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ABSTRACT

Context. ESA’s PLATO space mission, to be launched by the end of 2026, aims to detect and characterise earth-like planets in their
habitable zone using asteroseismology and the analysis of the transit events. The preparation of science objectives will require the
implementation of hare-and-hound exercises relying on the massive generation of representative simulated light-curves.
Aims. We developed a light-curve simulator named the PLATO Solar-like Light-curve Simulator (PSLS) in order to generate light-
curves representative of typical PLATO targets, that is showing simultaneously solar-like oscillations, stellar granulation, and magnetic
activity. At the same time, PSLS also aims at mimicking in a realistic way the random noise and the systematic errors representative
of the PLATO multi-telescope concept.
Methods. To quantify the instrumental systematic errors, we performed a series of simulations at pixel level that include various
relevant sources of perturbations expected for PLATO. From the simulated pixels, we extract the photometry as planned on-board and
also simulate the quasi-regular updates of the aperture masks during the observations. The simulated light-curves are then corrected
for instrumental effects using the instrument point spread functions reconstructed on the basis of a microscanning technique that will
be operated during the in-flight calibration phases of the mission. These corrected and simulated light-curves are then fitted by a
parametric model, which we incorporated in PSLS. Simulation of the oscillations and granulation signals rely on current state-of-the-
art stellar seismology.
Results. We show that the instrumental systematic errors dominate the signal only at frequencies below ∼ 20µHz. The systematic
errors level is found to mainly depend on stellar magnitude and on the detector charge transfer inefficiency. To illustrate how realistic
our simulator is, we compared its predictions with observations made by Kepler on three typical targets and found a good qualitative
agreement with the observations.
Conclusions. PSLS reproduces the main properties of expected PLATO light-curves. Its speed of execution and its inclusion of
relevant stellar signals as well as sources of noises representative of the PLATO cameras make it an indispensable tool for the
scientific preparation of the PLATO mission.

Key words. Asteroseismology – Stars: oscillations – Techniques: image processing –Techniques: photometric – Methods: numerical

1. Introduction

ESA’s PLATO1 space mission is expected to be launched by the
end of 2026 with the goal of detecting and characterising earth-
like planets in the habitable zone of dwarf and sub-giant stars
of spectral types F to K (Rauer et al. 2014). The age and mass
of planet-hosting stars will be determined by applying stellar
seismic techniques to their solar-like oscillations (see e.g. Gizon
et al. 2013; Van Eylen et al. 2014, 2018; Huber et al. 2019).
The determination of these stellar parameters is a complex pro-
cedure since it relies on both the precise seismic analysis of the
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individual mode frequencies and the use of sophisticated stel-
lar modelling techniques (see e.g. Lebreton et al. 2014a,b). To
develop and test such complex procedures, realistic simulated
light-curves are needed. These simulated light-curves are, for in-
stance, typically used to conduct hare-and-hounds exercises2 in-
volving various teams in charge of the seismic analysis and stel-
lar modelling (see e.g. Reese et al. 2016, and references therein).
They are also used to conduct massive Monte Carlo simulations
that enable one to assess the performances of seismic analy-
sis pipelines (e.g. de Assis Peralta et al. 2018, and reference
therein). The simulated light-curves must be sufficiently real-

2 Hare-and-hounds exercises typically involve several teams: one
team produces a set of artificial observations while the other teams try
to infer the physical model/properties behind these observations.
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istic to accurately account for the properties of the modes but
also for the other sources of stellar noise such as the granulation
noise and the instrumental random noise that – to a large extent
– limit the precision of the age and mass determination. Similar
hare-and-hounds exercises are also planned to be carried out to
test the efficiency of planet detection and the accuracy of the de-
rived transit parameters. Since planetary transits are expected to
last several hours, their analysis is quite sensitive to the noises
occurring at low frequencies (typically below a few ten of µHz).
Finally, simulated light-curves are also used to prepare the anal-
ysis of the PLATO light-curves for a variety of other scientific
objectives that are also relevant at low frequencies. We can, for
instance, mention the characterisation of stellar granulation, the
detection and characterisation of rotational modulations, among
others. Accordingly, it is necessary to simulate in a realistic way
the different sources of noise that dominate the signal at low fre-
quencies. Among them, we have predominantly the stellar activ-
ity signal, but systematic instrumental errors may also intervene.

The CoRoT (Baglin et al. 2006b,a) and Kepler (Borucki et al.
2010) space missions, allowed us to carry out seismic studies of
several thousands of pulsating red-giant stars (De Ridder et al.
2009; Kallinger et al. 2010; Stello et al. 2013) thus enabling im-
portant progress in our understanding of stellar interiors (see e.g.
the reviews by Mosser & Miglio 2016; Hekker & Christensen-
Dalsgaard 2017). These observations opened up the path to what
we now call ensemble asteroseismology (see e.g. Huber et al.
2011; Belkacem et al. 2013; Miglio et al. 2015) with various
applications in the field of Galactic archaeology (Miglio et al.
2017). PLATO can potentially observe a large number of faint
red giants. The number of targets that can be observed in ad-
dition to the targets of the core program is nevertheless limited
to about 40,000 per pointing. An optimal choice of those targets
can rely on the seismic performance tool of Mosser et al. (2019).
On the other hand, the design and the development of seismic
analysis pipelines that are able to process in an automatic way
a large number of red giants require the generation of simulated
light-curves representative of such stars.

To our knowledge the light-curve simulator developed by De
Ridder et al. (2006) in the framework of the Eddington space
project is the first code made available to the community that
simulates solar-like oscillations together with the stellar granu-
lation noise and the instrumental sources of noise. This simulator
relies on a description of the modes and stellar granulation noise
that predates CoRoT and Kepler space missions. However, our
knowledge of solar-like oscillations and stellar granulation has
greatly improved since that time. Very recently, Ball et al. (2018)
proposed a light-curve simulator dedicated to the TESS mission
and that includes an up-to-date description of solar-like oscil-
lators and the granulation background. However, in this simu-
lator, white noise is the only non-stellar source of noise; this
means that systematic errors are not included. However, the lat-
ter, which are very specific to a given instrument and its space
environment, are in general frequency dependent and can only be
realistically quantified with simulations made at detector pixel
level. Furthermore, the level of the white noise (random noise)
also strongly depends on the implemented photometry method
and the performance of the instrument. Finally, these simulators
do not include planetary transits and are not suited for red giant
stars. Indeed, red giants show the presence of numerous mixed-
modes, and calculating mixed-mode frequencies with pulsation
codes requires a very high number of mesh points in the stel-
lar models thus making the massive generation of corresponding
simulated light-curves numerically challenging.

The PLATO mission has some characteristics that make it
very different from other space-based mission based on high-
precision photometry such as CoRoT, Kepler or TESS. Indeed,
one of the main specificities of the mission is that it relies on
a multi-telescope concept. Among the 26 cameras that com-
pose the instrument, two of them are named ’fast’ cameras and
work at a 2.5 s cadence while the remaining 24 are named ’nor-
mal’ cameras and work at a 25 s cadence. The normal cameras
are divided into four groups of six cameras, with large fields
of view (∼ 1,100 square degrees) that partially overlap. Each
camera is composed of four Charge Couple Devices (CCD here-
after) which are read out at the cadence of 25s with a time-shift
of 6.25s between each of them. Accordingly, the observations
made for a given target by various groups of camera will be
time-shifted thereby allowing us to perform super-Nyquist seis-
mic analysis (Chaplin et al. 2014). Because of the large field
of view and the long-term change of the pointing direction of
each individual camera, star positions will slowly drift on the
camera focal plane by up to 1.3 pixels during the 3-month un-
interrupted observation sequences. As a consequence, stars will
slowly leave the aperture photometry (i.e. masks), leading ob-
viously to a long-term decrease of their measured intensities.
Furthermore, during the life of the mission, the instrument will
be continuously exposed to radiation (mostly proton impacts).
This will generate more and more traps in the CCD thus in-
creasing the Charge Transfer Inefficiency (CTI hereafter, see e.g.
Massey et al. 2014, and references therein) over time. Coupled
with the long-term drift of the stellar positions, the CTI will in-
duce an additional long-term variability of the photometric mea-
surements.

To mitigate the flux variations induced by the instrument
and the observational conditions, the aperture masks used on-
board will be updated on a quasi-regular basis. This will nev-
ertheless leave residual flux variations of about several % over
three months, which remain high w.r.t. the science requirements.
The residual flux variations will fortunately be corrected a pos-
teriori on-ground on the basis of the knowledge of the instru-
mental point spread function (PSF). Nevertheless, such a correc-
tion will leave systematic errors in the power spectrum that will
rapidly increase with decreasing frequency. All of these instru-
mental systematic errors together with the stellar activity noise
component can in principle impact the detection and characteri-
sation of the planetary transits, limit the seismic analysis of very
evolved red giant stars, and affect any science analysis of the
signal at rather low frequencies.

The Plato Stellar Light-curve Simulator 3 (PSLS) aims at
simulating stochastically-excited oscillations together with plan-
etary transits, stellar signal (granulation, activity) and instrumen-
tal sources of noise that are representative of the PLATO cam-
eras. The simulator allows us to simulate two different types of
oscillation spectra: i) oscillation spectra computed on the basis
of the so-called Universal Pattern by Mosser et al. (2011) op-
tionally including mixed-modes following the asymptotic grav-
ity mode spacing (Mosser et al. 2012b) and ii) oscillation
spectra computed using a given set of theoretical frequencies
pre-computed with the ADIPLS pulsation code (Christensen-
Dalsgaard 2008).

