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Abstract

We report infrared spectra and photochemical behavior of the potentially astrochemically 

significant species, mercaptoacetonitrile (HS-CH2C≡N) and, for comparison purposes, 

chloroacetonitrile (Cl-CH2C≡N), both suspended in an argon matrix at 6K. Photolytic 

formation of the isocyano products HS-CH2-NC and Cl-CH2-NC were observed as well 

as CH3NSC and CH3SCN (in HS-CH2CN photolysis). While no dissociation products were 

observed for Cl-CH2-CN, photolysis of HS-CH2-CN produced compounds necessitating 

the loss of the CN group to form CH2=S, the SH group to form H2C-CN and HC-CN, or 

both CN and SH to form CH3 and CH4. Observation of emission spectra upon annealing 

indicates the presence of free sulfur atom in matrices of photolyzed HS-CH2-CN.

1. Introduction

Theoretical studies1 show that mercaptoacetonitrile (HS-CH2-CN), methyl 

isothiocyanate (CH3NCS), and methyl thiocyanate (CH3SCN) are the three most stable 

molecules of the C2H3NS family having energies of 0, 7.8, and 12.4 kJ/mol respectively. 

Although not yet detected in the interstellar medium (ISM), each of these can be 
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considered as a potential candidate. The structurally similar species CH3SH2, HSCN3,4, 

HNCS3,4, and CH3CN5,6 have all been detected in the ISM. Hydroxyacetonitrile (HO-CH2-

CN), the closest oxygen-bearing analogue of mercaptoacetonitrile, has been observed in 

laboratory generated interstellar and cometary ice analogs7 and recently detected in 

solar-type protostar IRAS16293–2422 B8. It is not difficult to imagine replacement of an H 

atom with a CN, NC, or SH group, or addition of a CH2 or S to one of these known 

astrochemical species to reach the lowest energy members of the C2H3NS chemical 

family.

While structural analogies are interesting, explicit pathways for formation or 

decomposition of S containing species in space, whether they have already been 

detected or are promising candidates, should be elucidated in the laboratory and through 

calculations. Existing models and the ratio of abundances of different sulfur species have 

already been used to evaluate the age of interstellar clouds9,10,11 and to estimate the mass 

of an emerging star12. However, problems encountered in determination of sulfur 

abundance in the interstellar medium13, describing the interstellar synthesis of 

methanethiol (detected in Sagittarius B2 core14 and hot core of G327.3-0.615 but absent 

in TMC-1), and prediction of abundances of nearly all sulfur-containing molecules 

detected in TMC-116,17,9 suggest that our current understanding of sulfur chemistry 

remains incomplete. 

Here we explore one aspect of sulfur chemistry by describing the computational 

and experimental results of the UV photolysis of mercaptoacetonitrile (HS-CH2-CN, MAN) 

and its closely related synthetic precursor chloroacetonitrile (Cl-CH2-CN, CAN) in noble 

gas matrices. Although CAN is not of obvious astrochemical significance (Cl abundance 
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is generally not high in the universe and only a handful of species including AlCl, KCl, 

NaCl, HCl, HCl+, H2Cl+, and CH3Cl18 have so far been detected), no noble gas matrix 

photolysis experiments have been performed on this species. As detailed spectroscopic 

information for this molecule is available, photolysis of this chemical provides a 

convenient comparison with mercaptoacetonitrile. While chemically inert noble gas 

matrices are not considered good models for authentic interstellar ices19, photochemistry 

measurements in this environment can be treated as a first, necessary step toward 

understanding the transformations that might result in a more representative but 

chemically complex ice environment. They also provide a means to produce more exotic 

isomers for spectroscopic characterization. Photochemistry in pertinent interstellar ice 

analogues (e.g., containing CO, H2O, or other species or mixtures 20) is the next step 

along the path towards understanding photochemical processing in space and will be the 

subject of a future publication.

Of the three lowest energy C2H3SN family members, mercaptoacetonitrile (HS-

CH2-CN), which has a weak chemical stability at room temperature, is the only one not 

commercially available and is therefore less well studied. Nevertheless, this species has 

been explicitly discussed as a likely astrochemical species whose potential routes of 

formation in the interstellar medium were explored and microwave spectrum 

experimentally measured at both -30 °C and room temperature21. Synclinal and anti-

periplanar conformers of mercaptoacetonitrile were identified and their energetic 

separation measured to be 3.8±0.3 kJ/mol. A theoretical study of these two conformers 

has also recently been made in an effort to understand their potential behavior in harsh 

astrophysical environments22. The charge transfer dynamics resulting from collisions 
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between energetic protons and these isomers was explored and compared to the two 

lowest-energy HCN dimers (Z and E isomers of cyanomethanimine). Charge transfer of 

the synclinal conformer turned out to be more efficient than for the corresponding 

cyanomethanimine.

Outside of these recent works, only a handful of studies on mercaptoacetonitrile 

are available in the literature. Several synthetic routes to its formation have been explored 

and routine 1H and 13C NMR as well as mass spectrometry and IR spectroscopy were 

used to characterize the products23,24,25,26. Most pertinent to the work at hand are 

spectroscopic measurements in the infrared and all reported spectra to date are for the 

pure liquid. Early work of Mathais et al.23 reported six vibrational bands: the SH group at 

2560 and 920 cm-1; the CN group at 2240 cm-1; and the CH2 group at 2980, 2940 and 

1400 cm-1. Wepplo 24 gave five unassigned vibrations: 2680, 2260, 990, 925 and 710 cm-

1.Gaumont et al.25 reported the SH vibration at 2560 cm-1 and CN vibration at 2220 cm-1. 

Finally, Alexander et al.26 reported a CN vibration at 2247cm-1. Aside from the vibration 

at 2680 cm-124, possibly meant to be 2980 cm-1, these comprise a consistent summary of 

vibrations for this molecule in the liquid phase. They are collected and presented with our 

results in Table1 Supporting Information. No more detailed IR spectral data of 

mercaptoacetonitrille is available.

As for the commercially available chloroacetonitrile (Cl-CH2-CN), numerous 

publications are available and include measurements using a variety of spectroscopic 

methods. Infrared data was first available in the 1950’s, when Zeil et al.27 performed 

measurements of pure Cl-CH2-CN using IR and Raman spectroscopy and gave a 

comprehensive list of fundamental vibrations as well as some of their combinations. 

