allocation
in video coding as a trellis problem solved with the Viterbi
algorithm. Using a simple coding scheme and pruning rules,
they succeed to achieve significant coding gain. Global op-
timization can also be opposed to local optimization when
searching for optimal transformed coefficient levels. In [17],
Wen et al. use the same trellis approach to jointly optimize all
the transformed coefficient levels after quantization.

Fiengo et al. [18] express distortion as a convex function
of all frames bitrate. Primal-Dual Proximal Algorithm is used
to solve the convex optimization problem and achieve near
optimal Rate-Control (RC). In [19] Wiken et al. measure the
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dependencies between coefficients levels after Discrete Cosine
Transform (DCT)/Discrete Sine Transform (DST), leading to
an optimization problem solved by an iterative approach. Bi-
chon et al. [20], [21] consider Intra prediction mode estimation
as a joint optimization of spatially close Prediction Units
(PUs).

Overall, approaches based on exhaustive dependency explo-
ration show significant R-D efficiency improvement, but at the
price of very high computational complexity. It is especially
true when considering the large number of coding parameters
combinations to explore in the HEVC standard.

2) Dependency modeling: The second category gathered
methods that model the dependencies based on some estima-
tors and theoretical assumptions. The optimization remains
block-based, but new assumptions are used instead of the
block independence hypothesis. These assumptions are usu-
ally established through a look-ahead, in order to apply the
RDO locally, but consciously of the potential effects coding
decisions may have on other CUs.

The temporal dependencies, that is the focus of this paper,
can be modeled with various granularity. In [22], Valenzise
and Ortega estimate a temporal dependency tree at the pixel
level, further used to design an AQ method based on the tree
depth. Li et al. [23] estimate distortion propagation frame by
frame, in order to provide consistent video quality over an
entire GOP.

This paper and following references model dependencies on
a block basis, thus we define some notations to be comparable.
We consider in this paper the CU with index i in the frame
of index t, labeled it. A large number of studies modeling the
dependencies between CUs use equation (1) to express the
distortion propagation between CUs.

Dit = dit + pitDref (1)

In equation (1), Dit , the distortion of CU it, is expressed as
the sum of two terms: the local distortion dit , depending only
on the coding parameters set for CU it; and the reference dis-
tortion which depends on Dref , the distortion of the reference
samples CU used for prediction. pit is a weighting factor that
describes the relation between the distortion of a CU and its
reference block’s distortion.

The additive formulation in (1) is a simplification of a
multiplicative formulation depicted in appendix A. By using
the first order Taylor-Young expansion of Dit based on dit and
Dref variables, local and reference distortions, the additive
formulation can be obtained.

Yang et al. present a Source Distortion Temporal Propaga-
tion (SDTP) model [24] that increases the coding efficiency
by adaptively scaling the λ value for each CU. In this model,
pit is a function of the CU rate Rit . dit is a function of
Rit and the innovation σ2

it
of CU it. σ2

it
is defined here as

the part of the signal which is unpredictable, i.e. the residue
of prediction before quantization. Using equation (1), authors
describe dependencies between CUs and they adaptively scale
the λ value used for R-D cost computation, which leads
to substantial coding efficiency improvement. The more the

distortion of a CU impacts other CUs, the more the λ value
decreases.

The model proposed in [24] has been further extended by
Xie et al. in [25] for bit allocation strategy in the context of
RC. Specific hierarchical coding schemes have also been in-
vestigated by Gao et al. for Low Delay (LD) [26] and Random
Access (RA) [27] coding configurations. In the specific case
of HM and RA configuration, coding efficiency increases by
2.2% and can be further improved to 5.2% when the method is
coupled with the high-complexity Multi Quantization Parame-
ter (MQP) optimization proposed by Sullivan and Wiegand [7].

Ropert et al. [14] propose the Rate Distortion Spatio-
Temporal Quantization (RDSTQ), as a generalization of
Macroblock-Tree framework designed for x264 open-source
AVC encoder [28]. The main interests of this approach is to
model the temporal distortion propagation between CUs from
a R-D standpoint and to introduce a psycho-visual criteria
to optimize perceived quality. In the case of RDSTQ, dit
and pit are respectively presented as the local distortion and
local probability of a CU to be Inter coded, i.e. predicted
from previous frames. Using the high rate assumption and
developing the total signal distortion as a weighted sum of
local distortions, Ropert et al. provide an optimal quantizer for
each CU. Bichon et al. [15] further introduce a more accurate
Inter probability and the Skip probability consideration into
a simplified RDSTQ solution. These improvements enable
additional R-D gains and reduce the TBD compared to the
initial algorithm.

C. Perceptually optimized AQ methods

Most of AQ algorithms aim to optimize a given perceptual
quality metric other than Peak Signal to Noise Ratio (PSNR).
As discussed later in the paper, the proposed model allows
to minimize a perceptual distortion by smoothly considering
any spatial psycho-visual factor. In particular, in our proposal
we designed a variant of the model optimizing the Structural
Similarity (SSIM) metric, proposed by Wang et al. [29]. It
is then relevant to take a look at AQ methods from state of
art that optimize [29]; despite, they do not necessarily target
Global RDO.

Yeo et al. [30] optimize the SSIM by adaptively scaling
the Lagrangian multiplier and local quantizer for each CU.
Estimation of the coding parameters requires only local vari-
ance of pixels in this approach, which achieves −7.4% bitrate
savings in HM8.0 with negligible computational complexity
overhead. In [31], Xiang et al. argue that spatial AQ methods
are more efficient when enhancing inter frame correlation.
Consequently, authors compute CU delta quantizers based
on the Sum of Absolute Transform Differences (SATD) cost
of the Inter mode efficiency estimation, with a constraint
of unchanged average delta quantizer for the entire frame.
This solution enables −3.69% SSIM-based bitrate savings in
average for RA coding configuration.

D. Objective and motivations

We focus on look-ahead-based global optimization approach
and more specifically on the RDSTQ model. Despite the
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high R-D efficiency of initial model [14] against no AQ
(−19, 4% SSIM-based bitrate savings in average for x265),
the considered distortion propagation model was perfectible.
Bichon et al. [15] improve the PSNR-based Bjøntegaard Delta
Bit Rate (BD-BR) by −2% in average and reduce the TBD
from 38.05% to 13.98%, in the context of x265 encoder.
However, the performance evaluation in [15] is achieved in a
restricted configuration (only x265 encoder and no perceptual
criteria), the distribution of delta quantizers is not analyzed and
the analytical solution is based on unverified assumptions.

In this paper, we aim to extensively detail the analyti-
cal solution of RDSTQ. We also aim to verify important
assumptions, such as the hypothesis of rates independence
and the Skip mode probability. We also tries to provide
thorough observations on the model. One potential issue with
AQ methods is the possible drift of delta quantizers, i.e. the
lack of control on their dynamic range, that is proved fully
controllable for the RDSTQ. Finally, we aim to demonstrate
the efficiency and consistency of the model. The new results
achieved in the reference model (HM) further allow a fair
comparison with state-of-the-art methods. Encoding runtimes
and subjective quality assessments, that are not presented in
our previous papers, are also discussed. Finally, an analysis of
the model behavior is proposed, including the rate distribution
among frames within a GOP and the influence of a perceptual
criteria in the spatial distribution of delta quantizers.