3 The PSLS source code is available for download from
the PSLS website (http://psls.lesia.obspm.fr) as well as
from Zenodo.org (http://doi.org/10.5281/zenodo.2581107).
The source code is free: you can redistribute it and/or modify it un-
der the terms of the GNU General Public License (for more details
see http://www.gnu.org/licenses). The present paper describes
the version 0.8.
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The instrumental noise level is quantified by carrying out re-
alistic simulations of the instrument at CCD pixel level using
the Plato Image Simulator (PIS) for three-month observation se-
quences. These simulations are performed for different stellar
magnitudes, and for both the beginning of life (BOL4) and end of
life (EOL5) observation conditions. The photometry is extracted
from these simulated images in the same manner as planned
on-board, that is using binary masks that minimise the noise-to-
signal ratio (NSR) of each target. The corresponding simulated
light-curves are then corrected using PSFs reconstructed on the
basis of a microscanning technique, which will be operated in-
flight before each three-month observation sequence and which
we also simulate in the present work. This set of simulated light-
curves, corrected for the instrumental errors, then enables us to
quantify the expected level of residual systematic errors. These
simulations are then used to derive – as a function of the stel-
lar magnitude – a parametric model of the residual errors in the
time domain. This model is in turn implemented into PSLS.

Finally, the other components of the stellar signal (granula-
tion signal, and planetary transits) are included in PSLS follow-
ing prescriptions found in the literature.

2. General principle

The stochastic nature of the different phenomena (i.e. white
noise, stellar granulation and stochastically-excited oscillations)
are simulated following Anderson et al. (1990, see also Baudin
et al. (2007)). As detailed below, the properties of the simulated
stellar signal are first modelled in the Fourier domain, we next
add a random noise to simulate the stochastic nature of the sig-
nal, and finally we perform an inverse Fourier transform to come
back into the time domain and derive the corresponding time-
series (i.e. light-curve). We note that other authors (e.g. Chaplin
et al. 1997; De Ridder et al. 2006) have proposed instead to work
directly in the time domain. Although, rigorously equivalent, it
is more convenient to describe the stellar signal in the Fourier
domain since this is the common way signals (such as pulsation,
granulation, and activity) are analysed in solar-like pulsators.

Let F (ν) be the Fourier Transform (FT hereafter) of the sim-
ulated light-curve S(t), and P(ν) the expectation of the Power
Spectral Density (PSD) associated with the stellar signal (i.e. the
PSD one would have after averaging over an infinite number of
realisations). If the frequency bins of the PSD are uncorrelated,
we can then show that

F (ν) =

√
P (u + i v) , (1)

where u, and v are two uncorrelated Normal distributions of zero
mean and unit variance, and i is the imaginary unit (i2 = −1). We
finally compute the inverse Fourier Transform of F̂(ν) to derive
the simulated light-curve S(t) for a given realisation. We note
that the PSD P(ν) associated with a given realisation verifies

P(ν) = |F (ν)|2 = P
(
u2 + v2

)
. (2)

Our PSD is “single-sided”, which means that the integral of the
PSD from ν = 0 (excluded) to the Nyquist frequency is equal to
the variance of the time-series.

Here, the expectation P(ν) is the sum of an activity compo-
nent A(ν), the granulation background G(ν), and the oscillation

4 I.e. in the absence of CTI.
5 I.e. with the level of CTI expected at the end of the mission, that is

6 years after launch by definition.

spectrum O(ν), that is

P(ν) = A(ν) + G(ν) + O(ν) . (3)

In accordance with our initial hypothesis, all these components
are uncorrelated. However, some interferences can in principle
exist between the various stellar signal components, such as the
activity, the granulation and the oscillations. For instance there
are some observational evidences about correlations between
granulation (i.e. convection) and modes. Indeed, solar mode pro-
files slightly depart from symmetric Lorentzian profiles (Duvall
et al. 1993). Likewise, pieces of evidence for similar asymme-
tries were recently found in stars observed by Kepler (Benomar
et al. 2018). Helioseicmic data clearly show that this asymmetry
is reversed between velocity and intensity measurements (e.g.
Duvall et al. 1993; Nigam et al. 1998; Barban et al. 2004).
This reversal is believed to be the signature of a correlation be-
tween convection and oscillations (Roxburgh & Vorontsov 1997;
Nigam et al. 1998). However, the departures from symmetric
Lorentzian profiles are small w.r.t. the mode linewidths. Hence,
we consider this as an indication of a small level of correlation
between convection (i.e. granulation) and oscillations. Finally,
concerning possible interferences between activity and convec-
tion, to our knowledge there are no pieces of evidence. For these
reasons, in this work, we decided to neglect the correlations be-
tween the stellar signal components.

Once the FT associated with the stellar signal is simulated
on the basis of Eq. 1, we perform an inverse Fourier transform
to come back into the time domain. This then provides the stel-
lar signal as a function of time. However, in order to take into
account the fact that each group of cameras are time-shifted by
∆t = 6.25 s, we multiply Eq. 1 by the phase term ei2π∆t prior to
calculating its inverse Fourier Transform.

The instrumental signal component (i.e. the systematic errors
plus the instrumental random sources of noise) is simulated in
the time domain as explained in Sect. 4. Finally, once the instru-
mental signal is simulated, it is multiplied by the stellar signal
and the planetary transit (which as the instrumental component is
simulated in the time domain) to get finally the simulated light-
curve averaged over a given number of cameras. We describe
in the following sections the way each simulated component is
modelled.

3. Solar-like oscillations

In this section, we describe the modelling of the oscillation spec-
trum O(ν). It is the sum over the different normal modes

O(ν) =
∑

i

Li(ν) , (4)

where each individual resolved mode of frequency νi is de-
scribed by a Lorentzian profile

Li(ν) =
Hi

1 + (2 (ν − νi) /Γi)2 , (5)

where Hi is the mode height, and Γi its linewidth. A mode is con-
sidered to be resolved when Γi > 2δ f where δ f is the frequency
resolution (or equivalently the inverse of the observation dura-
tion). In contrast, for an unresolved mode the profile is given by
(see, e.g. Berthomieu et al. 2001),

Li(ν) =
πΓi Hi

2δν
sinc2 [π (ν − νi)] , (6)

3
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where δν is the resolution of the spectrum.
To go further, one needs to determine the mode frequen-

cies, heights, and line-widths. To do so, we consider two dif-
ferent methods for the frequencies. For main-sequence and sub-
giant stars, the method consists in computing a set of theoretical
mode frequencies using the ADIPLS adiabatic pulsation code
while for red giant stars we consider the method developed by
Mosser et al. (2011), which relies on what is commonly known
as the Universal Pattern. This distinction is motivated by the
difficulty to compute red giant frequencies. Indeed, for evolved
stars, a proper modelling of the normal frequencies requires an
important number of grid points in the innermost layers. While
still feasible, this makes the computation more demanding. We
therefore adopt a more flexible and affordable method based on
asymptotic considerations to ensure the possibility of using the
simulator on a massive scale.

3.1. Main-sequence and sub-giant stars

The oscillation spectrum is constructed using a set of the-
oretical eigenfrequencies computed using the ADIPLS code
(Christensen-Dalsgaard 2008). The program allows one to in-
clude uniform rotational splittings as specified by an input sur-
face rotation period Trot = 2π/Ωsurf where Ωsurf is the surface
rotation rate. The set of frequencies included in the model are

ν(0)
n,`,m = νn,` +

m
Trot

(
1 − cn,`

)
, (7)

where n is the radial order, ` the angular (or harmonic) degree,
m the azimuthal order, and cn,` the Ledoux constant (Unno et al.
1989, see, e.g.) provided by ADIPLS. We consider all the modes
from n = 1 up to the cut-off frequency, with angular degrees
ranging from ` = 0 to 3 inclusive. Near-surface effects are even-
tually added using the empirical correction proposed by Sonoi
et al. (2015):

νn,`,m = ν(0)
n,`,m + a νmax

1 − 1

1 +
(
ν(0)

n,`,m/νmax

)b

 , (8)

where a and b are two parameters, which are expressed in terms
of Teff and log g thanks to the scaling laws provided in Eqs. 10
and 11 of Sonoi et al. (2015), respectively.

The mode height of each given mode is computed according
to

Hn,`,m = G(νn,`,m; δνenv) V2
` r2

n,`,m(i) Hmax , (9)

where V` is the mode visibility (V0 = 1, V1 = 1.5, V2 = 0.5,
V3 = 0.05), Hmax the mode height at the peak frequency, and
rn,`,m the (relative) visibility of a mode of azimuthal order m
within a multiplet for a given inclination angle i. The ratio rn,`,m
is computed according to Dziembowski (1971, see also Gizon
& Solanki (2003)) and represents – at fixed values of n and `
– the ratio of the mode height for a given inclination angle i to
the mode height at i = 0◦. Finally, G is the Gaussian envelope
defined as

G(νn,`,m; δνenv) = exp
[
−(νn,`,m − νmax)2

δν2
env/4 ln 2

]
, (10)

where δνenv is the full width at half maximum, which is supposed
to scale as (Mosser et al. 2012a):

δνenv = 0.66 ν0.88
max . (11)

This scaling relation was established for red giants. The appli-
cations presented in Sect. 6 show that it provides rather good
results for less evolved stars.

To compute Eq. 9, we now need to specify Hmax . For
a single-side PSD, the mode height is related to the mode
linewidth as (see, e.g. Baudin et al. 2005)6

Hmax =
2 A2

max

πΓmax
, (12)

where Amax is the rms of the mode amplitude at the peak fre-
quency. The latter is related to the bolometric amplitude Amax,bol
using the correction proposed for Kepler’s spectral band by
Ballot et al. (2011)

Amax = Amax,bol

( Teff

5934 K

)−0.8

. (13)

We note that the CoRoT spectral band results in very similar
corrections (see Michel et al. 2009). Finally, Amax,bol is derived
from the scaling relations derived by Corsaro et al. (2013) and
defined as

ln(Amax,bol) = ln(Amax,bol,�) + (2s − 3t) ln(νmax/νmax,�) +

(4t − 4s) ln(∆ν/∆ν�) +

(5s − 1.5t − r + 0.2) ln(Teff/Teff,�) + ln(β) (14)

where Amax,bol,� = 2.53 ppm (rms) is the maximum of the bolo-
metric solar mode amplitude (Michel et al. 2009), and s, t, r and
β are coefficients that depend on the star’s evolutionary status
(see Tables 3 & 4 in Corsaro et al. (2013)).