Page 4 of 44

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Since 50’s, various other groups have performed measurements in the gas-phase 

28, 29 or in the liquid-phase 30, 29. Researchers have described the effects of solvation 31, 

28, 32, complexation 33, or change of chlorine substituent 34 on the position of various 

bands. IR band positions 35 and intensities 36 have also been calculated. Nemes et al.37 

estimated absolute intensities for eight vibrations found in the liquid phase and, later the 

same year 38, refined the position of the vibrations and compared their intensities with 

what was measured in the gas phase as well as in carbon disulfide (CS2). Thomas et al.39 

investigated the CN stretching band in more detail and estimated its absolute intensity, 

focusing on the effect of environment and phase change on its intensity. Finally, George 

et al.40 reported hydrogen chloride mode of Cl-CH2-CN:HCl complex at 2709 cm-1 in an 

Ar matrix at 7K although no band positions for the matrix isolated Cl-CH2-CN species 

alone were given. The positions and intensities of Cl-CH2-CN vibrations published by 

abovementioned authors are collected in Table2 Supporting Information.

While the photochemistry of both HS-CH2-CN and Cl-CH2-CN species has not 

been described, a rich literature concerning transformations of small molecules is 

available to suggest potential processes that might occur upon UV irradiation. Due to the 

matrix cage effect 41, 42 loss of larger moities (e.g., fragments such as CN or CH3) following 

bond breakage is generally not observed and isomerization is the most probable process. 

Nevertheless some fraction of these fragments may escape. Depending on the energy 

available and rare gas used, H, Cl or S atoms can end up being separated to leave 

radicals, ions, or other isomeric combinations.

 Concerning isomerization of cyano species, UV irradiation of cyanoacetylene 

(HC3N) trapped in noble gas matrix leads to the formation of several isomers of the parent 
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molecule, including isocyanoacetylene (HCCNC) and an imine (HNC3)43. Both of these 

isomers have been already detected in the interstellar medium accompanying the more 

abundant cyanoacetylene. Kawaguchi et al. identified HCCNC44 and later the same year 

HNCCC45 in Taurus Molecular Cloud 1 (TMC-1). Gensheimer et al.46 identified both 

isomers in IRC +10216 and Vastel et al. in the L1544 pre-stellar core47. The formation of 

isocyanides from cyano precursors in a matrix environment has been observed for a 

variety of unsaturated cyanoacetylenes including HC3N, HC5N48, NC4N 49, NC6N50, and 

C2H3CN51 among others. Nevertheless, it is not a foregone conclusion that such 

cyano/isocyano rearrangement must occur for any arbitrary cyanide containing species. 

Photolysis of thiol species of the form R-SH results mainly in scission of C-S and 

S-H bonds52,53,54 with the main products being radicals and, depending on photolysis 

conditions, various radical recombination products. In 195 nm flash photolysis 

experiments on gaseous CH3SH Callear et al. 52 observed formation of CH3S, CH3 and 

other radicals using UV absorption spectroscopy while 254nm photolysis of C2H5SH in a 

xenon matrix was shown to produce the thiyl radical C2H5S* 55. Photolysis of CH3SH vapor 

in 254 and 214 nm has been shown to produce H2, H2S, C2H4, C2H6 and CH3SSCH3
53; 

C2H5SH vapor photolysed in the same conditions produced H2, H2S, C2H4, C2H6 56 and 

C2H5SSC2H5
57. 

Hydrogen atom production and escape of H2 from the matrix cage has been 

reported as well, producing even more complex, dehydrogenated species, where 

photolysis of methanethiol at 121nm in a nitrogen matrix at 14 K leads to formation of 

CH4, CS, CS2, CH3 and H2CS as the main products58. 

Lastly, studies of photolysis of alkyl halides in matrixes59, 60 show that the cage 
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effect can inhibit halogen detachment processes. Photolysis of methyl chloride CH3Cl in 

Ar and N2 matrixes60 was found to yield CCl, HCCl and H2CCl as major products in 

addition to smaller amounts of CH3, HCl and CH4. 

Based on these works, the most likely result of mercaptoacetonitrile or 

chloroacetonitrile photolysis should involve CN/NC isomerization or be products of –H or 

–SH elimination. 

2. Theoretical methods

A combination of two methods of solving the electronic Schrödinger equation was used 

for these studies to arrive at vibrational frequencies. Density functional theory with the 3-

term correlation functional of Becke61 and the exchange functional of Lee, Yang, and 

Parr62 (B3LYP) were used with vibrational second-order perturbation theory63,64,65,66 to 

calculate anharmonic frequencies and intensities. The ab initio coupled cluster method, 

truncated to iterative treatment of single and double excitations and the perturbative 

treatment of triple excitations (CCSD(T))66,67,68,69,70,71 were used during computation of 

harmonic frequencies. The triple-ζ Dunning-type basis set (cc-pVTZ)72 was chosen for 

the CCSD(T) calculations while its augmented version (aug-cc-pVTZ)73 was used for 

B3LYP computations. All vibrational calculations were preceded by geometry 

optimization at the same level of electronic structure theory and the Gaussian 0974 

program was used for all computations.Vibrational frequencies ultimately reported were 

calculated using the following equation:

 ; (1)𝜈𝑟𝑒𝑐 = 𝜔𝐶𝐶𝑆𝐷(𝑇) +(𝜈𝐵3𝐿𝑌𝑃 ― 𝜔𝐵3𝐿𝑌𝑃)
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where  and are harmonic frequencies computed either using CCSD(T) or 𝜔𝐶𝐶𝑆𝐷(𝑇) 𝜔𝐵3𝐿𝑌𝑃 

B3LYP methods and  is the anharmonic frequency computed using B3LYP as 𝜈𝐵3𝐿𝑌𝑃

described previously. This methodology has been successfully applied in earlier studies 

75-77 and in other systems where the resulting vibrational frequencies generally had an 

accuracy better than 10 cm-1 78. 

3. Experimental methods

The HS-CH2-CN used in these experiments was synthesized according to Gaumont 

et al.25, purified as reported by Møllendal et al.21 and stored either with or without 

Amberlyst at -80°C. This malodorous compound decomposes vigorously at room 

temperature or under basic conditions. The kinetic stability of this compound is strongly 

dependent on the temperature and the presence of acidic compounds. Although 

Amberlyst may stabilize the chemical for long-term storage, it also proved to be a strong 

source of methanol which was trapped in its pore spaces during previous synthetic steps. 

The chemical proved to be sufficiently stable without Amberlyst for use in these photolysis 

experiments. 

Chloroacetonitrile, Cl-CH2-CN was purchased (98%, abcr GmBH).