III. TEMPORAL DISTORTION PROPAGATION MODEL

The subscript it is used when referring to the CU with
spatial index i in the frame with temporal index t. N denotes
the number of CUs in a frame, and T denotes the GOP size.
The video encoding process aims to find the optimal coding
parameters ~p that minimize the total distortion DTot under the
target rate RTot constraint, as expressed in (2).

min~p DTot(~p)

s.t.
∑T
t=1

∑N
i=1Rit(~p) = RTot

(2)

Video encoders aim to maximize the video quality perceived
by the Human Visual System (HVS). To consider the HVS in
the distortion model, a spatial psycho-visual weighting factor
Ψ is introduced. This factor is applied on each CU to better
reflect the quality perceived by the HVS and is discussed later
in the paper. The DTot to minimize is then expressed by (3).
In the particular case of Ψit = 1 ,∀it, the minimized distortion
is chosen to be the classical Mean Square Error (MSE).

DTot(~p) =
T∑
t=1

N∑
i=1

ΨitDit(~p) (3)

The temporal distortion propagation model used in this
paper defines the distortion Dit of a CU it as the weighted sum
of its local distortion dit and the distortion Djtref

propagated
from its reference CU jtref . Accounting the motion compen-
sation, the propagation formula initially presented in [14] is
given by

Dit(~p) = dit( ~pit) + pit
∑

jtref∈Ref(it)

rjtref ,itDjtref
(~p)

︸ ︷︷ ︸
ηit

. (4)

Ref(it) is the set of reference CUs used for motion
compensation, pit is the probability of a CU to be Inter coded
and rjtref ,it the pixel surface ratio involved in the motion
compensation to go from spatial position of jtref to spatial
position of it. dit( ~pit) is the local distortion, i.e. the distortion
that only depends on ~pit , the coding parameters applied to en-
code the CU it. ηit is the amount of distortion from reference
samples propagated into CU it after motion compensation.
For writing simplification, distortion functions are expressed
in the following without parameters, i.e. dit( ~pit) = dit , unless
a particular coding parameter is necessary for understanding.

The main drawback of this model is to only consider
Inter/Intra coding, i.e. modes involving the transmission of a
residue, and to ignore the Skip coding mode where no residue
is transmitted. To consider the Skip mode, Bichon et al. [15]
introduce cit as the probability of the CU it to be coded in
Inter/Intra mode and (1− cit) as the probability of the CU to
be coded in Skip mode.

A large residue should lead to a high probability for
Intra/Inter mode, while a large quantization step ∆ should lead
to a high probability for Skip mode. Hence, cit is proposed to
be defined as:

cit =
12σ2

srcit

12σ2
srcit

+ ∆2
it

(5)

cit →

 1 if 12σ2
srcit

� ∆2
it

12σ2
srcit

∆2
it

if 12σ2
srcit

� ∆2
it

(6)

where σ2
srcit

is the variance of predicted residue obtained by
motion compensation between source samples, and ∆it is the
quantization step used to code the CU it. The behavior analysis
of (5) is given in (6). If 12 σ2

srcit
� ∆2

it
, cit tends toward

12σ2
srcit

/∆2
it

, which can be approximated as 0. It is intuitively
adequate that a large residue leads to a high probability for
Intra/Inter mode, while a large quantization step leads to a
high probability for Skip mode. The choice of Skip probability
model is also a mathematical workaround to draw a more
robust solution, as described in Section V-C.

In order to include cit in the propagation model in (4), we
first define DC

it
and DS

it
in equation (7) as the distortion of a

CU it to be coded in Inter/Intra and Skip, respectively.

DC
it = dit + pitηit , DS

it = σ2
srcit

+ pitηit (7)

As stated in Section II-A, the Skip mode introduces a
distortion, i.e. dit , that is equal to the prediction error, i.e.
σ2
srcit

. It is our justification for the second equation in (7).
According to (7), the propagation model in (4) is turned
into (8).

(8)
Dit = citD

C
it + (1− cit)DS

it

= citdit + (1− cit)σ2
srcit

+ pitηit
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By developing the total distortion DTot from (3) and using
the temporal propagation defined in (8), we can express the
total distortion as a weighted sum of local distortions (9). The
details of the calculation are explained in appendix C, as well
as how indexes should be interpreted.

DTot =
T∑
t=1

N∑
i=1

(
citdit + (1− cit)σ2

srcit

)
Uit , (9)

where Uit is the accumulation factor recursively defined by{
UiT = ΨiT
Uit = Ψit +

∑
it+1

pit+1rit,it+1Uit+1 .
(10)

The different steps to establish the recursion are given
in appendix D. Uit can be semantically interpreted as the
proportion of the local distortion dit that impacts the total
distortion DTot.

The main interest of the formulation in (9) is to isolate local
distortions dit that depend only on local coding parameters
~pit . Consequently, the problem stated in (3) can be solved

by locally setting coding parameters that optimize the overall
R-D efficiency of a GOP. The application case of adaptive
local quantization and its related analytical solution are both
described in the next section.

IV. RDSTQ ALGORITHM

In this Section the RDSTQ algorithm initially proposed
by Ropert et al. [14] and improved by Bichon et al. [15] is
detailed. First, the local quantization problem is introduced and
the total distortion DTot derivatives are simplified to lead to a
simple mathematical formulation. Then, an analytical solution
is provided, based on R-D Shannon bound, independence
of rates and high rate assumptions, which leads to optimal
encoding from an R-D standpoint.

A. Local Quantization Problem

The coding parameters of interest in this paper are the local
quantization parameters, noted qit for CU it. For ease of
reading, the set of local quantizers for all CUs in a GOP
is noted {q}, with {q} = {qit}i=1..N,t=1..T . The overall
constrained minimization problem is then:

{q∗} = arg min
{q}

T∑
t=1

N∑
i=1

ΨitDit({q})

s.t.
T∑
t=1

N∑
i=1

Rit({q}) = RTot.

(11)

A simplification is made for solving the problem and
achieve an analytical solution. This simplification is to consi-
der the Inter probability pit and the references distortion ηit
that affects it independent of qit . According to (10), Uit is then
also independent of qit . Intuitively, the local quantizer should
affect the Inter probability. However, its influence is negligible
in most cases, i.e. Intra and Inter modes efficiencies are far
from each other.

The non-Skip probability cit and the local distortion dit
both depend on the local quantization parameter qit . The
necessary condition to find the minimum of Dtot is deter-
mined by the condition of all the derivatives equal to zero
∀i ∈ {1, ..., N} ,∀t ∈ {1, ..., T}:

∂DTot

∂∆it

=

(
∂dit
∂∆it

cit +
∂cit
∂∆it

dit −
∂cit
∂∆it

σ2
srcit

)
Uit (12)

(12) can be simplified into (14) as described below:

∂cit
∂∆it

=
−24σ2

srcit
∆it

144σ4
srcit

+ ∆4
it

+ 24σ2
srcit

∆2
it

≈ 0 (13)

We justify this approximation by observing that whatever
the values of σsrcit and ∆it , denominator should always be
much larger than numerator. This simplification leads to

∂DTot

∂∆it

≈ ∂dit
∂∆it

citUit (14)

B. Analytical Solution

In this subsection, we depict the analytical solution which
makes use of (14) to solve the constrained problem described
in (11). The analytical solution results in obtaining the optimal
delta quantizers dQP for all CU, that maintain the GOP
total rate identical. The problem in (11) is modeled thanks
to the Lagrangian multiplier method with λ the Lagrangian
multiplier. The new function to minimize is the total R-D cost
Jtot defined in (15).