Finally, one needs to specify the mode line-widths. To this
end, we note that the product of the mode line-width and the
mode inertia has a parabolic shape (Belkacem et al. 2011, see
Fig. 2). Therefore,

Γn,`,m = Γmax

(
Imax

In,`

)
γ(νn,`,m) , (15)

where In,` is the mode inertia, Imax is the mode inertia of the ra-
dial modes interpolated at ν = νmax, Γmax is the mode linewidth
at ν = νmax derived from two different scaling relations (see be-
low), and the function γ(ν) models the frequency dependence of
the product Γn,`,mIn,` around νmax. The latter is modelled empiri-
cally as follows

γ(ν) = 1 + A
(
1 −G(νn,`,m; 2δνenv)

)
, (16)

where G is the Gaussian function defined by Eq. 10, A is a con-
stant, and δνenv is given by the scaling relation of Eq. 11. With
A = 2 for ν ≥ νmax and A = 6 for ν < νmax, Eq. 16 repro-
duces rather well the variation with frequency of the solar mode
linewidths. Given the objectives targeted by the simulator, we
assume that this empirical description is sufficiently represen-
tative for other stars. An alternative approach would have been
to use the relation describing the frequency dependence derived
from Kepler observations by Appourchaux et al. (2014, see its
corrigendum in Appourchaux et al. (2016)). However, this rela-
tion was established for a limited number of targets and hence
in limited ranges in effective temperatures, surface gravities and
surface metal abundances. Therefore, to avoid extrapolations
we prefer to adopt Eq. 15. In addition, the relation inferred by

6 The additional factor of two comes from the fact we assume here
a single-sided PSD while Baudin et al. (2005) assumed a double-sided
one.
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Appourchaux et al. (2014) was established on limited frequency
intervals. Since the mode line-widths scale as the inverse of the
mode inertia (Eq. 15), this scaling relation allows us instead to
derive the frequency dependence of Γn,`,m for the whole acoustic
spectrum of a given star.

Finally, the mode line-width at the peak frequency, Γmax,
is determined on the basis of the scaling relation derived by
Appourchaux et al. (2012) from main-sequence Kepler targets,
that is

Γmax = Γmax,0 + β

(
Teff

Teff,�

)s

, (17)

where Γmax,0 = 0.20 µHz, β = 0.97, and s = 13.0.

3.2. Red-giant stars

Each mode frequency νn,` is computed according to the
Universal Pattern proposed by Mosser et al. (2011)

νn,`,m = n +
`

2
+ ε(∆ν) − d0`(∆ν) +

α`
2

(
n −

νmax

∆ν

)2
∆ν +

m δνrot + δn,` , (18)

where ε is an offset, d0`, the small separation, α` the curvature,
∆ν the large separation, δνrot the rotational mode splitting (in-
cluded only for dipolar modes, as will be explained later on),
and finally δn,` a term that accounts for a possible coupling with
the gravity modes, which results in the deviation of the mode fre-
quency from its uncoupled solution (“pure” acoustic mode) and
gives the mode its mixed-mode nature. For a dipole mode, δn,`
is computed according to the asymptotic gravity-mode spacing
(Mosser et al. 2012b)

δn,` =
∆ν

π
arctan

[
q tan π

(
1

∆Π1νn,`
− εg

)]
, (19)

where q is the coupling coefficient, ∆Π1 the asymptotic period
spacing of the (pure) dipole g modes, and εg an offset fixed to the
value 0.25, which is representative for most red giants (Mosser
et al. 2017). For radial modes, one obviously has δn,0 = 0, while
for all modes with angular degree ` ≥ 2 we neglect the deviation
and assume δn,` = 0.

The mode height of each given mode (n, `,m) is given by

Hn,` = G(νn,`) V2
` Hmax , (20)

where G(νn,`) is given by Eq. 15, V`, is the mode visibility de-
termined from Mosser et al. (2012a) and Hmax is the maximum
of the mode heights derived from the scaling relation established
by de Assis Peralta et al. (2018), that is

Hmax = 2.01 107 ν−1.9
max . (21)

Concerning the mode linewidths Γn,`, they are assumed to
be constant with frequency. This assumption is motivated by
the fact that modes are observed in a relatively small frequency
range compared to main-sequence and sub-giant stars. This con-
stant value is determined from the theoretical scaling relation of
Vrard et al. (2018), which depends on the effective temperature,
Teff , and stellar mass as follows

Γmax = Γmax,0

( Teff

4800 K

)αT

, (22)

where Γmax,0 = 0.1 µHz and αT is a coefficient which depends
on the stellar mass range (see Vrard et al. 2018). The dipolar
mixed modes have, however, much smaller line-widths than their

associated “pure” acoustic modes. This is mainly because their
inertia is much larger as a consequence of the fact they behave as
gravity modes in the inner layers. Indeed, the mode line-width
scales as the inverse of the mode inertia (see, e.g., Belkacem
& Samadi 2013). Let Im

n,` (resp. Γ
(m)
n,` ) be the mode inertia (resp.

mode line-width) of a dipolar mixed-mode and I0
n,` (resp. Γ

(0)
n,`)

that of a “pure” acoustic mode of the same radial order. We then
have

Γ
(m)
n,` = Γ

(0)
n,`

 I0
n,`

Im
n,`

 , (23)

where according to our previous assumption Γ
(0)
n,` = Γmax for any

couple (n, `). In Eq. 23, it is assumed that radiative damping in
the radiative interior of red giants is negligible. The validity of
this assumption has been thoroughly investigated by Grosjean
et al. (2014).

To go further, we use the following relation from Goupil
et al. (2013):

I0
n,`

Im
n,`
' 1 −

Icore

I
= 1 − ζ (24)

where Icore is the contribution of the core to the mode inertia,
and ζ is calculated according to Eq. 4 in Gehan et al. (2018).
Finally, the rotational splitting for dipolar modes (the term δνrot
in Eq. 18) is computed on the basis of Eq. 22 in Goupil et al.
(2013) by neglecting the surface rotation (see e.g. Mosser et al.
2015; Gehan et al. 2018). Accordingly, we have

δνrot =
ζ

2

(
Ωcore

2π

)
, (25)

where Ωcore is the core rotation rate (in rad/s).
The oscillation spectrum is then constructed by summing a

Lorentzian profile for each mode. We include modes with radial
orders ranging from n = 1 up to n = integer (νc/∆ν), where νc is
the cutoff-frequency (see Eq. 28), and with angular degrees from
` = 0 to ` = 3.

The simulator requires three main input parameters, νmax,
Teff and ∆ν, from which all the other parameters are established
using scaling relations, except ∆Π1 and q which can be provided
as optional inputs (otherwise no mixed modes are included). In
case ∆ν is not provided, it is computed according to the scaling
relation (Mosser et al. 2013)

∆ν = 0.274 ν0.757
max . (26)

The stellar mass used for the granulation scaling relations is de-
termined by combining the scaling relation for νmax and ∆ν (see
Belkacem 2012; Mosser et al. 2010, and references therein):

m = M�

(
νmax

νmax,�

)3 (
∆ν

∆ν�

)−4 (
Teff

Teff,�

)3/2

. (27)

Finally, the cutoff frequency νc is derived from the following
scaling relation:

νc = νc,�
g
g�

√
Teff,�

Teff

, (28)

where νc,� = 5300 µHz.
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4. Instrumental errors

Our objective here is to quantify the instrumental sources of er-
ror, namely the systematic error and the random noise, and to
implement them into PSLS. For the former, a set of simulations
at CCD pixel level is carried out while for the random noise we
rely on the work made by Marchiori et al. (2019) as explained in
Sect. 4.4.

4.1. The Plato instrument

PLATO is composed of 24 cameras (named normal cameras)
working at a cadence of 25 s and two cameras (named fast cam-
eras) working at a cadence of 2.5 s. Each group of cameras is
composed of six normal cameras that see half of the full field of
view (2,200 square degrees). The fast cameras point towards the
centre of the field of view, and provide the platform with point-
ing errors for the Attitude Control System. Four Charge Coupled
Devices (CCDs) are mounted on the focal plane of each camera.
The pixels have a size of 18 µm and their projected size in the
sky represents approximately 15 arcsec.

Every three months, the platform is rotated by 90◦ in order
to maintain the solar panel in the direction of the Sun. Due to
the thermal distortion of the platform, changes in the pointing
direction of each individual camera are expected during the un-
interrupted three-month observation sequences. These variations
will lead to long-term star drifts on the focal plane of up to 0.8
pixels in three months. Furthermore, because of the large field of
view, the kinematic aberration of light will induce drifts of the
stellar positions of up to 0.5 pixels in three months at the edge
of the field of view. Both effects add together and result in drifts
of up to 1.3 pixels in three months (in the worst case, at the edge
of field of view).

4.2. The Plato Image Simulator

To quantify the instrumental systematic errors, we generate time-
series of small imagettes with the Plato Image Simulator (PIS).
This simulator, developed at the LESIA-Observatoire de Paris
since the early phases of the PLATO project, has very simi-
lar capabilities as the PLATOSim code (Marcos-Arenal et al.
2014). PIS can simulate imagettes representative of PLATO
CCDs. It includes various sources of perturbations, such as shot-
noise (photon noise), readout noise, background signal, satel-
lite jitter, long-term drift, smearing, digital saturation, pixel
response non-uniformity (PRNU), intra pixel response non-
uniformity (IPRNU), charge diffusion, and charge transfer in-
efficiency (CTI). Since our goal is to quantify systematic errors,
we turned off all random sources of noise in our instrumental
simulations, except in the calculation of the NSR, see Sect. 4.4
; these are the shot-noise, the readout-noise, and the satellite jit-
ter. CTI is simulated following Short et al. (2013) and activated
for end-of-life (EOL) simulations only. Charge diffusion within
the CCD pixels is not activated because we still lack a reliable
estimate of its amplitude (see the discussion in Sect. 7).

To take into account the impact of long-term drifts of the stel-
lar positions, simulations are generated over 90 days and include
a linear drift of 1.3 pixels in three months. To be more realistic,
the instrumental point spread functions (PSF) used during these
simulations include optical manufacturing errors and integration
and alignment tolerances to the nominal design for the nominal
focus position. These input PSFs do not include effects due to the
detector or the spacecraft (such as the satellite jitter). However,

Parameters Value
Reference flux at V=11 BOL 2.17 105 e-/exp.