Spectroscopic measurements were performed on a Bruker Vertex 70 instrument 

equipped with a KBr beam splitter and liquid-nitrogen-cooled MCT (HgCdTe) detector in 

the 400-6000 cm-1 spectral range at the maximum available resolution of 0.16 cm-1. 

Degassed HS-CH2-CN or Cl-CH2-CN was combined with Ar (5.0 Multax s.c.) at a ratio of 

1:1000 in a stainless steel vacuum manifold with partial pressures measured using 
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capacitance manometers (10 torr and 1000 torr, MKS instruments). Following two hours 

to allow for mixing of HS-CH2-CN or Cl-CH2-CN with Ar in the manifold, samples were 

deposited onto a CsI window pre-cooled to 5-6 K inside a vacuum chamber (~10-7 Torr). 

Cooling was accomplished using a closed-cycle helium refrigerator (DE-202SE Advanced 

Research Systems) whose temperature was controlled using a LakeShore 325 

temperature controller. The cold window was positioned at 45° with respect to the path of 

IR radiation of the spectrometer and deposition was carried out at a flow rate of ca. 0.1 

mmol/minute through a capillary nozzle of 1 mm diameter terminating ~2cm from the cold 

window. The total amount of the mixture deposited never exceeded 8 mmol (~300 Torr). 

Lower limits of absolute intensities were calculated using the formula from 79, by 

Szczepaniak et al.: . In this expression,  is the molar 𝐴[ 𝑘𝑚
𝑚𝑜𝑙𝑒] =

2.3031
100 ∗ 𝑐 ∗ 𝐷∫𝑙𝑜𝑔

𝐼0

𝐼 𝑑𝑣 𝑐

concentration of HS-CH2-CN or Cl-CH2-CN in ,  is the film thickness , is  [𝑚𝑚𝑜𝑙𝑒

𝑐𝑚3 ] 𝐷 [𝑐𝑚] 𝑙𝑜𝑔
𝐼0

𝐼  

the measured absorbance of the band, and  is the wavenumber [cm-1]. The molar 𝜈

concentration was calculated using  =  where ρ is the density of solid 𝑐  
𝑝(HSCH2CN or ClCH2CN)

𝑝(argon) ∙ ρ

argon with a value of 44  79 and  is the measured partial pressure of the pertinent 
𝑚𝑚𝑜𝑙𝑒

𝑐𝑚3 𝑝

species. It is assumed that both the chemical and the rare gas are sufficiently pure that 

the partial pressures measured are not affected by any other species and that this ratio 

is conserved through deposition and in the ice itself. Observed bands were integrated 

using the OPUS program (Bruker Optik GmbH 2014). The thicknesses of the deposited 

matrices were determined by monitoring reflected He-Ne laser light80 as well as using 

interference fringes observable in IR spectra. For the laser thickness measurements, a 

fixed-frequency He-Ne laser (ThorLabs HNL050R model, λ = 632.5 nm) was directed 
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towards a growing matrix. Interference was produced in the laser light reflected by the 

vacuum-ice and ice-substrate interfaces which have different and changing optical paths 

as film growth proceeds. Reflected light intensity as a function of time was recorded using 

a portable CCD spectrometer equipped with a fiber optic that could be adjusted outside 

of the vacuum chamber to capture the reflected laser light (Mightex CCD, HRS series). 

The intensity of the reflected laser light oscillates between periods of constructive and 

destructive interference as a function of time. While the time of one oscillatory period is a 

function of deposition rate, the change in thickness produced over the course of one 

period is constant. Because of this, the total thickness of a matrix can be estimated by 

counting the number of fringes starting from time zero until deposition is stopped (or an 

arbitrary time of interest) and using the following relationship presented by Urso et al.80: 

 . In this equation,  is the film thickness (total thickness of the 𝐷 = 𝑚∆𝑑 =
𝑚𝜆0

2𝑛𝑓 1 ― 𝑠𝑖𝑛2𝜃𝑖/𝑛2
𝑓

𝐷

matrix) [cm],  is the number of fringes observed,  is the thickness increase between 𝑚 ∆𝑑

two fringes [cm], is incidence angle of the laser with respect to the cold target, is the 𝜃𝑖 𝑛𝑓 

refractive index of the film, and  is the wavelength of laser light: 6.325x10-5 [cm]. We 𝜆0

assumed  to be similar to pure argon for our experimental conditions, a reasonable 𝑛𝑓

assumption given the 1:1000 ratio of chemical to Ar. A refractive index value of 1.52 was 

used for solid Ar at 6 K81. Thickness information can also be retrieved from IR spectra 

directly using interference fringes which, in a well ordered ice, manifest as an undulating 

baseline in our spectra. In this method, a modified equation was used 80:  𝐷 =
1

𝑙 ∗ 2𝑛𝑓 1 ―
𝑠𝑖𝑛2𝜃𝑖

𝑛2
𝑓

, where  is the film thickness [cm],  is the distance between the fringes [cm-1], is 𝐷 𝑙 𝜃𝑖 

incidence angle of the IR light with respect to the cold target, and is the refractive index 𝑛𝑓 
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of the film. The equivalence of these two methods of thickness determination was verified 

for pure Ar matrices by depositing a measured amount of noble gas while monitoring 

using laser interference fringes. At specified points, deposition was interrupted  (0.625 

mmol, 1.25 mmol, 2.5 mmol, 3.75 mmol, and 5 mmol) so IR spectral fringes could be 

measured. Good agreement between both methods was obtained with a difference of 

approximately 10%. In another series of experiments, thickness estimated from the 

pattern in our IR spectra was measured as a function of incident angle  and gave an 𝜃𝑖

error typically less than 2%.

Both HS-CH2-CN and Cl-CH2-CN were exposed to UV irradiation generated by an 

excimer laser. HS-CH2-CN samples were irradiated either using at 248 nm (KrF excimer) 

for 2.5 hours or 193 nm (ArF excimer) for 1.5-2.5 hours with an average laser pulse 

frequency of 10 Hz and power of 1 mJ per pulse (approx. 0.2 mJ/cm3) measured just in 

front of the quartz window of the vacuum chamber using a pyroelectric sensor (Ophir 

Optronics PE50B). Cl-CH2-CN was irradiated at 193 nm (ArF excimer) for 2 hours with 

an average laser pulse frequency of 10 Hz and power of 0.5 mJ per pulse (approx. 0.1 

mJ/cm3). Annealing was performed as the last step of sample processing and consisted 

of raising the temperature of the sample to ~35 K for a period of 20 min and then re-

cooling to the original value. Emission observed during annealing was recorded using a 

Mightex CCD spectrometer (HRS series, 300-1070 nm spectral range, 1.7 nm resolution). 