JTot = DTot + λ

(
T∑
t=1

N∑
i=1

Rit −RTot

)
(15)

The necessary condition to find the minimum of Jtot is that
all partial derivatives with respect to quantization parameters
are equal to zero ∀i ∈ {1, ..., N} ,∀t ∈ {1, ..., T}:

∂JTot
∂∆it

=
∂DTot

∂∆it

+ λ
∂

∂∆it

T∑
t=1

N∑
i=1

Rit = 0 (16)

We express the rate Rit of a CU it as a function of RCit and
RSit as the rates of a CU it to be coded in Inter/Intra and Skip,
respectively. However, rate of skipped CUs is theoretically
equal to zero. Thus, we have

Rit = citR
C
it + (1− cit) RSit︸︷︷︸

≈0

= citR
C
it . (17)

In order to keep formula easy to read, in the following we
simply write citR

C
it

= citRit . If we suppose the independence
of rates, which is discussed in appendix B and experimentally
validated in Section V-A, (16) is simplified into (18).

∂JTot
∂∆it

=
∂dit
∂∆it

citUit + λ
∂Rit
∂∆it

cit = 0 (18)

The Shannon bound is a R-D model commonly used in
video coding for its high mathematical tractability. Further
details about this model can be found in [32]. The R-D
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Shannon bound is injected into (18) to obtain the optimal λ
as (19). Developments are detailed in appendix E.

λ = 2 ln(2)UitDit (19)

To simplify writing, we define λ
′

as

λ
′

=
λ

2 ln(2)
(20)

We then have ∀it

log2

(
λ
′
)

= log2 (UitDit) . (21)

The RDSTQ aims to keep the average bitrate RTot of
the GOP unchanged. It is achieved if the total rate obtained
through RDSTQ is equal to the total rate obtained with a
unique quantization step applied to all CUs in the GOP. In
next developments from (22) to (31), we exhibit the total GOP
rate and further apply the rate constraint.

By summing the log values weighted according to non-Skip
probability cit on both sides of (21) over all CUs of the GOP,
we have

log2 (λ′)
T∑
t=1

N∑
i=1

cit︸ ︷︷ ︸
=NTot

=
T∑
t=1

N∑
i=1

cit log2 (UitDit) , (22)

log2 (λ′) =
1

NTot

T∑
t=1

N∑
i=1

cit log2 (UitDit) . (23)

We consider a given CU kτ and mix (21) with (23):

1

NTot

T∑
t=1

N∑
i=1

cit log2 (UitDit) = log2 (UkτDkτ ) (24)

We introduce the R-D Shannon bound as

Rit = −1

2
log2

(
Dit

ασ2
it

)
, (25)

with α the parameter that model the source distribution
and σ2

it
the variance of the residue. In order to remove

the cumbersome sum of all local distortion logarithms, we
compute the 2RTot

NTot
using the R-D Shannon bound.

2RTot
NTot

=
2

NTot

T∑
t=1

N∑
i=1

citRit (26)

2RTot
NTot

=
−1

NTot

T∑
t=1

N∑
i=1

cit
(
log2 (Dit)− log2

(
ασ2

it

))
(27)

The term depending on all local distortions can be elimina-
ted by using (24) and (27) in order to obtain (28).

(28)

2RTot
NTot

= − log2 (Ukτ )− log2 (Dkτ )

+

∑T
t=1

∑N
i=1 cit log2

(
ασ2

it
Uit
)

NTot

This result is necessary for applying the rate constraint. The
high bitrate approximation (29) is injected into (28) in order
to make appear the quantization parameter QPkτ as follow:

Dkτ =
∆2
kτ

12
=

2
QPkτ−4

3

12
(29)

log2 (Dkτ ) =
QPkτ − 4

3
− log2 (12) (30)

(31)

2RTot
NTot

= −
(
QPkτ − 4

3
− log2 (12)

)
− log2 (Ukτ )

+

∑T
t=1

∑N
i=1 cit log2

(
ασ2

it
Uit
)

NTot

To make delta quantizers appear, we consider the case of
a GOP encoded with a unique quantization parameter, named
QP . We inject (30) into (27) and simplify QPkτ = QP,∀kτ
to obtain

2RTot
NTot

=
4−QP

3
+log2 (12)+

∑T
t=1

∑N
i=1 cit log2

(
ασ2

it

)
NTot

.

(32)
Since the AQ is designed to be neutral with regards to the

average GOP rate, and assuming residue variances are kept
unchanged, we can mix (31) and (32) to exhibit the optimal
delta quantizer dQPkτ = (QPkτ −QP ) of the CU kτ .

dQPkτ = −str

(
log2 (Ukτ )− 1

NTot

T∑
t=1

N∑
i=1

cit log2 (Uit)

)
(33)

We note that str is called the strength and its theoretical
optimal value is str = 3, coming from the relationship bet-
ween QPkτ and ∆kτ . Increasing or decreasing this value may
stretch the quantizers dynamic range and thus modify the R-D
efficiency and the TBD. Given the multiple approximations,
we have tried several str values and the best results were
obtained with str = 2. Consequently, we set str = 2 for all
experiments as a good trade-off between R-D gains and TBD.

The RDSTQ algorithm is based on the temporal propagation
model presented in Section III. In considering such a model
into the local quantization problem presented in (11), we are
able to efficiently improve the overall R-D coding efficiency.
Thanks to the analytical solution, optimal delta quantizers
are easily estimated based on the look-ahead and do not
require extensive multi-pass analysis. Moreover, as shown in
the next section, the range of delta quantizers is bounded and
controllable.

V. MODEL DISCUSSION

This section aims to provide justification and validation
for some of the simplifications or assumptions made in the
previous section. It is divided into five subsections. First, the
independence of rates hypothesis considered during the ana-
lytical solution development is validated through experiments.
Second, the estimation of inter probability is discussed with
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(a)

(b)

Fig. 1. R-D curves of non-Intra frames according to Intra QP offsets with
(a) Kimono and (b) Cactus sequences

the support of ground truth data extracted from off-line enco-
dings. Third, the Skip mode probability is discussed. Then, the
look-ahead which provides necessary input parameters for the
RDSTQ to compute delta quantizer is discussed, with details
of its implementations into x265 and HM. Most notably, we
demonstrate that the range of delta quantizers is bounded and
can be controlled beforehand.

A. Experimental proof of rates independence
The theoretical explanation is given appendix B. An ex-

periment was conducted in order to evaluate the correctness
of the rate independence assumption. To do so, R-D curves
of non-Intra frames in a GOP are generated with a fixed
QP configuration while different QP offsets are set on the
Intra frame, in the set [0;−4;−8;−12;−16]. The Reference
R-D curve corresponds to the 0 offset case. The experiment
was conducted into HM encoder with Intra coding disabled
in non-Intra frames. The objective of this experiment is to
confirm that increasing quality on Intra frame shifts the R-
D curves of depending frames towards less distortion without
rate deviation.