EOL 2.13 105 e-/exp.
Sky background 120 e-/s/pixels

PRNU 1.00%
IPRNU 0.50%

Integration time 21s
Readout time 4s

Gain 25 e-/ADU
Electronic offset 1000 ADU

Photon noise disabled
Readout noise e- disabled

Satellite jitter disabled

Table 1. Simulation parameters used with the PIS code.

most of them (like PRNU, IPRNU, CTI, and satellite jitter) are
in any case included in PIS.

4.3. Simulation parameters and data sets

The flux of each simulated star behaves differently according
to their magnitude, position over the CCD, and even position
within a pixel (hereafter named intra-pixel position). In order to
cover the largest combination of these factors, we use PIS to run
630 artificial star simulations using a combination of:

– 9 stellar magnitudes (from V=9 to V=13 with a step of 0.5),
– 14 focal plane positions over the focal plan (from 1.41◦ to

18.08◦ from the optical centre),
– 5 intra-pixel positions for each of the 14 focal plane posi-

tions.

The simulations are carried out using the parameters relevant
for BOL and EOL conditions. Thus, regarding EOL simulations,
the CTI is enabled and the mean optical transmission is assumed
to be lower than the BOL one. The CTI model used by PIS re-
quires specifying the number of trap species and their character-
istics in terms of density, release time, and cross sections. To this
end, Prod’homme et al. (2016) have studied CTI on a representa-
tive PLATO CCD that has been irradiated on purpose. This study
allowed the authors to identify four trap species and to calibrate
their corresponding parameters. We used the parameters derived
by Prod’homme et al. (2016). However, the trap densities are re-
scaled so that the level of CTI reaches the mission specifications
at the EOL. The adopted values of the simulation parameters are
reported in Table 1.

4.4. Photometry extraction

Of the ∼ 120,000 targets observed by each camera during a given
pointing, about 14,000 of them will have their 6×6 imagettes
downloaded on-ground at a cadence of 25 s. For these targets,
the photometry will be extracted on-ground on the basis of more
sophisticated methods, which are not yet fully established. The
photometry of the remaining targets will necessarily have to be
performed on-board.

Before computing the photometry, we start with a basic pre-
processing of the imagettes aiming to subtract the electronic off-
set and the background, convert ADU to electrons using the gain,
and finally subtract the smearing for each column of the im-
agette.

Photometry extraction is performed on-board by integrating
the stellar flux over a collection of pixels called the aperture
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or the mask. Different strategies for determining the most ade-
quate aperture shape have been the subject of a detailed study
(Marchiori et al. 2019), leading to the adoption of binary masks
as the best compromise between NSR and stellar contamination
ratio. For a given target, its associated binary mask is defined as
the subset of the imagette pixels giving the minimum noise-to-
signal ratio. It is computed through the following scheme

1. Arrange all pixels n from the target imagette in increasing
order of noise-to-signal ratio NSRn

NSRn =

√
σ2

FTn
+

NC∑
k=1

σ2
FCn,k

+ σ2
Bn

+ σ2
Dn

+ σ2
Qn

FTn

. (29)

2. Compute the aggregate noise-to-signal NSRagg(m), as
a function of the increasing number of pixels m =
{1, 2, 3, . . . , 36}, stacking them conforming to the arrange-
ment in the previous step and starting with the pixel owning
the smallest NSRn

NSRagg(m) =

√
m∑

n=1

(
σ2

FTn
+

NC∑
k=1

σ2
FCn,k

+ σ2
Bn

+ σ2
Dn

+ σ2
Qn

)
m∑

n=1
FTn

.

(30)
3. Define as the aperture the collection of pixels m providing

minimum NSRagg(m).

In Eq. 29 and Eq. 30, FT is the target star’s mean flux, σFT

the target star’s photon noise, FC the contaminant star’s mean
flux, σFC the contaminant star’s photon noise, σB the back-
ground noise from the zodiacal light, σD the overall detector
noise (including readout, smearing and dark current noises) and
σQ the quantization noise. Figure 1 illustrates how the NSR typ-
ically evolves as the binary mask gets larger following the above
scheme. We note that the noise due to satellite jitter is not in-
cluded in the definition of the mask (Eq. 30). Including the con-
tribution of the jitter noise in the definition of the mask is not
trivial because its contribution depends on the final shape of the
mask (see e.g. Fialho & Auvergne 2006). Nevertheless, it turns
out that for PLATO, the jitter noise is small enough that its does
not play a role in the mask shape, the dominant sources of noise
being the photon noise for brighter stars and the background and
readout noise for fainter stars. Accordingly, once the mask is de-
fined, we include the jitter a posteriori in the estimation of the
NSR.

The NSR was estimated for a large sample of targets (so far
about 50, 000) with magnitudes ranging from 9 to 13. The targets
and their associated contaminant stars were extracted from the
Gaia DR2 catalogue (Gaia Collaboration et al. 2018). In total
about 3.5 million contaminant stars with magnitudes up to G=21
were included in the calculation.

The calculation of the NSR takes into account the various
sources of noise described above and also the fact that the shape
of the PSF varies across the field of view. The latest version of
the instrument parameters were also considered (details will be
given in Marchiori et al. 2019). Typical values of the NSR are
given in Table 2 for a single camera and 24 cameras as a func-
tion of the PLATO magnitude, P, which is defined in Marchiori
et al. (2019) and is by definition directly connected to the flux
collected by a PLATO camera. For comparison with the mission

Table 2. NSR as a function of target V and P magnitudes. The
values are given for a single camera and for 24 cameras, and
were extracted from Marchiori et al. (2019). The rightmost col-
umn gives the photon noise limit, that is the NSR one would
have if we were limited only by the photon noise of the target.

V P NSR NSR Photon
noise limit

1 camera 24 cameras 24 cameras
[ppm.hr1/2] [ppm.hr1/2] [ppm.hr1/2]

8.1 7.76 51.9 10.6 10.5
8.5 8.16 63.2 12.9 12.7
9.0 8.66 80.3 16.4 16.0
9.5 9.16 101.9 20.8 20.1

10.0 9.66 130.8 26.7 25.4
10.5 10.16 169.0 34.5 32.2
11.0 10.66 219.5 44.8 40.8
11.5 11.16 290.0 59.2 52.0
12.0 11.66 387.5 79.1 66.1
12.5 12.16 523.2 106.8 84.3
12.9 12.56 678.5 138.5 102.6
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Fig. 1. Typical NSR evolution curve as a function of increasing
aperture size. Pixels with the smallest noise-to-signal ratio are
added-up successively. The collection of pixels giving the lowest
aggregate NSR defines the binary mask for a given target.

specifications (Rauer et al. 2014), we also provide the V magni-
tude, which is defined here as the flux collected in the Johnson
V filter for a reference PLATO target of Teff = 6, 000 K.

For comparison, we also reported the values of the NSR in
the photon noise limit (i.e. when there is only the photon noise
due to the target). The relative contribution of random noises
that add (quadratically) to the target photon noise increase with
increasing stellar magnitude from 20 % at magnitude V=8.5 up
to 65 % at V=13.

Unless the NSR value is imposed by the user, the latter is
obtained by interpolating the values given in Table 2 for a given
V magnitude.

4.5. Mask update

An example of a light-curve obtained with a fixed optimal bi-
nary mask is shown in Fig. 2 (top) for a target of magnitude

7



Samadi et al.: The Plato Solar-like Light-curve Simulator

V=11. Because of the long-term drift of the star and the fact that
the mask is maintained at the same position during the three-
month observation sequence, we observe a significant long-term
decrease of the stellar flux. In this worst case scenario (a dis-
placement of 1.3 pixels in three months), the flux decreases by
about 15 %, which subsequently results in an increase of the
NSR by about 8 % (see Fig. 2 – bottom). The NSR increase ob-
viously has an impact on the science objectives of the mission,
in particular on the planet detection rate. Indeed, a higher NSR
at a given magnitude reduces the number of targets for which the
NSR is lower than a given threshold, which subsequently lowers
the number of detected planets.

To mitigate the impact of the long-term drift and to main-
tain the NSR as low as possible, the proposed solution is to up-
date the mask when required during the three-month observa-
tion sequences. An example is shown in Fig. 2 (top). We see in
this example that the peak-to-peak variation of the flux is main-
tained within 4 % (top panel) while the variation of the NSR is
maintained within less than 2 % (lower panel). Therefore, the
mask updates always guarantee that one reaches the best pos-
sible NSR. Furthermore, it is also found that the mask updates
partially mitigate the impact of CTI.

It is interesting to note that some mask updates simultane-
ously reduce the flux and the NSR. This is because the NSR does
not scale linearly with the flux. Indeed, due to the presence of the
readout noise and the complex shape of the PSF, two masks col-
lecting the same amount of flux can have a different number of
pixels and hence different contributions of the readout noise.

Obviously, each mask update will introduce a discontinuity
at a well known instant, which for a given target will be different
from one camera to another. For instance in the example shown
in Fig. 2, the binary mask has been updated seven times. It is
however possible to reduce the number of updates by increasing
the threshold above which a variation of the NSR since the last
update must trigger a mask update. Furthermore, as explained
below, the discontinuities induced by each update as well as the
long-term flux variations induced by the long-term drifts can be
efficiently corrected a posteriori on-ground.

4.6. Light-curve correction

Knowing the PSF at any position across the field of view and the
time displacements of a given target, it is possible – given its as-
sociated aperture mask – to reconstruct a synthetic light-curve,
which exactly mimics the time variation of the star flux induced
only by the long-term drift over the CCD plane as well as the
discontinuity induced by each mask update. The light-curve cor-
rection then consists in building such a synthetic light-curve as-
suming that the star has an unit intensity, then dividing the real
stellar light-curve by the synthetic one. The quality of this cor-
rection intrinsically depends on our ability to construct the PSF
and to derive the stellar displacement in time. As explained in
detail in Sect. 4.7, the stellar PSFs will be reconstructed during
the in-flight calibration phases on the basis of a microscanning
sequence coupled with a dedicated inversion method.