IR spectra taken following annealing were used to confirm that various groups of product 

signals belonged to the same species (either increasing or decreasing together). 
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4. Results 

4.1 Theory

Theoretical IR frequencies, intensities, and rotational constants for mercaptoacetonitrile 

(HS-CH2-CN) along with other C2H3SN isomers have been published previously1. Only a 

comparison of predicted anharmonic IR frequencies for synclinal and anti-periplanar 

conformers, not provided in the previous work, are given here in Table 1. Similar 

calculations to those performed for C2H3SN isomers were also performed for the C2H2NCl 

family of isomers which includes Cl-CH2-CN (CAN). First, B3LYP/aug-cc-pVTZ 

computations were used to estimate relative energies for different isomers of the C2H2NCl 

family (Fig 1) starting from structures for which Lewis dot diagrams could be drawn as 

closed shell molecules. Both singlet and triplet states were optimized for each structure. 

More precise computations at the CCSD(T)/cc-pVTZ level were then performed for CAN, 

CAN-1, and CAN-2. The relative energies are collated in Fig 1 and vibrational frequencies 

in Tables 2A, 2B, and 2C. Although CAN isomers are not likely candidates for detection 

in space, the microwave spectrum of CAN has already been reported and the rotational 

constants and dipole moments for the three lowest energy isomers of CAN given in Table 

3 may prove useful for an eventual radioastronomical search or microwave 

measurements. In this table, ground state rotational constants are calculated at the 

CCSD(T)/cc-pVTZ level of theory and differences between ground state and equilibrium 

rotational constants at B3LYP/aug-cc-pVTZ. Without including core electron correlation 

and approaching the complete basis set limit, the precision of these rotational constants 

is likely a little more than 1%, a limitation that will be addressed in a future publication. 
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The predicted dipole moments for these molecules are high, which suggests that their 

detection during any eventual experimental rotational spectroscopy studies should be 

facile. 

Fig 1 Structures of isomers of C2H2ClN stoichiometry. The B3LYP relative energies are 
given for all isomers, while CCSD(T) (bold in parenthesis) relative energies are given 
only for the three lowest energy isomers.
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Table 1 Comparison of predicted frequencies and intensities for two conformers of HS-
CH2-CN (MAN) along with experimental values measured in an Ar matrix.

Mode g) Freq.
[cm-1]

Inten.
[km mol-1] (Rel. Int. [unitless])

Anti-
periplanar a)

Synclinal 
a) c)

Anti-
periplanarb)

Synclinal
b)

Calc. Calc. Exp. Calc. Calc. Exp. h)

1 2987 2988 
(2994)

3014 0 1 (17) 2.0 (5)

2 2965 2964 
(2979)

2951 2 3 (50) 1.3 (22)

3 2530 2582 
(2604)

2607 1 0 (0) 0.5 (9)

4 2261 2256 
(2274)

2256 5 6 (100) 1.5 (26)

5 1434 1426 
(1435)

1419d) 4 6 (100) 6.3 (100)

6 1241 1254 
(1258)

1249.7d) 14 5 (83) 3.0 (45)

7 1167 1195 
(1200)

1193 1 2 (33) 0.8 (13)

8 972 998 (956) 997 1 3 (50) 4.0 (67)
9 878 921 (931) 926 1 5 (83) 7.0 (92)
10 845 793 (788) 786 2 1 (17) 0.7 (11)
11 709 694 (704) 701 1 5 (83) 3.7 (63)
12 461 475 (484) - 2 0 -
13 346 351 (364) e) 1 0 -
14 165 273 (203) e) 3 37 -
15 247 193 (171) e) 7 21 -

a) combined CCSD(T)/anharmonic B3LYP calculation, see equation (1)
b) anharmonic B3LYP
c) in parentheses, results of anharmonic CCSD(T) computations1

d) two sites were observed with the most intense reported in the table (Fig.1)
e) out of detection range
f) Relative intensities given with respect to ν5 located at 1419 cm-1 (experimental) rather 
than the most intense mode which is outside of our measurement range.
g None of the computed overtones has an intensity higher than 1 km mol-1 and are not 
reported
h) lower limit of absolute intensity

Page 14 of 44

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 2A Comparison of predicted frequencies and intensities of Cl-CH2-CN (CAN) along 
with experimental values measured in an Ar matrix.

Mode 
f)

Symmetry Freq.
[cm-1]

Freq. shift
35Cl→37Cl

[cm-1]

Int. [km mol-1] 
(Rel. Int. [unitless]) 

Calc.a) Exp. Calc.b) Exp. Calc. c) Exp. g)

1 A’ 2990 2972.1 0 4 (12) 2.3 (8)
2 A’ 2259 2263.4 0 0 (0) 0.6 (2)
3 A’ 1437 1431.1 0 5 (15) 5.1 (18)
4 A’ 1268 1271.1 0 18 (53) 9.3 (33)
5 A’ 929 930.8 0 15 (44) 24.9 (89)
6 A’ 750 745.4 -4 -4 34 

(100)
28.0 (100)

7 A’ 476 484.2 -3 -3.5 5 (15) 2.1 (7)
8 A’ 181 d) -1 6 (17) -
9 A’’ 3020 3014.3 0 0 (0) 3.1 (11)
10 A’’ 1183 1183.4 0 0 (0) 0.4 (1)
11 A’’ 908 906.7 0 1 (0) 0.9 (3)
12 A’’ 336 d) 0 1 (0) -

a) combined CCSD(T)/anharmonic B3LYP calculation, see equation (1)
b) harmonic CCSD(T)
c) anharmonic B3LYP
d) out of detection range
e) relative intensities with respect to ν6 at 745 cm-1

f) None of the computed overtones has an intensity higher than 1 km mol-1 and are not 
reported.
g)lower limit of the absolute intensities
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Table 2B Comparison of predicted infrared frequencies and intensities of Cl-CH2-NC, 
CAN-1 along with experimental values measured in an Ar matrix. 