Fig. 1 shows experimental results for Kimono (a) and Cactus
(b) video sequences in RA configuration with hierarchical 3-
B. These curves show that R-D points are aligned along the
rate axis whatever the QP offset on the Intra frames. Con-
sequently, temporal dependency between CUs only impacts
distortions and not rates. This validates the assumption of rate
independence applied in Section IV-B.

B. Inter Probability Estimation
In this section, we present the Inter probability estimators

considered in [14] and in [15]. ωIntrait
> 0 and ωInterit

> 0

Fig. 2. Inter Probability pit according to cost ratio rit estimated by (34) for
the initial function and (35) for the proposed function.

are defined as the SATD prediction costs of Intra and Inter
modes, respectively. The SATD costs are estimated in the
look-ahead analysis. Probability of Inter prediction mode is
defined as a function of the ratio rit = ωIntrait

/ωInterit
. The

Inter probability estimator used in [14] is given by

pit = 1−min(1;
1

rit
). (34)

This formula implies that if SATD costs are equivalent,
i.e. rit = 1, Inter probability should be null and there is no
propagation, i.e. pit = 0. However, close Intra/Inter prediction
costs should intuitively lead to equiprobable Intra and Inter
modes. Moreover, neither theoretical nor experimental proof
of the correctness of (34) has been given. Bichon et al. propose
in [15] to improve the Inter probability estimation.

Based on statistical inference, Inter probability p is es-
timated, from an off-line RDO analysis, as the Likelihood
function L(r|mode) ∝ P (mode = Inter|r). Fig. 2 compares
both functions pit and p. rit is the prior information known
beforehand while the event for a CU it to be Inter coded is the
evidence. We observe in Fig. 2 that (34) is quite far from the
ground truth. Consequently, another function defined by (35)
is proposed, which is a sigmoid distribution fitting the ground
truth curve. The fitting is done off-line.

pit =
1

1 + a e−b rit
(35)

Function (35) is plotted on Fig. 2. The performance of
this function is discussed in Section VI. a and b are model
parameters set for our experiments to a = 0.5651 and
b = 3.6064.

C. Skip probability justification
To achieve an analytical solution, the high rate assumption

is used to estimate the quantizer from the distortion model.
Despite its mathematical tractability, such assumption is de-
batable and does not stand for low bitrates. To be more robust
to different use cases, we consider the distortion formula of
Xu et al. proposed in [33] that is given in (36), with σ2

it
being

the variance of the input sample.

Dit =
σ2
it

∆2
it

12σ2
it

+ ∆2
it

=
∆2
it

12
×

12σ2
it

12σ2
it

+ ∆2
it︸ ︷︷ ︸

cit

(36)
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Quantization Step

D
is

to
rt

io
n

High-rate approximation

Xu et al. proposition

Maximum Distortion

Fig. 3. High-Rate approximation and Xu et al. [33] model of the Distortion-
Quantization relationship, with distortion expressed in MSE, against the
maximum achievable distortion σ2

it
.

This proposal is close to the approximated distortion (29)
in the high rate case but does not suffer from the same
inaccuracy in the low-rate case, as exposed in Fig. 3. Indeed,
the distortion is limited by σ2

it
the input variance, but the

high rate approximation suggests overcoming this maximum
at some point.

This model makes it difficult to extract the delta quantizer
based on the distortion. However, the chosen non-Skip proba-
bility cit scales the distortion, using the high rate assumption,
into the desired distortion, as shown by the equality in (36).
Using developments described in (12), (13) and (14) allow to
keep the analytical solution simple while using a more robust
distortion model.

D. Look-Ahead Design

In this section we give more insights about the look-ahead
implementation in the x265 and the look-ahead we developed
in the HM.

The analytical solution explained above provides the op-
timal set of local quantizers to the encoder from an R-D
standpoint. However, several input parameters, depending on
source characteristics, are required prior to compute these
quantizers. The look-ahead is a common sub-process designed
to estimate such parameters, based on a pre-analysis which
mimics the encoder behavior. This operation requires to spare
some of the computational resources, but it can be multi-
threaded and the obtained data can drive the encoder to faster
convergence towards optimal decisions. Due to the algorithm
requirements, a look-ahead was used in both x265 and HM
implementations.

The x265 encoder already encloses an efficient look-ahead.
Videos are first down-sampled in order to divide the height
and width of original pictures by 2. Low-resolution frames
are partitioned into 8x8 blocks and each block is analyzed in
Intra and Inter modes. Intra and Inter modes are compared
based on SATD costs. For both Intra mode and Inter motion
estimation, fast analysis is used and based on dichotomous
approaches.

In the HM encoder, no look-ahead is currently available.
Taking advantage of available tools in the HM, we successfully
emulated a look-ahead to extract the necessary information.
Our look-ahead is configured as follow:

Fig. 4. U value evolution within a GOP of 32 frames for different values of
p, with Ψit = 1 ∀i, t.

• No QuadTree: only 16x16 CUs are used
• All modes are analyzed in SATD and use source signal

for reference prediction
• No bit stream is actually written since no reconstructed

data are required
• All necessary values are stored in a look-ahead file
The HM look-ahead is finally achieved by parsing this look-

ahead file. The proposed look-ahead in HM is more accurate,
in terms of correlation with the actual encoder decisions,
compared to the x265 one. Consequently, better R-D efficiency
is observed for the HM, as shown in Section VI-A. The com-
putational overhead of this pre-analysis is around 30% of the
HM encoding complexity. However, this complexity increase
is usually very manageable for real industrial implementations,
first thanks to the efficient use of multi-threading, and second
by leveraging on look-ahead informations to speed up the main
encode decisions.

E. Quantizer dynamic range

In this section, the dynamic range of delta quantizers is
analyzed. We prove that delta quantizers obtained through
the model are bounded. The output dynamic range of delta
quantizers is predictable before to encode. This property helps
to prevent from any conformance issue or boundary defect.

Let assume a sequence as temporally stable, i.e. probability
of Inter mode is equal for all CUs with identical spatial
positions in different frames. We have seen in Section III that
accumulation factor is recursively defined by (10).

For the sake of simplicity, let Ψit = 1 ∀i, t. If we assume
all probabilities in the same spatial area to be equal to p, i.e.
within the temporally stable part of a picture, then we obtain

Uit =
T∑
k=t

pT−k. (37)

Under the assumption that pit = p, ∀i, t, Uit is a geometri-
cal series. Knowing that p ∈ [0...1], we finally obtain

Umax = lim
(t,T )→(0,∞)

Uit =
1

1− p
. (38)

This equation suggests that, by design, Uit converges at a
maximum value Umax, that depends on source characteristics,
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TABLE I
CODING EFFICIENCY OVER NO LOCAL QUANTIZATION IN HM.