Concerning the stellar displacements, the fast camera will
provide information about the short-term variations of the satel-
lite attitude (i.e. satellite jitter) with a high cadence (2.5 s) and a
sufficient accuracy. This information will then be directly trans-
lated in terms of the short-term variations of the attitude of each
given normal camera. Concerning the long-term displacements,
centroids of a larger set of targets will be measured using the
imagettes registered on-board at a cadence of 25 s. These cen-
troids will be used to derive the attitude of each camera at any
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Fig. 2. Top: Examples of light-curves generated from a simu-
lated time-series of CCD imagettes. The red curve corresponds
to the light-curve generated with a fixed binary mask while the
blue one includes a series of mask updates. The dotted verti-
cal lines identify the times at which the masks were updated.
Bottom: Corresponding time variations of the NSR.

instant. The combination of the two sets of information will fi-
nally provide both the short-term (i.e. jitter) and long-term time-
displacements of any target.

Finally, it has been established that the PRNU is a limit-
ing factor for this correction. However, prior to the launch, the
PRNU will be measured with an accuracy better than 0.1 %
(rms), which is sufficient to leave a negligible level of residual
error in the corrected light-curves (Samadi 2015).

Two examples of corrected (individual) light-curves are dis-
played in Fig. 3 for a V=11 PLATO target. The upper light-curve
corresponds to BOL observation conditions while the lower one
to the EOL. It is clearly seen that the residual flux variations
are larger at the EOL: for that particular target the peak-to-peak
flux variations is as high as about 1 % at the EOL while it re-
mains within about 0.2 % at the BOL. This is explained by the
combined effect of the CTI and the star drift. Indeed, as the star
moves, the energy distribution in the different pixels vary with
time and so does the CTI. This effect is named differential CTI.

The small discontinuities seen in the light-curve occur each
times the mask has been updated. These discontinuities are of the
order 500 ppm. Hence, they remain small compared to the pho-
ton noise, which is about 2,000 ppm for this target and for a sin-
gle camera. It is also worth noting that for a given target observed
with several cameras the instants at which the mask updates oc-
cur are different between the different cameras. Accordingly, the
systematic errors induced by these updates are uncorrelated be-
tween the cameras and accordingly, their impacts on the final
light-curves (obtained after averaging several individual light-
curves) will be significantly reduced (see Sect. 4.10).

4.7. Point spread function reconstruction

One of the challenges with the PLATO mission is the relatively
large size of the camera pixels (approximately 15 arcsec as pro-
jected on the field-of-view) compared to the typical size of the
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Fig. 3. Examples of single-camera light-curves generated from
a simulated time-series of CCD imagettes and after correcting
it for the long-term drift of the stellar position as explained in
Sect. 4.6. We represent the relative flux variation in %. The red
(reps. blue) curve corresponds to EOL (resp. BOL) observation
conditions. The dotted vertical lines identify the times at which
the masks were updated.

point spread functions (PSFs).7 Accordingly, raw camera pic-
tures do not provide a sufficient resolution of the PSFs, thus
requiring the use of a specific strategy in order to obtain the
PSFs with a sub-pixel resolution. In the PLATO mission, the
adopted strategy is similar to the one applied to Kepler obser-
vations (Bryson et al. 2010): a microscanning sessions in which
a series of imagettes with sub-pixel displacements are obtained
(Green 2011). High resolution PSFs will then be reconstructed
by inverting the imagettes along with a precise knowledge of
the displacements. Such PSFs will be obtained for a number of
reference stars across the field-of-view. The PSF at any position
will then be obtained via interpolation using the reference PSFs.
The resultant PSFs will subsequently be used in correcting the
light-curves sent down by PLATO as explained in Sect. 4.6.

4.7.1. Microscanning sessions

The microscanning sessions will typically last for 3 hours and
lead to a series of 430 imagettes composed of 6 × 6 pixels en-
compassing the target stars. The telescope will be pointing in a
slightly different direction for each imagette resulting in small
sub-pixel displacements of the target stars. A continuous mi-
croscanning strategy has been opted for, that is the position will
be changing continuously throughout the manoeuvre rather than
stopping for each imagette and then starting again (Ouazzani
et al. 2015). The displacements do not need to fulfil stringent cri-
teria in order to be suitable for the inversions, but only to form
a path which roughly covers a pixel uniformly (for more details
see Reese 2018a). Accordingly, this path has primarily been de-
termined based on technological constraints. However, a precise
knowledge of the displacements is essential for carrying out suc-
cessful inversions. Various tests have shown that the fast cameras

7 We note that the point spread function changes significantly across
the relatively large field-of-view (about 20◦ in radius).

are able to obtain this information from the centre-of-brightness
of reference stars.

The displacements will form an Archimedean spiral such
that the distance, D, between consecutive images is approxi-
mately constant, and the distance between consecutive spiral
arms is D

√
3/2, thus leading to the formation of near-equilateral

triangles depending on the relative positions of imagettes on con-
secutive arms. Furthermore, the spiral needs to approximately
cover 1 pixel. The combination of these constraints leads to a
spiral like the one illustrated in Fig. 4.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x position (in '')

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

y 
po

sit
io
n 
(in

 ''
)

Fig. 4. Archimedean spiral used for the microscanning strategy.
The dotted lines correspond to the CCD pixel borders.

4.7.2. PSF inversions

In order to carry out the inversions, it is necessary to discretise
the PSF by expressing it as a sum of basis functions:

f (x, y) =
∑

i

aiφi(x, y) , (31)

where the ai are unknown coefficients which will be deter-
mined via the inversion, and the φi basis functions. Typical
choices of basis functions include sub-pixel indicator functions,
or Cartesian products of cubic B-splines. The typical resolution
used for these basis functions is 1/20th of a pixel (along both the
x and y directions), given the number of imagettes from the mi-
croscanning session. This high resolution representation of the
PSF then needs to be integrated over the pixels of the imagettes.
Equating the resultant integrals with the observed intensities in
these pixels leads to the following equation

Ax = b , (32)

where b is a vector composed of the observed intensities from
the imagettes, x a vector composed of the coefficients ai, and
A the discretisation matrix. The inverse problem is then to ex-
tract the high resolution PSF, x, knowing A and b. Given that the
number of unknowns does not necessarily equal the number of
observables, this problem needs to be inverted in a least-squares
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sense. Furthermore, some form of regularisation needs to be in-
cluded in order to obtain well-behaved solutions. Finally, the re-
sultant high-resolution PSF needs to remain positive. A sufficient
(though not necessary) condition for this is to impose that the co-
efficients ai are positive, provided the basis functions φi remain
positive.

Two inversion techniques have been used for solving Eq. 32.
The first is an iterative approach called the Multiplicative
Algebraic Reconstruction Technique (MART, Censor 1981;
Green & Wyatt 2006), which starts from a positive smooth so-
lution and iteratively corrects it using one constraint at a time.
Given that the corrections are applied in a multiplicative man-
ner, the solution remains positive. The number of iterations is
then used to control the degree of regularisation. The second ap-
proach is a regularised least-squares approach with a positivity
constraint on the coefficients. The regularisation term consists
of a 2D Laplacian multiplied by a weight function which leads
to a higher amount of regularisation in the wings of the PSF.
Accordingly, cubic B-splines are used with this approach given
that these are continuously twice-differentiable. This term is then
multiplied by a tunable regularisation parameter. As shown in
Reese (2018b), this second approach leads to better results in
most cases (see an example in Fig. 5 bottom panel) and is ac-
cordingly the preferred approach.

4.8. Analysis of systematic errors in terms of PSD

We compute the PSD associated with each corrected light-curve,
both for the BOL and EOL data sets. Two examples are shown
in Fig. 6 at the BOL and the EOL for a star located at a given
position in the field of view and at the sub-pixel position P0
(pixel corner). These PSDs are compared with the PLATO re-
quirements in terms of allowed systematic errors at V=11. At
the EOL, the requirements are marginally exceeded in the fre-
quency range [10 µHz - 100 µHz]. This is a consequence of the
presence of CTI. We stress that we expect to be able to correct for
the CTI. However, this correction is not yet fully modelled and
hence cannot yet be reliably quantified. Accordingly, the pre-
dictions for the EOL have to be considered conservative at this
moment.

We find that the PSD of the residual light-curve can satisfac-
tory be fitted with a function of the form:

I(ν) = H1

(
ν1

ν

)α1

+
H2

1 + (2πτ2ν)α2
, (33)

where H1, α1, H2, τ2 and α2 are the fitted parameters, and
ν1 = 1/T1 with T1 = 90 days (three months). For convenience,
we further define σ2 as the variance of the residual light-curve,
which is also the integral I(ν). The quantity σ corresponds to
the amplitude of the systematic errors and is related to the other
parameters according to the relation

σ2 =
H1ν1

α1 − 1
+

H2

2 τ2 sin (π/α2)
. (34)

We fit each residual light-curve with the function given by
Eq. 33. Depending on the parameters, we find that the parameter
values significantly vary with the sub-pixel positions. This is not
surprising since about 90 % of the star’s intensity is concentrated
in a square of 2.2×2.2 pixels (an example of such a PSF is dis-
played in Fig. 5). As a result, a change of the sub-pixel position
of the star’s centroid induces important changes in the charge
distribution. In contrast, at fixed sub-pixel positions, changes of
the parameter values with the stellar field of view are in general
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Fig. 5. Top: Original PSF. Bottom: PSF obtained by inversion
on the basis of the microscanning technique (see Sect. 4.7). The
dotted lines correspond to the CCD pixel borders.

weaker. Finally, the parameters controlling the amplitudes of the
systematic errors (namely H1 and H2) are found to strongly vary
with the stellar magnitude.