Mode Freq.
[cm-1]

Freq. shift
35Cl→37Cl

[cm-1]

Rel. Int. 
[unitless]

Rel. Int.
[unitless]

Calc.a) Exp. Calc.b) Exp. Calc. c) Exp e)

1 A’ 3002 3035.9 0 4 19
2 A’ 2137 2143.8 0 100 100
3 A’ 1457 1453.0 0 2 1
4 A’ 1311 1306.2 0 24 12
5 A’ 962 962.3 0 30 19
6 A’ 746 777.4 -4 -1.2 43 87
7 A’ 418 477.7 -3 -1.4 1 23
8 A’ 160 d) -1 2 -
9 A’’ 3032 3036.0 0 0 19
10 A’’ 1229 1228.2 0 1 1
11 A’’ 951 - 0 0 -
12 A’’ 242 d) 0 0 -
Combination modes and overtones with intensities higher than 1 km × mol-1

25 1908 - 0 1 -
5+4 2271 - 0 1 -
6+3 2202 2208.0 -5 6 1
8+2 2293 - -1 1 -
8+4 1114 - -1 1 -
9+3 4467 - 0 1 -

11+10 2180 2179.0 0 30 1
12+2 2370 - 0 1 -

 

a) combined CCSD(T)/anharmonic B3LYP calculation, see equation (1)
b) harmonic CCSD(T)
c) anharmonic B3LYP, relative intensities with respect to ν2 (178 km/mol)
d) out of detection range
e) relative intensities given with respect to ν2
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Table 2C Predicted infrared frequencies and intensities of HNCCHCl, CAN-2

Mode Freq.
[cm-1] a)

Freq. shift
35Cl→37Cl
[cm-1] b)

Inten.
[km mol-1]

1 3281 0 15
2 3114 0 18
3 2047 0 227
4 1290 0 40
5 1125 0 9
6 1019 0 186
7 837 0 67
8 781 -4 34
9 536 -1 39
10 532 -3 2
11 409 0 26
12 182 -1 0

Combination modes and overtones with intensities higher than 1 km × mol-1

1 6389 0 13
2 6112 0 1
3 4067 0 3
6 2005 0 35
8 1559 -7 1
9 1078 -1 1
10 1059 -6 5

4+3 3321 0 3
6+3 3071 0 2
6+4 2311 0 2
6+5 2145 0 8
9+7 1371 -1 7
10+9 1067 -4 1
11+6 1436 0 1
11+7 1249 0 1
11+9 943 -1 14
11+10 941 -3 2

 

a) combined CCSD(T)/anharmonic B3LYP calculation, see equation (1)
b) harmonic CCSD(T)
c) anharmonic B3LYP results
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Table 3 Rotational constants and dipole moment for selected isomers of CAN

A0/MHz B0/MHz C0/MHz μe/D
CAN 25045 3109 2811 3.28

25271.3583(45)a) 3150.74897(102)a) 2789.4927(22)a)

CAN-1 25758 3327 2999 3.04
CAN-2 34114 2919 2705 1.89

a) ground state experimental values 82

4.2 Spectroscopy

Prior to photolysis, the spectrum of pure HS-CH2-CN in a noble gas matrix was recorded 

(Fig. 2) and analyzed. The measured IR band positions along with lower limits for 

absolute and relative intensities are presented in Table 1 along with theoretically 

predicted values for synclinal and anti-periplanar forms (for structures of synclinal and 

anti-periplanar forms, see Figure 1 from 83).

Fig2 Experimental IR spectra of HS-CH2-CN for pertinent regions of Table 1. Y scale is 
the intensity in arbitrary units.

* all regions share a common y-scale except for the feature at 1419 cm-1 which has been 
reduced by a factor of 2.
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Since HS-CH2-CN is not a particularly rigid molecule, containing only a single, non-

conjugated multiple bond, it might be expected to exhibit interesting site structures upon 

trapping in solid Ar or broadening due to allowed molecular motions within a matrix cage. 

However, IR absorption bands were narrow and only the peaks located near 1250 cm-1 

and 1419 cm-1 had easily discernable structure. For the doublet near 1250 cm-1, a typical 

ratio between components of 3:2 was observed with the higher intensity signal at 1249.6 

cm-1. 

The absolute value of the difference between measured and predicted frequencies 

of the synclinal conformer ranges between 0 and 26 cm-1. The sign of the difference 

depends on the band being considered. Overall, these deviations are generally 1% or 

less of the experimentally measured frequency. In light of considerable differences 

between HS-CH2-CN as a pure liquid and in an Ar matrix environment, our matrix 

measurements are also remarkably consistent with reports for the pure liquid in the 

literature and reveal additional vibrations at 786, 1193, 1249.7, 1250.4, and 2607 cm-1 

which have not yet been described (Table 1 Supporting Information). 

Relative intensities were determined over the course of six experiments. Deviation 

of intensities for each vibration ranged between 4.9% and 10.6% (6.6% on average) for 

ten out of 11 bands. The highest frequency vibration (for which RSD was 30%) was 

excluded from this analysis as its very low intensity hindered proper peak integration. 

Absolute intensities measured for HS-CH2-CN were consistently smaller than values 

predicted by calculations by a factor of 5 in five out of six experiments conducted. These 

errors are larger than would be expected based on determination of matrix thickness or 

peak integration for which the error should be around 9-11%. As these six experiments 
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were conducted using two different synthetic batches of the chemical (one experiment 

with the first batch and the five subsequent experiments with the second), this 

discrepancy is most likely due to partial decomposition of the second batch of HS-CH2-

CN during the vaporization and deposition. Work with this highly reactive compound was 

difficult. For this reason, we present the higher values obtained from the single experiment 

in Table 1 that more closely match theoretical predictions. For this specific determination, 

measured absolute intensities vary from predicted values by factors between 0.5 and 4 

depending on the band considered. The same goes for relative intensities which varied 

from predictions by factors between 0.7 and 3.8. Although this variation is significant, the 

pattern of intensities of the various bands qualitatively resembles one another when 

comparing experiment to theory.

Microwave studies indicate that HS-CH2-CN can exist in either anti-periplanar or 

synclinal configurations in the gas phase at room temperature 83 and that these forms 

have an energy difference of 3.8±0.3 kJ/mol. Studies of L-isoserine 84 and β-alanine 85 

indicate that it is sometimes possible to conserve ratios between conformers during matrix 

deposition. Based on the computed differences in vibrational frequencies of anti-

periplanar and synclinal forms of HS-CH2-CN (Table 1), the resolution of our 

spectrometer and observed peak widths, these conformers should be easily 

distinguishable in these measurements should they both become frozen in the Ar ice. The 

computed (CCSD(T)/cc-pVTZ) energetic difference between conformers is 4.5 kJ/mol, 

close to the experimental value, and indicate a 4.1 kJ/mol difference between conformer 

free enthalpies at room temperature. Assuming thermal equilibrium between isomers, a 

ratio of ~5:1 (synclinal to anti-periplanar) should be observed. However, no obvious sign 
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of their coexistence could be found in the measured spectra. Measured IR frequencies 

are in better agreement with what is predicted for the synclinal form, the more stable of 

the two conformations. As the absolute intensities are low for both compounds and IR 

signals from the most stable isomer were already small, it may be that we were simply 

unable to detect bands of the less abundant anti-periplanar conformer.