B
D

-B
R

Rate Distortion Temporal Quantization (RDTQ) RDSTQ
Probability Model Initial Initial + skip Proposed Proposed + skip Initial Initial + skip Proposed Proposed + skip

Class A (8bits) -10.35% -10.16% -14.15% -14.02% -19.26% -18.76% -28.02% -26.45%
Class B -7.55% -7.57% -12.02% -12.97% -13.42% -13.26% -22.30% -23.24%
Class C -15.24% -15.25% -19.01% -19.20% -21.97% -21.62% -30.37% -30.26%
Class D -13.95% -13.48% -16.52% -16.08% -23.65% -22.67% -30.93% -29.28%
Class E -14.08% -13.30% -22.67% -21.03% -14.28% -13.37% -23.78% -21.81%
Average -12.08% -11.83% -16.58% -16.51% -18.38% -17.84% -26.89% -26.26%

Best -21.04% -21.51% -26.57% -26.68% -30.38% -29.89% -40.90% -39.65%
Worst -3.36% -7.65% -7.59% -7.86% -10.71% -9.61% -18.65% -17.77%

T
B

D

RDTQ RDSTQ
Probability Model Initial Initial + skip Proposed Proposed + skip Initial Initial + skip Proposed Proposed + skip

Class A (8bits) 20.32% 5.86% 43.82% 12.40% 10.28% 4.39% 32.65% 9.57%
Class B 22.12% 12.92% 64.98% 31.98% 9.89% 5.38% 49.57% 19.43%
Class C 16.69% 5.36% 41.46% 12.93% 9.52% 3.39% 33.93% 8.26%
Class D 23.53% 7.65% 50.56% 15.09% 18.96% 4.09% 46.51% 7.28%
Class E 44.65% 23.84% 113.77% 42.87% 13.11% 4.10% 75.56% 16.54%
Average 24.78% 11.10% 62.33% 23.63% 12.40% 4.33% 47.87% 12.67%

under the assumption that T is large enough. We also notice
that the lower the p value, the faster U converges. We report
in Table II, for a given value of p, the maximum achievable
weight Umax reached once the number of frames in the GOP
equals or exceed Nconv . The convergence is assumed with a
two decimal places precision.

We can see the consequence of such convergence on Fi-
gure 4. If one increases the size of the stack T , as long as
the sequence is temporally stable, reference frames ultimately
have an equal level of importance within the GOP. We note
that such convergence is most likely to occur for small p value,
i.e. sequences difficult to predict temporally.

In the special case of p = 1, the Umax value only depends
on the GOP length: Umax = T . Once Umax is estimated, the
dynamic range of delta quantizer rngdQP is given by

rngdQP = −str (log2 (Umax)) (39)

with str being the strength mentioned in Section IV-B.
Based on this formula, one may choose to control the dynamic
of the delta quantizers by directly modifying the strength
value. In our experiments str = 2.

VI. EXPERIMENTS

This section aims to validate the coding efficiency of the
proposed solution, assess the TBD reduction and confirm the

TABLE II
THEORETICAL NUMBER OF FRAMES Nconv REQUIRED FOR U

CONVERGENCE BASED ON p VALUES AND RELATED Umax

p value Nconv Umax

0.1 3 1.11
0.2 4 1.25
0.3 5 1.43
0.4 8 1.67
0.5 9 2
0.6 13 2.5
0.7 17 3.33
0.8 31 5
0.9 73 10
1.0 NaN T

expected behavior of the model. First, influences of the propo-
sed probability from [15], described in Section V-B, and the
Skip probability consideration are evaluated. Second, the rate
distribution between frames of the GOP is observed. Third,
the positive impact of Ψ function on overspent rate situation
is confirmed. Finally, the method is compared to state-of-the-
art methods, thanks to the proposed HM implementation.

The x265 software HEVC encoder [6] is used in the
experiments in order to have similar test conditions as [14]
and [15]. The HM encoder [5] is also used to confirm results
in a different encoder. Common Test Conditions (CTC) defined
by the JCT-VC [34] have been followed. Videos are encoded
in RA coding configuration, with 3 hierarchical B, for five QP
values ∈ {22, 27, 32, 37, 42}. The QP value of 42 was added
to highlight the Skip mode influence since it is statistically
more used at low bitrate.

When no psycho-visual function is considered, i.e. Ψit =
1,∀i, t, the model is simply called RDTQ, since spatial criteria
is ignored, and the BD-BR is computed using the PSNR
metric. Otherwise, the model is called RDSTQ and the BD-BR
is computed using the SSIM metric, that is better correlated
with HVS perception of quality. In the case of RDSTQ we
set Ψit = 1/σ2

it
, with σ2

it
being the local variance of source

luminance pixels of the block it. Yeo et al. [35] proved that
weighting a MSE distortion by the inverse of local pixel
block variance specifically optimizes the SSIM metric, which
explains our choice of Ψ function.

A. Coding Efficiency

Coding performance is measured using the BD-BR me-
tric [36]. A negative BD-BR value reflects the percentage of
bitrate savings achieved at equivalent YUV distortion, between
the anchor and the proposed solution. The BD-BR results and
the corresponding target bitrate deviations, TBD, averaged on
the considered QP values are presented in Table I for HM and
in Table III for x265.

The anchors are respectively the x265 and HM encoders
without AQ algorithm. The two Inter probability models,
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TABLE III
CODING EFFICIENCY OVER NO LOCAL QUANTIZATION IN x265.

B
D

-B
R

RDTQ (No psycho-visual function) RDSTQ
Probability Model Initial Initial + skip Proposed Proposed + skip Initial Initial + skip Proposed Proposed + skip

Class A (8bits) -7.96% -7.90% -10.13% -9.92% -20.00% -19.34% -25.55% -23.87%
Class B -6.90% -6.93% -7.36% -8.48% -16.79% -16.38% -20.43% -20.96%
Class C -13.97% -13.69% -15.08% -15.12% -24.12% -23.27% -28.71% -27.88%
Class D -11.42% -10.91% -12.24% -11.77% -25.49% -23.82% -30.39% -27.57%
Class E -11.63% -10.89% -15.96% -14.28% -12.94% -11.58% -19.20% -16.43%
Average -10.38% -10.08% -11.90% -11.81% -20.07% -19.09% -24.85% -23.53%

Best -19.00% -19.01% -22.38% -22.08% -30.87% -30.11% -39.01% -36.60%
Worst +0.24% -1.59% +1.48% -3.23% -10.58% -8.62% -14.18% -12.11%

T
B

D

RDTQ (No psycho-visual function) RDSTQ
Probability Model Initial Initial + skip Proposed Proposed + skip Initial Initial + skip Proposed Proposed + skip

Class A (8bits) 28.04% 7.16% 50.96% 11.75% 12.41% 5.13% 33.09% 7.55%
Class B 37.17% 10.63% 80.63% 22.19% 14.90% 8.13% 53.24% 14.89%
Class C 23.30% 4.72% 47.71% 8.08% 10.37% 8.87% 34.20% 10.89%
Class D 31.09% 5.32% 60.65% 9.82% 21.85% 8.57% 51.47% 9.12%
Class E 71.03% 25.82% 138.29% 35.90% 14.89% 5.51% 69.26% 8.09%
Average 37.37% 10.28% 75.19% 17.43% 15.16% 7.62% 49.05% 10.77%

defined in (34) and (35) are compared and respectively named
Initial probability and Proposed probability.