Fig. 7 highlights the impact of the star magnitude. Indeed,
the 90th percentile of the quantity σ [in ppm] is displayed as
a function of the star magnitude, both for BOL and EOL con-
ditions. In general, the residual systematic errors increase with
increasing star magnitude. As expected, the systematic errors at
EOL are systematically much higher than at BOL by about a
factor ten at magnitude 8.5 and down to about a factor four at
magnitude 13. However, they hardly exceed 0.5 % (rms) in the
magnitude range considered here.
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Fig. 6. PSD of the residual light-curve obtained with two three-
month PIS simulations, one representative of the BOL (cyan)
and the second of the EOL (pink). The results shown here cor-
respond to a star of magnitude 11. The solid coloured line rep-
resents the fitted model defined in Eq. 33. The solid black line
represents the PLATO requirements in terms of systematic errors
translated for a single camera by assuming that they are uncor-
related between the different camera (see text).
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Fig. 7. Amplitude of the systematic errors (σ) as a function of
the stellar magnitude. This quantity is computed according to
Eq. 34. At each stellar magnitude, only the 90th percentile is
displayed.

4.9. Modelling the systematic errors in the time domain

The systematic errors were analysed in the previous section in
terms of PSD because this is the most convenient way to com-
pare directly with the mission requirements in terms of allowed
systematic errors. Indeed, the latter are specified in terms of the
PSD. However, modelling the systematic errors this way has the
obvious consequence of destroying the phase of the instrumental
or operational perturbations (e.g. the discontinuities induced by
the mask updates or other effects). While this is in principle not
a problem when the stellar signal is analysed in terms of the PSD
(e.g. as this is typically done for the granulation or the solar-like
oscillations), this can be misleading for the analysis taking place
in the time domain, as for instance the detection and the char-
acterization of planetary transits. To overcome this, we decide
instead to model the systematic errors in the time domain.

Fig. 8. Example of a generated instrumental light-curve (single
camera) fitted with the piecewise polynomial decomposition of
Eq. 35. The black line represents the generated light-curve and
the red one the result of the fit.

Due to the quasi-regular mask updates, the residual light-
curve is piecewise continuous (each piece corresponding to an
interval of time where the aperture mask is unchanged). We find
that each piece can be well reproduced by a third order poly-
nomial. Accordingly, we decompose each generated instrument
light-curve as follows

s(t) = s
N∑

i=1

Π

(
t − ti

di

) (
1 + p3,i + p2,ix + p1,ix2 + p0,ix3

)
, (35)

where s is the light-curve time-average, N the number of masks
used for a given imagette time-series, i the mask index, ti the
time the mask is first applied or updated, di the time during
which it is maintained, x ≡ (t − ti)/τ0, τ0 a time constant (set
arbitrarily to 90 days), p j,i the polynomial coefficients associated
with the mask i, and finally Π(x) a function defined as

Π(x) =

{
1 if 0 ≤ x < 1
0 if x < 0 or x ≥ 1.

While the coefficient p3,i informs us about the amplitude of the
discontinuity induced by a given mask i, the three other coeffi-
cients (p0,i, p1,i and p2,i) inform us about the long-term variations
of the instrument residuals obtained with that mask.

Each of the generated instrument light-curve is fitted by the
model given by Eq. 35. An example of such a fit is given in
Fig. 8. In most cases, this polynomial model reproduces very
well the main characteristics of the systematic errors, in par-
ticular the jumps induced by the mask updates as well as the
long-term variations induced by the long-term star drifts.

4.10. Implementation into PSLS

The model for the systematic errors presented in the previous
section is implemented into PSLS as follows: we have at our
disposal a set of p coefficients for each stellar magnitude, focal
plane position (i.e. PSF), and sub-pixel position. We first iden-
tify the positions (focal plane and sub-pixel) corresponding to
the magnitude the closest to that of the star we want to simu-
late. For each position, the number of p coefficients depends on
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Fig. 9. Simulated instrument residual light-curves (systematic
errors) over 90 days for a star of mangitude V=11 and for the
EOL conditions. The light-curves are plotted in terms of relative
variations and were generated using Eq. 35 and as explained in
Sect. 4.10. Each dotted line corresponds to an individual light-
curve (here 24 in total) while the thick solid line corresponds
to the light-curve obtained by averaging the 24 simulated light-
curves.

the number of masks used at that position. Then, each individual
light-curve simulated by PSLS is divided into quarters. For each
quarter, we randomly select the set of coefficients p among the
ensemble previously selected. We proceed in the same way for
each quarter and for each individual camera. By proceeding this
way, we simulate the fact that each star will have different PSFs
and sub-pixel positions in the different cameras and that these
PSFs and sub-pixel positions will change after the rotations of
the spacecraft by 90◦ every 3 months. An example of such sim-
ulated light-curves is shown in Fig. 9.

The above example also illustrates the benefit of averaging
the light-curves over several cameras. Indeed as shown in Fig. 9
averaging over, for example 24 cameras, substantially reduces
the residual errors because the systematic errors are not always
in phase and the mask updates do not always occur at exactly
the same times. However, the figure also highlights some degree
of correlation between the individual light-curves. Indeed, it can
clearly be seen that some light-curves are close to being in phase.
These correlations are expected as explained and discussed in
Sect. 7.2.

5. Other signal components

5.1. Stellar granulation

The granulation background is simulated by assuming two
pseudo-Lorentzian functions

G(ν) =
∑
i=1,2

hi

1 + (2πτiν)βi
, (36)

where hi is the height, τi the characteristic time-scale, and βi
the slope of the Lorentzian function. The values of hi and τi are
determined from the scaling relations established by Kallinger
et al. (2014) with Kepler observations of red giants, sub-giants
and main-sequence stars. These scaling relations are a function

of peak frequency νmax of the oscillations and the stellar mass M.
Following Kallinger et al. (2014), the values of the two slopes
(β1 and β2) are both fixed to four.

5.2. Stellar activity

The stellar activity signal is simulated assuming a Lorentzian
function

A(ν) =
2σ2

A τA

1 + (2πτAν)2 , (37)

where σA is the amplitude and τA is the characteristic time-scale
of the activity component. Both parameters have to be specified
by the user (but see the discussion in Sect. 7).

5.3. Planetary transit

Planetary transit light-curve are simulated on the basis of
Mandel & Agol (2002)’s formulation and using the Python im-
plementation by Ian Crossfield at UCLA8. This model allows us
to specify several parameters controlling the characteristics of
the transit light-curve. Among them, PSLS allows us to spec-
ify the planet radius, the orbital period, the semi-major axis and
finally the orbital angle. We have adopted a quadratic limb-
darkening law (cf. Section 4 of Mandel & Agol (2002)) and
assumed default values for the corresponding two coefficients
(namely γ1 = 0.25 and γ2 = 0.75). However, these coefficients
can be set by the user.

6. Simulated stellar oscillation spectra

As a preliminary remark, we stress that the goal of the simula-
tor is not to provide state-of-the-art modelling of a given target
but rather to be able to mimic the main characteristics of ob-
jects of interest. Accordingly, we did not carry out a quantitative
and extensive comparison between outputs of our simulator and
light-curves (or equivalently PSD) obtained from high-precision
photometric observations, from space missions such as CoRoT
and Kepler. However, to illustrate the quality and the relevance
of the simulated light-curves, we performed a qualitative com-
parison with Kepler observations. Three Kepler targets were se-
lected according to the quality of the data and their evolution-
ary status: a main sequence star (16 Cyg B – KIC 12069449), a
sub giant (KIC 12508433) and a giant on the Red Giant Branch
(KIC 009882316). For each of them, a simulation was generated
with stellar parameters and models as close as possible to the
corresponding target.

6.1. Main sequence star

16 Cyg B (KIC 12069449) belongs to the Kepler legacy sample
(Lund et al. 2017a,b). As input for PSLS, we considered a set of
theoretical adiabatic mode frequencies computed with ADIPLS,
using one of the stellar models considered in Silva Aguirre et al.
(2017). The effective temperature and surface gravity were ad-
justed in accordance with the 1D stellar model while the seismic
indices νmax and ∆ν were taken from Lund et al. (2017a).

We generated an initial light-curve assuming a V=10.0
PLATO target observed with 24 cameras in EOL conditions and
for a duration of 2 years. The choice of magnitude is motivated
by the fact that we expect to derive stellar ages with the re-
quired accuracy (10 %) with 24 cameras up to the magnitude

8 http://www.astro.ucla.edu/˜ianc/
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Fig. 10. Top: Échelle diagram corresponding to the the fre-
quencies used as input for the simulations made for 16 Cyg
B (KIC 12069449). A mean large separation of ∆ν = 118.9
µHz was assumed when plotting the échelle diagram. Bottom:
Corresponding mode linewidths (top) and mode heights (bot-
tom).

V=10.0 (Goupil 2017).9 The two parameters controlling the ac-
tivity component have been adjusted so that it matches that of the
activity component seen in the 16 Cyg B Kepler light-curve. The
corresponding PSLS configuration file is given in Appendix A.
The mode frequencies, line-widths, and heights used as input
for the simulation are displayed in Fig. 10. The modes for which
the frequencies significantly depart from the general trends are
mixed modes. However, they have such low amplitudes that in
practice they are not at all detectable.

The corresponding simulated light-curve is displayed in
Fig. 11 while the corresponding PSD is plotted in Fig. 12, where
we have depicted the various contributions to the PSD. As can
been seen, the systematic errors start to dominate over the stellar
signal only below ∼ 20 µHz. On the other hand, they remain neg-
ligible in the frequency domain where the solar-like oscillations
and stellar granulation signal lie. As expected at that magnitude,
the random noise (white noise) dominates the signal in this do-
main. Nevertheless, the presence of the oscillations in the PSD is
clearly discerned when zooming and smoothing the PSD in this
frequency domain (see bottom panel of Fig. 12).

9 This threshold is obviously lower for stars observed with less than
24 cameras.
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Fig. 11. Simulated light-curve for the main sequence star 16 Cyg
B (KIC 12069449) with simulation parameters representative of
a V=10.0 PLATO target observed in EOL conditions with 24
cameras (see the details given in Sect. 6.1). The grey curve cor-
responds to the raw light-curve while the black ones is the light-
curve averaged over one hour.