The Cl-CH2-CN purchased for these experiments had excellent purity and 

identification of peaks was unambiguous based on previous reports. Comparison 

between calculated and experimentally determined values of intensities and position of 

peaks of Cl-CH2-CN are presented in Table 2A. The experimental IR spectrum of Cl-CH2-

CN is presented in Fig 3. Most peaks appear as overlapping doublets suggesting 

existence of at least two different matrix sites. In Table 2A, the more intense member of 

the doublet is reported. For the ν6 and ν7 vibrations a quartet is observable. For , peaks 𝑣6

at 745 and 755 cm-1 are assigned to the two matrix sites of 35Cl-CH2-CN and the less 

intense peaks at 741 and 751 cm-1 were attributed to matrix sites of the 37Cl-CH2-CN 

isomer. For v7, more intense features at 484 and 483 cm-1 were again assigned to 35Cl-

CH2-CN and the smaller 482 and 481 cm-1 bands to 37Cl-CH2-CN.
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Fig3 Experimental IR spectra of Cl-CH2-CN (see Table 2A). Y scale is the intensity in 
arbitrary units.

Matrix sites assigned to 35Cl-CH2-CN (black and red) and matrix sites for 37Cl-CH2-CN 
(green and yellow). * all regions share a common y-scale except for the region between 
740 cm-1 and 760 cm-1 which was reduced by a factor of 2.  **all regions share the same 
x scale except for the region between 3030 cm-1 and 3010 cm-1 which was reduced by a 
factor of 2

Comparing theoretically predicted values of IR absorption frequencies to 

experimentally observed values, differences range between 0.4 and 18 cm-1 with the sign 

of the deviation varying depending on the mode being considered. This amounts to less 

than 1% of the measured value for all modes except for that for  at 476 cm-1 which 𝑣7

differs by ~1.7%. The position of vibrations was also very similar to previously reported in 

liquid and in gas phase and ranges between 0 and 14 cm-1 (Table 2 Supporting 
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Information). We were not able to detect any of the overtones or combinations reported 

in the work of Zeil et al.27. Our inability to observe such features is consistent with our 

calculations which indicate they should have very low intensities.  While no new features 

of this molecule were detected in our study, no author has reported vibrations from 37Cl-

CH2-CN isotopomer or peak locations in a noble gas matrix. 

Measured absolute intensities are again smaller than theoretical predictions, 

although they are much closer than those measured for HS-CH2-CN. Measured values 

are only smaller than theoretical values by up to a factor of around 2.4 depending on the 

band being considered. Better agreement likely has to do with the higher purity and 

stability of the commercially available chemical.

Absolute intensities have been measured previously in the liquid phase by Nemes 

et al.38 and by Thomas et al.39 for the CN vibration. They are several times larger than 

both our experimental and calculated values. Absolute intensities were also calculated by 

Wladkowski et al.36. Despite their moderate level of theory, their values are quite similar 

to our own.

4.3 Photochemistry

HS-CH2-CN was irradiated using either 248 or 193 nm laser light and the results 

of photolyses at these wavelengths are given in Table 4 and include photoproduct peak 

positions, intensities, behavior upon annealing, and assignments. Arrows in the anneal 

column indicate whether the intensity of a given peak in the IR spectrum increased (up) 

or decreased (down) following annealing. Intensity values are given relative to the highest 
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intensity photoproduct peak (a value of 100) to provide information about ease of 

detection of various products as well as peak ratios for bands assigned to the same 

photoproduct. Values of intensities are based on their integrals. 
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Table 4 Peaks observed after HS-CH2-CN laser photolysis.
 

Freq. 
[cm-1]

anneal Rel. Int a) [unitless]
photolysis 248 nm

Rel. Int. a) [unitless]
photolysis 193 nm

Assignment

3611 ↓ 32 9

3233 ↓ 47 - HC-CN

3219 ↓ 29 69

3162 ↓ - 100

2168 ↓ 3 2 CH3SCN

2142 ↓ 88 17 CH3NSC

2091 ↓ 9 34

2050 ↓ - 8 CH3SNC

2024 ↓ 18 6

1930 ↑ 9 2

1897 ↓ - 3

1888 ↓ - 6

1735 ↓ 12 - HC-CN

1528 ↑ 29 2 CS2

1328 ↓ - 34

1309 ↓ 12 22 CH4

1289 ↓ 6 59 HS-CH2-NC

1148 ↓ - 2

1123 ↓ - 2

1063 ↓ 6 - H2C-CN/CH2=S

996 ↓ 100 - CH2=S

993 ↓ 76 - CH2=S

936 ↓ 11 2 HS-CH2-NC

802 ↓ - 13

777 ↑ 4 6

723 ↓ 12 50

687 ↓ 29 - H2C-CN

617 ↓ - 3 CH3* tentative detection 

483 ↓ 3 - HC-CN
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A variety of photoproducts were at least tentatively identified, some of which were 

common across photolysis wavelength and others of which were not. Formation of 

mercaptoisocyanomethane (HS-CH2-NC) was observed at both wavelengths with 

reasonable certainty and features associated with this species are shown in Fig 4 with 

positions listed in Table 5. Three peaks were associated with this species whose relative 

ratio is conserved across multiple experiments, suggesting that they belong to a single 

photoproduct. While these features are not strong, the agreement of observed line 

positions and intensities with ab initio theoretical results 1 for HS-CH2-NC (Table 5) form 

a good basis for attribution of these features. The prevalence of CN/NC conversion 

observed for other cyanide containing carbon chain molecules in a matrix environment 

also lead us to expect that this transformation will occur. 

Fig4 Experimental IR spectrum of HS-CH2-NC formed as a photoproduct in an Ar 
matrix. Y scale is the intensity in arbitrary units.
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Table 5 Comparison of predicted infrared frequencies and intensities of HS-CH2-NC with 
experimental values 

Mode Frequency
[cm-1]

Rel. Int.
[unitless]

Calca). Exp. Calc.b) Exp.