From Table I we can observe higher bitrate savings for
the Proposed probability (35) over the Initial probability (34),
whether the Skip mode consideration is enabled or not. The
Proposed probability (35) saves in average −4.5% PSNR-
based BD-BR compared to the Initial probability with RDTQ
and −8.61% SSIM-based BD-BR compared to the Initial pro-
bability with RDSTQ. When Skip is considered, performances
suffer from an average bitrate increase between 0.07% and
0.25% for RDTQ and between 0.54% and 0.63% for RDSTQ.

The TBD shows 2 to 4 times higher deviation when
using the Proposed probability compared to Initial probability.
Indeed, Proposed probability induces larger propagation and
consequently smaller delta quantizers, i.e. more rates, on refe-
rence frames. The consideration of Skip probability efficiently
reduces the TBD, and then the Proposed probability provides
similar TBD as the Initial probability while maintaining BD-
BR gains. The average TBD for RDTQ and RDSTQ is equal
to 23.63% and 12.67%, respectively.

Despite the significant TBD decrease enabled by using both
spatial criteria and Skip probability, average values remain
quite high. Class B and Class E sequences suffer a deviation
above 15%. R-D curves of two sequences, ParkScene and
FourPeople, are presented in Fig. 5. We observe that TBD
is significantly higher at high rates than low rates. The
TBD at low rates is well managed by the Skip probability
consideration, but the RDSTQ model behavior is not as good
for high rate. At high bitrate, two observations can be made:

1) The Skip probability has no more influence (i.e. cit →
1). The delta quantizer dynamic over the GOP (i.e. rate
allocation) depends only on source statistics and strength
parameter, not on the target average quantizer set for
GOP (i.e. target rate). The strength is set only once for
the entire test set and range of target QPs.

2) Based on R-D Shannon bound, a small variation of
distortion induces a large rate variation. Typically, a
small additional improvement in quality requires a large
bitrate increase. In our context of global RDO, to slightly

(a)

(b)

Fig. 5. RDSTQ and no-AQ R-D curves in HM for (a) ParkScene and (b)
FourPeople

improve the quality on reference frames, the necessary
rate increase is too large for significantly improving the
global coding efficiency of dependent frames.

Consequently, to improve the model at high bitrate, we
should lower the dynamic of delta quantizers (or rate alloca-
tion), and adapt the dynamic based on target quantization (or
rate). Several options should be investigated, such as adapting
the strength parameter based on target QP or use an Inter
probability dependent of the target QP.

To estimate quality gains, we also provide the results for
HM encoder, with BD-PSNR (without psycho-visual factor)
and with BD-SSIM (with the psycho-visual factor) in Table IV.
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(a) I-frame t=0 (b) B-frame t=9 (c) B-frame t=18 (d) P-frame t=23

Fig. 6. Comparisons of subjective visual fidelity on ParkScene sequence encoded at 500 kbps. Reference is x265 without adaptive quantization on top. Test
is x265 with RDSTQ on bottom.

These results are obtained by using both the Proposed Inter
probability and the Skip probability. We can observe average
BD-PSNR and BD-SSIM improvements of 0.59 and 1.36,
respectively. In addition, we proceeded in visual quality com-
parisons of RDSTQ encoded bit-streams against reference bit-
streams without AQ. The encoded bit-streams based on x265
are available at: https://github.com/MaximeBichon/RDSTQ.
The proposed RDSTQ method significantly improves the
visual quality, as detailed for one example Fig. 6. Fig. 6
compares multiple pictures of the ParkScene sequence for
RDSTQ against the reference without AQ, both at identical
average bitrates. For every frame, the blocking and pattern
artifacts are efficiently reduced on trees and less blurring is
also observed on the floor and background. Overall, it results
in more temporal quality consistency and sharpness, which
is consistent with RDSTQ motivation on better considering
temporal distortion (quality) propagation.

Observations from x265 experiments depicted in Table III
leads us to similar conclusions. The average bitrate savings
for RDTQ and RDSTQ are respectively −1.43% PSNR-based
BD-BR and −3.46% SSIM-based BD-BR. The TBD is howe-
ver reduced compared to the Initial probability without Skip
consideration. The TBD is reduced from 37.37% to 17.43%
with RDTQ and from 15.16% to 10.77% with RDSTQ.

As desired, the Proposed probability improves the coding
efficiency while the Skip mode consideration efficiently redu-
ces the TBD. We demonstrate in this paper that the model

TABLE IV
AQ CODING EFFICIENCY OVER NO AQ IN HM.

Sequences BD-PSNR for RDTQ BD-SSIM for RDSTQ
Class A (8bits) 0.50 1.17

Class B 0.33 0.86
Class C 0.81 1.98
Class D 0.67 2.12
Class E 0.68 0.47
Average 0.59 1.36

Best 1.18 2.77
Worst 0.18 0.35

stands whatever the codec implementation or the Ψ scaling
factor used.

B. Frame Rate Distribution

(a)

(b)

Fig. 7. Rate distribution of first GOP frames with sequence RaceHorses at
QP = 32 for (a) RDTQ with Initial Probability and RDTQ with Proposed
Probability; for (b) Proposed Probability with and without Skip consideration.

In this section, we discuss the distribution of rates for se-
veral frames, typically a whole GOP, when some of the models
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presented above are enabled. The sequence RaceHorses with
resolution of 832x480 is used for experiments in this section.

As expected, we observe in Fig. 7 (a) that RDTQ model
allocates more rate on the reference frames and lower temporal
layer, while it decreases the rate allocated to frames in the
highest temporal layers. The Proposed probability, propagating
more weight on reference frames, tends to stretch even more
the bitrate distribution across temporal layers.

When considering the Skip probability, rates are equally
decreased for each type of frame as observed in Fig. 7 (b), but
it does not alter the delta rates between frames. This behavior
is expected since Skip mode consideration aims to limit the
overspent rate on the entire GOP.

C. Ψ function and QP spatial distribution

In this section, more insights are given about the impact
of the Ψ function on QPs spatial distribution. We observe the
distribution of quantizers over an entire frame when the Ψ
function is enabled. As early introduced, the psycho-visual
factor chosen here is based on local spatial pixel variance,
and is dedicated to optimize SSIM score. It has the property
to consider spatial masking effect, i.e. the fact that human
eyes are less sensible to distortion made on high textured area
(high local variance) than on area of low spatial complexity
(low local variance). Spatial masking significantly impacts
compression artifact perception, as further analyzed by Rimac-
Drlje et al. [37].

The distribution of quantizers with and without psycho-
visual function is shown on Fig. 8 for the frame 128 of
BQTerrace sequence, with QP = 22. The darker blocks have
the lowest quantizer (high rate) and the brighter ones have
the highest quantizer (low rate). We point out that for this
particular sequence encoded at QP = 22, almost no block is
coded in Skip mode. Hence, we can keep apart the influence
of the model Skip estimation in this analysis.

We observe on Fig. 8 (a) that if no psycho-visual function is
considered, the terrace is affected with high quality while the
water and the roof are quantized more aggressively. The Inter
probability is based on the relative difference between Intra
mode and Inter mode estimated complexities. The more the
Intra complexity is high compared to the Inter one, the more
importance is put on reference frames. Given that, BQTerrace
is highly uniform in terms of temporal complexity but not in
terms of spatial complexity, it explains why more quality is
affected to spatially complex areas, such as the terrace in this
case.