The simulated PSD cannot be directly compared with Kepler
observations for that star because PLATO and Kepler have dif-
ferent characteristics and furthermore 16 Cyg B is so bright that
its image on the CCD is saturated. Therefore, to perform a com-
parison we adjusted the white noise level (equivalently the NSR
value) so that it matches the level of the white noise seen at high
frequency in the Kepler light-curve. We compare in Fig. 13 the
simulated PSD with the Kepler observations. Qualitatively, we
note a fair agreement between the simulation and the observa-
tions. The figure however highlights some differences, in partic-
ular in terms of mode heights and the width of the oscillations
envelope. As the characteristics of the oscillations are obtained
through scaling relations, we do not except the match to be per-
fect, and in any case this is not the ultimate goal of the simulator.

6.2. Sub-giant star

The sub-giant star KIC 12508433 observed by Kepler is among
the sub-giant stars studied in detail by Deheuvels et al. (2014).
As an input for PSLS, we use the same stellar parameters as
in this study as well as the set of theoretical mode frequen-
cies that best fits the seismic constraints. As for 16 Cyg B
(KIC 12069449), we adjusted the white noise level so that it
matches the level of the white noise seen at high frequency in
the corresponding Kepler light-curve. The comparison between
the simulated PSD and the one computed from the Kepler light-
curve is shown in Fig. 14. Here also, we have a good qualitative
agreement between both PSDs. Nonetheless, some mismatch is
visible by eye, especially concerning the mode heights and the
width of the oscillation envelope.

6.3. Red-giant star

The red giant KIC 9882316 has been studied extensively since
the Kepler era. Precise measurements of its seismic indexes (∆ν,
νmax, ∆Π and q) have been published for example in Mosser et al.
(2015). We generated for this red giant a simulated light-curve
on the basis of the UP method (see Sect. 3.2). The latter requires
specifying the seismic indexes as well as the effective tempera-
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Fig. 12. PSD of the simulated light-curve of 16 Cyg B (KIC
12069449) shown in Fig. 11. Top: the full PSD. The grey curve
represents the raw PSD (i.e. un-smoothed PSD) while the black
line corresponds to the PSD obtained after applying a running
average over a width of 10 µHz. The coloured lines represent the
various contributions to the signal (see the associated legend).
Bottom: zoom in the frequency domain where solar-like oscil-
lations are detected. Only the smoothed PSD is shown.

ture ; all these parameters are taken from Mosser et al. (2015).
To illustrate the quality of the light-curve expected for red giants
with PLATO, we first perform a simulation for a V=12.5 PLATO
target observed with 24 cameras in EOL conditions for a du-
ration of 2 years. The corresponding PSLS configuration file is
given in Appendix A. We note that solar-like oscillations are also
expected to be detectable in fainter red giants, but we limit our-
selves to this magnitude because the systematic errors were not
quantified for fainter stars. The PSD of the simulated light-curve
is displayed in Fig. 15, where we have also plotted the differ-
ent contributions to the signal. As can been seen, the systematic
errors remain negligible compared to the solar-like oscillations
and stellar granulation. On the other hand, they dominate below
ν ∼ 20µHz.

Finally, we compare the predictions made by PSLS with
Kepler observations. We again adjust the white noise level to
match the Kepler observations for that target and considered
a simulation duration of 4 years. The comparison is shown in
Fig. 16. The agreement between the simulation and the Kepler
observations is rather good. In particular, we see that the mixed-
mode frequencies and heights are quite well reproduced.
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Fig. 13. Comparison of a simulated PSD and the one obtained
from Kepler observations of the main sequence star 16 Cyg B (
KIC 12069449). The grey and black lines have the same mean-
ing as in Fig. 12. The red curve corresponds to the smoothed
PSD obtained from the observations.
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Fig. 14. Same as Fig. 13 for the sub-giant star KIC 12508433
observed with Kepler.

7. Discussion

We discuss in this section the limitations of the current approach
and possible future improvements.

7.1. Instrument model

As far as the modelling of the instrument is concerned, there
is still an important effect missing in the image simulator (PIS),
which is the Brighter Fatter Effect (BFE hereafter). Indeed, there
are several pieces of evidence showing that spot images using
CCDs do not exactly scale with the spot intensity: bright spots
tend to be broader than faint ones, using the same illumina-
tion pattern (see Guyonnet et al. 2015, and references therein).
The BFE is fundamentally due to the self-electrostatic interac-
tion between charges in different pixels. This broadening, which
mainly affects bright targets, would not be a problem as long
as these interactions are stable in time. However this cannot be
the case since the long-term drift of the stellar position changes
the charge distribution in the different pixels. Analytical mod-
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Fig. 15. PSD of the simulated light-curve for the Kepler red gi-
ant KIC 9882316 seen as a PLATO target of V=12.5 in EOL
conditions with 24 cameras. The curves have the same meaning
as the top panel of Fig. 12.

els (e.g.. Guyonnet et al. 2015) can be easily implemented into
PIS, and that can subsequently be used to correct both the CCD
imagettes and the light-curves generated on-board. Such analyti-
cal models involve several free coefficients that can be calibrated
on-ground with the test bench dedicated to the calibration of the
flight PLATO CCDs. The BFE is not expected to evolve with
time so that the parameters obtained with the on-ground calibra-
tion can be used throughout the mission. The calibration pro-
cedure for the PLATO CCD is not yet established but can in
principle follow the one proposed in Guyonnet et al. (2015). As
soon as we have at our disposal calibrated values of the BFE
coefficients, it will be possible to update our simulations and de-
rive new prescriptions to account for this additional source of
systematic errors.

Charge diffusion within the CCD was neglected in this work
since we still lack reliable estimates of its amplitude in the case
of the PLATO CCD. However, charge diffusion is expected to a
have non-negligible impact on the performance since it enlarges
somewhat the width of the PSF and leads to the suppression of
the small-scale structures of the optical PSF. It has been shown
for example by Lauer (1999) that in standard rear-illuminated
CCDs this phenomena can be modelled by performing the con-
volution of the optical PSF with a 2D Gaussian kernel with
a given width, which strongly depends on the wavelength and
type of CCD device. To what extent this model is applicable to
the PLATO CCD and what typical width to use for represen-
tative PLATO targets are still open questions. Fortunately, tests
on representative PLATO CCD are currently taking place at the
ESTEC and will provide feedback on this issue that should allow
us to improve the present performance assessment.

Besides the above mentioned effects taking place at the de-
tector level, PLATO will be subject to many others perturba-
tions that are not yet taken into account in the present simulator.
Among them, we can in particular mention thermal trends after
the rotations of the spacecraft by 90◦ every 3 months, the regular
thermal perturbations induced by the daily downlinks, the mo-
mentum wheels de-saturations, and finally the residual outliers
that would not have been detected by the outlier detection algo-
rithms. All these perturbations are not yet well characterized but
will be better known in the future, in particular with the deeper
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Fig. 16. Same as Fig. 13 for the red giant star KIC 9882316
observed with Kepler. Top: the entire oscillation spectrum.
Bottom: Zoom around the maximum peak frequency. Here we
did not apply a running average over the PSD. The dotted
red/blue/green vertical lines represent the frequency locations of
the radial/dipole/quadrupole modes respectively.

involvement of the prime contractor of the platform in the project
and progress in the definition of the data processing pipeline.

7.2. Single to multiple instrument simulations

Strong correlations between the light-curves coming from dif-
ferent cameras are expected. For instance, stellar drifts along
the focal plane are expected to be strongly correlated between
the cameras. Although for each given target, the associated PSF
and aperture mask can differ between cameras, variations in the
stellar flux induced by stellar drifts will present some degree of
correlation, which only pixel-level simulations made for several
cameras can quantify.

PSLS generates the instrument systematic errors of each in-
dividual light-curve individually. However, it uses the model pa-
rameters derived from pixel-level simulations made for a sin-
gle camera only (see Sect. 4.9). Each observed target will have
different PSFs and sub-pixel positions in the different cameras
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with which it is observed. Accordingly, to simulate this diversity,
PSLS randomly selects the model parameters derived at various
positions (for a given star magnitude).

However, this approach is to some extent conservative.
Indeed we use the systematic errors evaluated for the same cam-
era. Each individual light-curve will be corrected a posteriori on-
ground on the basis of auxiliary data (such as the PSF) obtained
by calibrating independently each individual camera. There are
good reasons to believe that the systematic errors will be dif-
ferent from one camera to another. Indeed, the systematic errors
made on each individual calibration are expected to be different
because the cameras are not exactly identical. Indeed, the cam-
eras do not have the exact same alignments of the CCD over the
focal plane, same focal plane flatness, same PRNU, same op-
tical manufacturing and alignment errors, etc. However, to con-
firm this it is required to simulate a statistically sufficient number
of cameras with slightly different setups (results from a limited
attempt can be found in Deru et al. 2017).

7.3. Stellar contamination

While the presence of contaminant stars was taken into account
in our calculation of the NSR as a function of the stellar magni-
tude (see Sect. 4.4), this is not the case for the systematic errors.
It is, in principle, possible to take into account the contaminant
stars in the reconstruction of the stellar PSF and the generation of
the three-month imagette time-series (Reese & Marchiori 2018).
However, this is numerically challenging since due to the high
diversity in terms of configuration, statistically reliable quantifi-
cation of the impact of stellar contamination would require a
much larger sample of simulations. Accordingly, we plan to per-
form, in the near future, simulations on the basis of a sufficiently
large stellar field extracted from the Gaia DR2 catalogue.

7.4. Stellar activity and rotational modulations

Although the presence of stellar activity has little impact on
solar-like oscillations, its presence is critical for the detection
of planetary transits. At the present time, the parameters of the
activity component still need to be specified by the user. Hence,
our objective is to implement into the simulator some empirical
descriptions of the magnetic activity sufficiently realistic to be
representative of solar-like pulsators in the context of PLATO.
To this end, we plan to analyse a large set of Kepler targets and
derive from their spectra, in a similar way as for example in de
Assis Peralta et al. (2018), two main characteristic parameters
of the activity, namely the characteristic time-scale and the am-
plitude associated with the activity component. Once these pa-
rameters are derived for a large sample of stars, we believe it
will be possible to derive some relations between these param-
eters and some stellar parameters, such as the surface rotation
period and the Rossby number which is the ratio of the rotation
period and convective turnover time. Indeed, the differential ro-
tation existing at the interface between the convective envelope
and the internal radiative zone is believed to be at the origin of
the stellar dynamo while convection is believed to be responsi-
ble for the diffusion of the magnetic field in the convective zone
(see e.g. Montesinos et al. 2001, and references therein).