1 2998 - 0 -

2 2993 - 2 -

3 2670 - 0 -

4 2135 2142 100 100

5 1458 - 4 -

6 1294 1288.9 15 7

7 1247 - 4 -

8 1030 - 1 -

9 939 935.9 19 12

10 804 - 1 -

11 702 - 9 -

12 416 - 1 -

13 297 - 3 -

14 278 - 6 -

15 171 - 2 -

a) combined CCSD(T)/anharmonic B3LYP calculation, see equation (1) and Ref. 1
b)relative intensities with respect to v4 at 2142 cm-1

Photoisomerization of HS-CH2-CN into the more stable methyl thiocyanate 

(CH3SCN) and methyl isothiocyanate (CH3NCS) are also likely processes in a matrix 

environment. Although not presented here, we compared our HS-CH2-CN photoproduct 

spectra with those of pure CH3SCN and CH3NCS isolated in Ar (work in preparation 86). 

The calculated and measured absolute intensities of IR bands of those two molecules are 

far larger than for HS-CH2-CN or HS-CH2-NC and, as a consequence, even a small 

amount of CH3NCS or CH3SCN formed via photolysis should be easily detectable. 
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The most stable C2H3SN isomer, CH3NCS, has its most intense vibrations at 2142 

cm-1 and 1419 cm-1 with a ratio of 100 to 6 86. While we were able to distinguish a 2142 

cm-1 vibration, this was assigned to HS-CH2-NC. A band of the parent molecule falls in 

the exact location of the 1419 cm-1 feature. While we cannot rule out the formation of this 

species, it is impossible to confirm its production here.

Positive identification of the second isomer, CH3SCN is also problematic. Peaks 

located at 2168 cm-1, 1442 cm-1, and 2951 cm-1 (with a ratio of intensities of 3:1:1) should 

be distinguishable86. While there is photolytic formation of a species with a vibration at 

2168 cm-1 which might be linked to CH3SCN, this peak had a very small intensity in all 

five photolysis experiments performed. The other two vibrations were not observable and 

may simply have been below the signal-to-noise limit. Stronger evidence is needed to 

confirm production of CH3SCN.

Some information exists concerning the potential production of the higher energy 

isomers CH3CNS and CH3SNC which were not available commercially or through 

synthesis. CH3CNS is likely not formed as the most intense peak, located at 2230 cm-1 86, 

could not be detected.

CH3SNC has an experimentally assigned vibration at 2050 cm-1 accompanied by 

a smaller feature at 1442 cm-1 (intensity ratio of 100:9)86. Although a vibration at 2050 

cm-1 is often produced following 193 nm photolysis the second vibration at 1442 cm-1 is 

very close to our limit of detection. Without stronger evidence, CH3SNC detection cannot 

be confirmed.

The remainder of products observed for this system requires cleavage of at least 

one bond and separation of the resulting fragments into their own respective matrix cages 
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to be produced. For instance, evidence for formation of H2C=S following 248 nm 

irradiation suggests that at least some C-C bond cleavage occurs. This photolytic product 

was identified on the basis of its three most intense bands which were measured 

previously in an Ar matrix 58. No H2C=S was observed following 193 nm irradiation. It may 

be that the higher photon energy promoted swift loss of the H-atoms from H2C=S to form  

CS (followed by CS conversion to CS2). 

H2C-CN  and HC-CN, were likely formed following 248 nm irradiation but not 

following 193 nm exposure. Both were previously measured in Ar matrix environment, 

HC-CN by Dendramis et al. and by Maier et al. 87, 88 and H2C-CN by Cho et al. 89. HC-CN 

was identified in this work as a product on the basis of three unambiguous peaks. For 

H2C-CN, one peak was unambiguous while a second was very near the limit of detection 

(not included in table 5). A third peak which should also be visible shares the same 

location as a band of H2C=S. Overall, detection of H2C-CN is less certain than HC-CN. 

Formation of both HC-CN and H2C-CN requires cleavage of the S-C bond of HS-

CH2-CN. Given that both HC-CN and H2C-CN were observed, It is reasonable to assume 

that some HS or H2S (possibly formed by an escaping HS taking with it another H-atom) 

might also be detectable. However, based on IR observations of HS and H2S in an Ar 

matrix environment 90, there is no evidence of the formation of either of these in any of 

the photolyses performed here.. The photochemistry of Ar matrix isolated H2S and HS 

have been studied91-93 and H2S photolysis leads to production of HS followed eventually 

by atomic sulfur formation. While we have evidence of production of atomic sulfur, from 

our experiments, described later in discussion of CS2 formation and annealing, we cannot 

say whether its production proceeds through H2S and/or HS, some other intermediate, or 
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through sequential scission of H atom and then S atom from the H-S-CH2CN parent. 

A number of other products were also observed at both photolysis wavelengths 

suggesting that cleavage of single bonds is quite facile and that escape of the fragments 

thus produced from the matrix cage is also probable. Methane formation, identified here 

based on comparison with prior measurements in an Ar matrix 58, requires cleavage of 

both S-C and C-C bonds as well as at least one free H atom coming from another matrix 

site or the possible presence of complexes in a single site. While H atom migration is not 

a surprising process in a noble gas matrix environment, the formation of CS2 (identified 

as compared to measurements in Ar matrix by Szczepanski et al.94), possibly from CS 

and S, requires sulfur atoms coming from two different matrix cages or two parent 

molecules. This suggests either that free S atoms are somewhat mobile in an Ar matrix, 

that adjacent matrix sites were near enough to allow minimally mobile S atoms to find one 

another following photolysis, or a reasonable abundance of HS-CH2-CN dimers or larger 

complexes exist in the matrix. Finally, CH3 identified based on IR measurements in Ar 

matrix by Pacansky et al. and by Snelson et al. 95,96, was observed upon irradiation at 193 

nm but not following exposure to 248 nm. Given the presence of CH4, production of CH3 

is logical upon exposure to higher energy photon radiation. 

Some peaks remain unassigned. Intense peaks, for which we did not find any 

convincing attribution are marked in the Table 5. These lines do not fit with other potential 

products whose IR signatures in an Ar matrix environment have already been reported: 

S=CHCN97; CH3CN98 or further photolysis products (CH3NC, CH2NCH, CH2CNH, 

CH2NC)98; CH3SH58; HS90; H2S90; CH2 (NIST gas); HS-CN99; or HS-NC99. 

We also performed photolysis of Cl-CH2-CN using 193 nm laser light. As no UV-

Page 30 of 44

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



VIS spectrum of Cl-CH2-CN is available in the literature, we measured it and found no 

clear absorption bands between 200 nm and 900 nm, suggesting that two-photon 

processes were involved in photolysis. 

The main photolysis product of Cl-CH2-CN photolysis was Cl-CH2-NC. 