However, the more textured is a block, the less distortions
are visible by the human eye. When the psycho-visual function
is enabled (Fig. 8 (b)), we observe a more balanced distribution
of the quantizers over the frame. Less rate is overspent on the
terrace, while the water is subject to a quality improvement,
according to the spatial masking effect.

In our experiments we focus on the spatial masking effects
based on local pixel variance, that correlates well the SSIM
quality metric. However, RDSTQ may be used to optimize
any other perceptual criteria based on the selection of a Ψ
factor that scale well the MSE. For the interested readers,

(a) (b)

(c)

Fig. 8. QP distribution over the frame 128 of BQTerrace sequence (a) without
psycho-visual function and (b) with psycho-visual enabled. (c) The source
frame

Winkler [38] provides a good overview of possible vision
model and perceptual metrics to consider.

D. Comparison to state of the art

This section compares our method with some state of the
art solutions. In order to be comparable to other methods
found in the literature, the coding scheme was changed for
the 7-B hierarchical and QP values ∈ {22, 27, 32, 37}. Other
coding parameters remain the same and the reference is the
HM encoder without AQ algorithm.

Three methods were chosen for comparison. The first one
is proposed by Gao et al. [27] and designed for optimizing
the PSNR. Two other methods designed for optimizing the
SSIM are proposed by Yeo et al. [30] and Xiang et al. [31].
The proposed solution denoted as Ours in the results is the
RDSTQ improved by the Proposed Inter and Skip probabili-
ties. Simulation results are presented in Table V, with methods
reference numbers, for the HM encoder.

Our proposed solution substantially outperforms the SDTP
optimized for RA coding configuration by −11.51% in terms
of PSNR BD-BR in average. The main reason is the simplified
estimation of the dependencies made in [27] that extrapolates
the dependency network instead of building it through a look-
ahead as proposed. Consequently, Gao et al. solution saves
some computational complexity by avoiding the use of a

TABLE V
CODING EFFICIENCY COMPARISON OVER NO AQ IN HM.

Classes BD-BR PSNR BD-BR SSIM
[27] Ours [30] [31] Ours

Class A -4.25% -12.53% -5.78% -5.42% -27.98%
Class B -4.10% -9.35% -4.18% -3.12% -20.82%
Class C -5.60% -17.56% -3.90% -5.13% -29.78%
Class D -4.10% -15.82% -4.47% -4.53% -30.86%
Class E -8.40% -25.09% -2.86% -0.25% -27.37%
Average -5.18% -15.59% -4.14% -3.69% -26.93%
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TABLE VI
COMPARISON OF ENCODING RUNTIME IN SECONDS WITH NO-AQ AND

RDSTQ IN HM.

Sequences No-AQ RDSTQ Runtime
Encoding Encoding Lookahead relative offset

RaceHorses 480

8092.67 7857.36 2081.604 22.81%
6830.27 6546.99 2081.604 26.33%
5846.35 5593.69 2081.604 31.28%
5135.56 4849.16 2081.604 34.96%
4498.13 4163.41 2081.604 38.84%

BasketballDrill

9725.36 9055.82 3839.134 32.59%
8431.55 7784.01 3839.134 37.85%
7418.90 6856.51 3839.134 44.17%
6635.51 6085.56 3839.134 49.57%
5973.31 5407.38 3839.134 54.80%

BlowingBubbles

2298.63 2079.30 1200.608 42.69%
1837.58 1681.99 1200.608 56.87%
1530.68 1403.72 1200.608 70.14%
1313.54 1206.92 1200.608 83.29%
1152.55 1071.54 1200.608 97.14%

BasketballPass

2456.23 2334.28 1396.372 51.89%
2164.93 2048.26 1396.372 59.11%
1918.05 1795.33 1396.372 66.40%
1699.37 1577.95 1396.372 75.03%
1510.91 1377.15 1396.372 83.57%

KristenAndSara

15247.84 14950.88 7617.788 48.01%
13175.36 12584.20 7617.788 53.33%
12380.74 11437.62 7617.788 53.91%
11934.06 11155.10 7617.788 57.31%
11605.41 10978.87 7617.788 60.24%

Average - - - 53.28%

look-ahead but greatly limits the efficiency of the encoding
optimization.

In terms of SSIM, the proposed solution outperforms the
two methods by more than −22% in average. However,
an important drawback is that both methods consider rate
constraint on a frame basis and not a GOP basis, which
forbids bit transfer between frames. Consequently, these AQ
methods are more constrained that our proposal, even if Xiang
et al. [31] implicitly try to consider the temporal dependencies
through Inter mode SATD estimation. The large difference
in coding efficiency confirms that GOP optimization is much
more efficient than frame optimization. Moreover, even if
GOP optimization requires a more complex look-ahead than
frame optimization, such implementation are very acceptable
in industrial applications.

E. Encoding Complexity

We provide a rough comparisons of HM encoding runtime
of RDSTQ with Proposed Inter probability and Skip pro-
bability for sequences in classes C, D and E in Table VI.
Different sequences are tested with QP ∈ {22, 27, 32, 37, 42}.
We observe that encoding runtime is higher from 53.28% in
average. This increase mostly comes from the look-ahead and
is more noticeable for low bitrate. We point out that the look-
ahead complexity comes from the data writing in a separated
file, further read by the HM for RDSTQ. Thus, an embedded
look-ahead would not be as complex as the one we proposed.
Moreover, in a multi-threaded implementation, such overhead
would be neglected.

VII. CONCLUSION

We show through extensive experimentations the benefits
of considering both Skip probability and accurate Inter pro-
bability estimators for AQ. Our model relies on an analytical
solution for delta quantizers, thoroughly demonstrated in this
paper. It provides substantial bitrate savings whatever the
HEVC encoder implementations. Considering the RDTQ, i.e
Ψit = 1∀i, t, we report systematic BD-BR gains of −1.43%
and −4.43% PSNR-based in the x265 and the HM encoders,
respectively. We obtain these gains against the initial method
proposed by Ropert et al. [14].

Thanks to the convenient consideration of a psycho-visual
factor, the RDSTQ also allows to optimize more perceptually-
oriented quality metric, such as the SSIM. When using a
psycho-visual factor based on the local pixel variance, that
estimates the spatial masking, BD-BR gains based on SSIM
are then of −3.46% and −8.61% for the x265 and the HM,
respectively. Careful comparison against start-of the art similar
approaches is also reported. RDSTQ model outperforms pre-
vious techniques with −10.41% PSNR-based and −22.79%
SSIM-based average bitrate savings, when reference is without
AQ. The main conclusion coming out from these experiments
is the higher efficiency of the GOP optimization compared
to the frame optimization; GOP optimization being closer to
the global optimization bound. Subjective quality assessments
demonstrate consistent spatial and temporal quality impro-
vements thanks to the RDSTQ.

We prove that the Skip probability consideration is an
efficient way to make the distortion model more robust. It
helps to reduce the average TBD of the RDSTQ with Initial
probability from 12.4% to 4.33% in the HM and from 15.16%
to 7.62% in the x265. Finally, we demonstrate that computed
delta quantizers based on the proposed model are bounded.
Their output dynamic range is controllable, preventing from
any worst case scenario. The TBD can be further reduced,
especially at high rate, by using a more complex model taking
into account the target quantizer.