Finally, one other missing activity-related signal is the rota-
tional modulation due to the presence of rather large spots on
the stellar surface. It is hence planned to implement in the near
future some of the existing spot models (for a review on this
problem see Lanza 2016). However, one difficulty is to have at

our disposal representative prescriptions for the model parame-
ters, for instance typically the number of spots, their sizes and
their lifetimes. To our knowledge, such prescriptions do not ex-
ist yet. Therefore, as a starting point we plan to let the user chose
these parameters.

8. Conclusion

We have presented here a light-curve simulator, named the
PLATO Solar-like Light-curve Simulator (PSLS), that aims at
simulating, as realistically as possible, solar-like oscillations to-
gether with other stellar signals (granulation, activity, planetary
transits) representative of stars showing such pulsations. One of
the specificities of this tool is its ability to account for instrumen-
tal and observational sources of errors that are representative of
ESA’s PLATO mission. The latter were modelled on the basis of
the Plato Image Simulator (PIS), which simulates the signal at
the CCD pixel level. At the Beginning Of Life, we show that the
systematic errors are always compliant with the specifications,
whereas at the End Of Life they marginally exceed the specifica-
tions between 10 µHz and 100 µHz approximately (see Fig. 6) as
a result of Charge Transfer Inefficiency (CTI). However, some
mitigation options for the CTI are currently under study (e.g.
charge injection, increasing the camera shielding). Although the
procedure is not yet fully established, existing correction algo-
rithms can be implemented in the context of PLATO (e.g. Short
et al. 2013; Massey et al. 2014).

The PIS code is however not adapted to generating in a mas-
sive way simulated long-duration light-curves (e.g. up to two
years in the case of PLATO). This is why a parametric descrip-
tion of the systematic errors expected in the time domain has
been derived from the PIS simulations. This model reproduces
both the residual long-term flux variations due to the instrument
as well as the jumps induced by the mask-updates for those of the
targets (the large majority of the targets of sample P5) for which
photometry is extracted on-board. Implemented into PSLS, this
parametric model enables us to mimic in a realistic and effi-
cient way the instrument systematic errors representative of the
PLATO multi-telescope concept. Hence, with the inclusion of
stellar signal components that are the most representative for the
PLATO targets together with a realistic description of the instru-
ment response function, this light-curve simulator becomes an
indispensable tool for the preparation of the mission. Its adapta-
tion to other future space missions is in principle possible, pro-
vided that some analytical prescriptions for the instrumental and
environmental sources of errors representative of the mission are
available.

Light-curves simulated with PSLS allow us to conclude that
the systematic errors remain negligible above about 100 µHz and
only start to dominate over the stellar signal below ∼ 20µHz.
Accordingly, they should not impact the core science objectives
of PLATO. One the other hand, they can potentially impact the
analysis of the signal below ν ∼ 20µHz. In both cases, how-
ever, firm conclusions deserve dedicated studies, which are be-
yond the scope of the present work. It must further be made clear
that the level of systematic errors predicted by the present mod-
elling is, strictly speaking, only representative for those targets
for which the photometry is extracted on-board (i.e. the large
majority of the sample P5). For all the other samples, in partic-
ular the main sample (P1), the photometry will be extracted on-
ground and thus will not suffer from the quasi-regular mask up-
dates. Therefore, a lower level of systematic errors are expected
for these samples. Accordingly, the use of PSLS must be consid-
ered as a conservative approach for these samples.
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This simulator is based on our current knowledge of the
instrument and of the current development of the correction
pipeline. Although already well advanced, this knowledge will
improve in the near future as soon as a first flight model of the
camera will be available and fully characterized (around the be-
ginning of 2021). At that time, it will be relatively easy to up-
date our pixel-level simulations and subsequently the parameters
used by the model for the systematic errors as well as the Noise-
to-Signal Ratio (NSR) table.
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Appendix A: Configuration file for the main-sequence star KIC 12069449 (16 Cyg B)

# PLATO Solar-like Light-curve Simulator (PSLS) configuration file (V 0.8)

# Observations conditions
Observation:
Duration : 730. # [days]
MasterSeed : 1704040900 # Master seed of the pseudo-random number generator

# Instrument parameters
Instrument:
Sampling : 25. # Sampling cadence of each camera [s]
IntegrationTime : 21. # Integration time [s]
NGroup : 4 # Number of camera groups (1 -> 4)
NCamera : 6 # Number of camera per group (1->6)
TimeShift : 6.25 # Time shift between camera groups [s]
RandomNoise:
Enable: 1
Type: PLATO # either 'User' or 'PLATO'. In the first case the NSR value is specified by the user (see below) while in the second case the NSR value is obtained by interpolating for the give magnitude NSR values expected for PLATO
NSR : 73. # Noise to signal ratio [ppm/hr], for one single camera, this value takes into account all random noises but does not include systematic errors

Systematics:
Enable : 1
Table : PLATO_systematics_EOL.npy # The binary file containing the systematics parameters

# Stellar parameters
Star:
Mag : 10. # Magnitude
ID : 12069449 # star ID
ModelDir : # Directory containing the single models or the grid (parameters and associated theoretical frequencies)
ModelType: single # Type of model: 'grid' or 'single' or 'UP'
ModelName: 0012069449 # Name of the input model, to be specified when ModelType = 'single', , the program will then load the corresonding .gsm file generated with ADIPLS
ES : ms # Evolutionary status: 'ms' for the main-sequence phase, 'sg' for the sub-giant phase, 'rg' for redgiants (Red Giant Branch or clump stars)
Teff : 5750. # Effective temperature [K]
Logg : 4.353 # Surface gravity, ignored for the UP
numax : 179.3 # frequency of the maximum power [muHZ], used only with the UP
delta_nu : 13.68 # Mean large separation [muHz], used only for UP, -1 if you want this parameter to be derived from scaling relation
DPI : 80.58 # Asymptotic values of the gravity mode period spacing [s], used only with the UP, -1 if you don't want mixed modes to be included
q : 0.15 # Mixed modes coupling factor, used only with the UP
SurfaceEffects: 1 # Include mode near-surface effects, not implemented for the UP
SurfaceRotationPeriod : 0. # Surface rotation period [days], not used with the UP
CoreRotationFreq : 0. # Core rotation frequency [muHz], this is by definition Omega/2pi*1e6 where Omega is the angular rate [rad/s], parameter used for UP only
Inclination : 0. # Inclination angle [deg.]

Activity :
Enable: 1
Sigma : 40. # Amplitude of the activity component [ppm]
Tau : 0.2 # Time-scale of the activity component [days]

Granulation :
Enable: 1

# Transit parameters
Transit :
Enable: 0
PlanetRadius : 0.5 # in jupiter radius
OrbitalPeriod : 10. # in days
PlanetSemiMajorAxis : 1. # in U.A.
OrbitalAngle : 0. # in deg
LimbDarkeningCoefficients: [0.25,0.75]
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Appendix B: Configuration file for the red giant star KIC 9882316

# PLATO Solar-like Light-curve Simulator (PSLS) configuration file (V 0.8)

# Observation conditions
Observation:
Duration : 730. # [days]
MasterSeed : 1704040900 # Master seed of the pseudo-random number generator

# Instrument parameters
Instrument:
Sampling : 25. # Sampling period of each camera [s]
IntegrationTime : 22. # Integration time [s]
NGroup : 4 # Number of camera groups (1 -> 4)
NCamera : 6 # Number of cameras per group (1 -> 6)
TimeShift : 6.25 # Time shift between camera groups [s]
RandomNoise:
Enable: 1
Type: PLATO # either 'User' or 'PLATO'. In the first case the NSR value is specified by the user (see below) while in the second case the NSR value is obtained by interpolating, at the given magnitude, the NSR values expected for PLATO.
NSR : 1. # Noise to signal ratio [ppm/hr], for a single camera. This value takes into account all random noise sources but does not include systematic errors.

Systematics:
Enable : 1
Table: PLATO_systematics_EOL.npy # The binary file containing the systematics parameters

# Stellar parameters
Star:
Mag : 12.5 # Magnitude
ID : 9882316 # star ID (integer)
ModelDir : # Directory containing the single models or the grid (parameters and associated theoretical frequencies)
ModelType: UP # Type of model: 'grid' or 'single' or 'UP'
ModelName: KIC9882316 # Name of the input model, to be specified when ModelType = 'single'
ES : rg # Evolutionary status: 'ms' for the main-sequence phase, 'sg' for the sub-giant phase, 'rg' for redgiants (Red Giant Branch or clump stars)
Teff : 5400. # Effective temperature [K]
Logg : 3.934 # Surface gravity, ignored for the UP
numax : 181.77120898 # frequency at maximum power [muHZ], used only with the UP
delta_nu : 13.70885191 # Mean large separation [muHz], used only with the UP, -1 if you want this parameter to be derived from a scaling relation
DPI : 80.30739925 # Asymptotic values of the gravity mode period spacing [s], used only with the UP, -1 if you don't want mixed modes to be included
q : 0.15611347 # Mixed mode coupling factor, used only with the UP
SurfaceEffects: 0 # Include near-surface effects in mode frequencies, not implemented for the UP
SurfaceRotationPeriod : 0. # Surface rotation period [days], not used with the UP
CoreRotationFreq : 0. # Core rotation frequency [muHz], this is by definition Omega/2pi*1e6 where Omega is the angular rate [rad/s], used only with the UP
Inclination : 0. # Inclination angle [deg.]

Activity :
Enable: 0
Sigma : 1000. # Amplitude of the activity component [ppm]
Tau : 30. # Time-scale of the activity component [days]

Granulation :
Enable: 1

# Transit parameters
Transit :
Enable: 0
PlanetRadius : 0.5 # in jupiter radii
OrbitalPeriod : 10. # in days
PlanetSemiMajorAxis : 1. # in A.U.
OrbitalAngle : 0. # in deg
LimbDarkeningCoefficients: [0.25,0.75]
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