The position and intensities of peaks of FTIR measurements were compared with 

theoretical calculations and are presented in Table 2b and in Fig5. The yield of this 

product was high enough that 37Cl isotopomers for  and  vibrations could be discerned 𝑣6 𝑣7

at 775.5 cm-1 and 476.3 cm-1, with intensities proportional to the ratio of natural 

abundances of 35Cl and 37Cl. Additionally, a few small overtone vibrations could be 

distinguished in the spectra (ν6+ν3 at 2208.0 cm-1 and ν11+ν10 at 2179.0 cm-1). The 

anharmonic computations predicted that both these modes are in resonance with very 

intense . It seems that, the intensities of those combinational modes are overestimated, 𝑣2

but the precise prediction for resonance are far beyond the applied theoretical methods. 

Vibrations at 2144.7 cm-1, 1228.9 cm-1 and 960.6 cm-1 are likely matrix sites of Cl-CH2-

NC. Apart from features assigned to the Cl-CH2-NC product, only six peaks remain 

unassigned (see Fig 6): 1982.4 cm-1 (with shoulder centered at 1981.cm-1); 1406.0 cm-1 

(with shoulder centered at 1406.9 cm-1); 1390.4 cm-1, 1387.8 cm-1, 622.8 cm-1  and 617.2 

cm-1. No good evidence for formation of CAN 2 (HNCCHCl) was found (see calculations 

Table 2C). 
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Fig 5 Experimental IR spectrum of Cl-CH2-NC. Matrix sites assigned to 35Cl-CH2-CN 
(black and red) and 37Cl-CH2-CN (green) . Y scale is the intensity in arbitrary units.

* all regions share common x- and y-scales
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Fig 6 Unidentified peaks produced during Cl-CH2-CN photolysis (red labels) along with 
475-480cm-1 region (black and green labels) to enable comparison of intensities with 
Fig 5. . Y scale is the intensity in arbitrary units.

As S atoms and H atoms seemed to be produced on photolysis of HS-CH2-CN, it 

is possible that Cl atom and H atom may be produced upon photolysis of Cl-CH2-CN. 

Hydrochloric acid (HCl) is the simplest molecule containing these atoms and, although 

spectra of Ar matrix isolated HCl are available in the literature, we repeated experiments 

in a noble gas matrix in the hopes of ruling out HCl or HCl complexes as photoproducts.  

Our measurements of HCl deposited in Ar matrix match with other published values of 

the position of the monomer band of HCl in those conditions100,101,102,103,104 except for a 

peak located at 1981.9 cm-1 (compare with Fig 7). This is very close to a feature observed 

following 193 nm photolysis of Cl-CH2-CN at 1982.4 cm-1, unaccompanied by the main 

HCl monomer band or bands of any other HCl complex. In terms of HCl measurements, 

this feature was not present in the gas phase and is not caused by impurities in the HCl 

sample (samples from different suppliers all exhibited the same feature), noble gas 

impurities (Ar and Kr both show production of a feature near this location), corrosion of 

the deposition line (both metal and glass manifolds lead to the same result), or reaction 
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with deposition window (CsI and sapphire deposition windows also showed the same 

vibrations). As this peak is not mentioned in the literature either as a band of HCl isolated 

in a rare gas matrix or as a product of HCl complexation with water or some other species, 

we take the opportunity to report its presence here.

Fig7 Selected regions depicting bands of HCl in an Ar 
matrix (ratio 1:1000). Red labels are matrix sites. Y 
scale is the intensity in arbitrary units.

4.4 Annealing

The last step of sample processing was annealing. During annealing, softening of 

the noble gas matrix can allow some isolated, reactive species to become mobile and 

recombine, possibly emitting light in the process, and allow changes in specific matrix 

sites that might be visible in subsequent IR spectra. Aside from confirming photoproduct 

assignment using IR spectra, we also monitored for light emission during annealing using 

a low resolution CCD spectrometer. Following 193 nm irradiation of HS-CH2-CN, three 

different emission signals were observed, one starting at around 8 K, a second between 

8 and 12 K, and a third above 12 K. Just above 8K, we were able to see a greenish glow 

(a broad weak line at 521 nm) (Fig8). 
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Fig8 Glow after photolysis of HS-CH2-CN 

at 10K

Fig9 Glow after photolysis of HS-

CH2-CN at 20 K assigned to OCS

Although we do not have any explanation for this emission, annealing of the photolysed 

sample of Cl-CH2-CN also produced this greenish glow which allows us to conclude that 

it is not related to the presence of sulfur. When heating photolysed samples of HS-CH2-

CN between 8K and 10K, additional glows at 551, 586 nm, 622 nm, 663 nm and 712.5 

nm (Fig8) appeared. We attribute this progression to SO (c 1∑-→a 1Δ) emission105. 

Page 35 of 44

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpca.9b01983&iName=master.img-014.jpg&w=236&h=234
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpca.9b01983&iName=master.img-015.jpg&w=260&h=208


Excited SO is produced through the reaction between ground state S(3P2) and O(3P2) 

atoms where the main source of atomic oxygen in our sample may be photolysis of CO2 

into CO and O. Above 12 K, a large amount of sulfur (3P) was mobilized106. 

Recombination with CO(X1∑+) forms electronically excited OCS and produces a bluish 

afterglow with vibrational spacing of around 550 cm-1 and maximum at 430 nm (see Fig 

9). The glow persists up to 25 K. The temperature separation of SO and OCS emission 

is likely a consequence of the larger mobility of atomic oxygen compared with sulfur in an 

Ar matrix which allows it to become mobile at a lower temperature. 

5. Conclusions

We have investigated the photochemistry of mercaptoacetonitrile (HS-CH2-CN) and 

chloroacetonitrile (Cl-CH2-CN) in noble gas (Ar) matrices at 6K. We determined position 

and intensities of peaks and supported our conclusions with computational analysis. For 

both, isocyanide compounds (HS-CH2-NC and Cl-CH2-NC) were identified. While no 

products indicating ejection of Cl or other moieties from the matrix cage were identified 

for Cl-CH2-CN, evidence exists for a variety of processes in the case of HS-CH2-CN. For 

example, production of CS2 following photolysis and observation of emission by SO and 

OCS upon subsequent annealing suggest formation of a mobilized free sulfur atom upon 

photolysis of HS-CH2-CN. Observation of CH2-CN and CH-CN show loss of HS. The 

formation of CH2=S indicate the loss of CN while production of CH4 provide evidence for 

the loss of both HS and CN.
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Supporting information

Tables with comparison of results of this work with previous reports for HSCH2CN and for 

ClCH2CN
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