However, the proposed model is simplified by assuming all
blocks to be of the same size, notably during the look-ahead
analysis. In HEVC, the QuadTree partitioning is known to be
a key tool in terms of coding efficiency. Obviously, we assume
that predicting the QuadTree based non-uniform partitioning
into the look-ahead for refining the distortion propagation
model and quantizer computation would bring substantial
coding gains. Our future work will address this problematic,
while taking care of the computational complexity related to
the QuadTree partitioning estimation.

APPENDIX A
MULTIPLICATIVE DEPENDENCY MODEL

We define i the current CU and j its reference CU used
for temporal prediction. We define εi as the residue on i
before quantization, εj as the reconstruction error on j and
εsrci as the error obtained by motion compensation between
original blocks i and j. By definition, residue energy before
quantization σ2

i is equal to
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σ2
i = E

[
ε2i
]

= E
[
(εj + εsrci)

2
]
, (40)

σ2
i = E

[
ε2j
]︸ ︷︷ ︸

Dj

+E
[
ε2srci

]︸ ︷︷ ︸
σ2
srci

+2E [εjεsrci ] . (41)

We assume that the motion compensation error ε2srci on
source blocks is not correlated with the reconstruction error
ε2j on reference images. Then, E [εjεsrci ] ≈ 0. If we introduce
the R-D Shannon bound (42), we can write (43).

Ri = −1

2
log2

(
Di

ασ2
i

)
, (42)

Di = ασ2
i 2−2Ri = ασ2

srci2
−2Ri︸ ︷︷ ︸

di

+αDj2
−2Ri

= di +
ασ2

srci
2−2Ri

σ2
srci

Dj

= di + di
σ2
srci

Dj

(43)

If we assume no dependencies in intra coding, i.e. Di = di,
and that the probability of a CU to be coded in Inter is equal
to pi, the distortion can be expressed as

Di = di

(
1 +

pi
σ2
srci

Dj

)
. (44)

APPENDIX B
DISCUSSION OF THE INDEPENDENCE OF RATES

We consider a CU indexed by i and its reference CU with
distortion Dref . According to the Shannon R-D function, the
rate Ri of the CU i can be expressed as in (45).

(45)Ri = −1

2
log2

(
Di

σ2
i

)
We consider equations (41) and (44) to express the rate Ri

as (46).

(46)

Ri = −1

2
log2

di
(

1 +
piDref
σ2
srci

)
σ2
srci + piDref


= −1

2
log2

 di
σ2
srci

(
σ2
srci + piDref

)
σ2
srci + piDref


= −1

2
log2

(
di
σ2
srci

)
Consequently, since di and σ2

srci does not depend on Dref ,
we can assume the rate Ri is independent from Dref .

APPENDIX C
COMPUTING DTot

Notation are simplified by defining sit = citdit +
(1− cit)σ2

srcit
. We start from the distortion defines with the

temporal distortion propagation model as below,

Dit = sit + pit
∑

jtref∈Ref(it)

rjtref ,itDjtref
. (47)

We refine the overlapping ratio rjtref ,it as follow:

rjtref ,it =

{
0 if jtref /∈ Ref(it)
rjtref ,it if jtref ∈ Ref(it)

(48)

For sake of simplification, the belonging to the reference
image is removed from equations to lighten the notation. At
the same time, as now the sum occurs on the entire image,
given the fact that the referencing of contributing CU is carried
by the ratio rjtref ,it , Then jt−1 is a silent index, and can be
replaced by it−1. The adopted notation becomes:

Dit = sit + pit
∑
it−1

rit−1,itDit−1
(49)

Then we can write the following:

Di1 = si1 (50)

Di2 = si2 + pi2
∑
i1

ri1,i2Di1 (51)

Di2 = si2 + pi2
∑
i1

ri1,i2si1 (52)

Di3 = si3 + pi3
∑
i2

ri2,i3Di2 (53)

Di3 = si3 + pi3
∑
i2

ri2,i3

(
si2 + pi2

∑
i1

ri1,i2si1

)
(54)

The distortion on the CU iτ with τ > 1 is expressed as

(55)

Diτ = piτ
∑
iτ−1

riτ−1,iτ

piτ−1

∑
iτ−2

riτ−2,iτ−1

(
...pi2

∑
i1

ri1,i2si1 + si2

)
+ ...

+ siτ−1 + siτ ,

and the total distortion DTot is expressed as:

DTot =
T∑
t=1

N∑
i=1

DitΨit

=
T∑
t=1

 N∑
i=1

Ψit

pit∑
it−1

rit−1,it

pit−1

∑
it−2

rit−2,it−1

(
...pi2

∑
i1

ri1,i2si1 + si2

)
+ ...

+ sit−1
+ sit


(56)
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From (56), DTot can be written as a linear combination of
Uit and sit , then

DTot =
T∑
t=1

N∑
i=1

sitUit . (57)

Uit is the sit contribution to DTot and can be computed
as the partial derivative of DTot with respect to sit . After
calculation and rearranging we obtain:

(58)

Unτ =
∂DTot

∂snτ

= Ψnτ +
T∑

t=τ+1

∑
it

∑
it−1

...
∑
iτ+1

Ψitpitrit−1,it

Ψit−1
pit−1

rit−2,it−1
...piτ+1

rnτ ,iτ+1


APPENDIX D

ACCUMULATION FACTOR IN RECURSIVE FORM

From (58) written at the rank τ−1, after some manipulations
we obtain the expression in (59).

(59)

Unτ−1
= Ψnτ−1

+
∑
iτ

piτ rnτ−1,iτ

Ψiτ

+
T∑

t=τ+1

∑
it

∑
it−1

...
∑
iτ+1

Ψitpitrit−1,it

Ψit−1pit−1rit−2,it−1 ...piτ+1riτ ,iτ+1


It can be expressed as the recursive function:

Unτ−1
= Ψnτ−1

+
∑
iτ

(
piτ rnτ−1,iτUiτ

)
. (60)

Trivially, when τ = T , we obtain:

UnT = ΨnT (61)

It demonstrates the recursive form of the accumulation
factor U as summarized in (62){

UjT = ΨjT
Ujt−1

=
∑
it
pitrjt−1,itUit + Ψjt−1

.
(62)

APPENDIX E
COMPUTING THE LAGRANGIAN MULTIPLIER

∂JTot
∂∆it

=
∂dit
∂∆it

citUit + λ
∂Rit
∂∆it

cit = 0 (63)

The minimization of JTot is independent of cit , according
to (14). cit is removed from equations. Then we obtain the λ
as

λ
∂Rit
∂∆it

= −Uit
∂dit
∂∆it

, (64)

λ = −Uit

∂dit
∂∆it

∂Rit
∂∆it

= −Uit
∂dit
∂Rit

= −Uit
∂Dit

∂Rit
. (65)

By using the R-D Shannon bound Rit = − 1
2 log2

(
Dit
ασ2

it

)
,

we obtain

∂Rit
∂Dit

=
1

2ln(2)Dit

. (66)

Finally, the optimal λ is defined by

λ = 2ln(2)UitDit . (67)
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