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ABSTRACT 

 

Aims. Invasive species, which recently expanded, may help understand how climatic niche can 

shift at the time scale of the current global change. Here, we address the climatic niche shift of 

an invasive shrub (common gorse, Ulex europaeus) at the world and regional scales to assess 

how it could contribute to increasing invasibility.  

Methods. Based on a 28,187 occurrences database, we used a combination of 9 species 

distribution models (SDM) to assess regional climatic niche from both the native range 

(Western Europe) and the introduced range in different parts of the world (North-West America, 

South America, North Europe, Australia and New Zealand).  

Important Findings. Despite being restricted to annual mean temperature between 4 and 

22 °C, as well as annual precipitation higher than 300 mm yr-1, the range of bioclimatic 

conditions suitable for gorse was very large. Based on a native vs introduced SDM comparison, 

we highlighted a niche expansion in North-West America, South America and to a lesser degree 

in Australia, while a niche displacement was assessed in North Europe. These niche changes 

induced an increase in potential occupied areas by gorse by 49, 111, 202 and 283% in Australia, 

North Europe, North-West America and South America, respectively. On the contrary, we 

found no evidence of niche change in New Zealand, which presents similar climatic condition 

to the native environment (Western Europe). This study highlights how niche expansion and 

displacement of gorse might increase invasibility at regional scale. The change in gorse niche 

toward new climatic conditions may result from adaptive plasticity or genetic evolution and 

may explain why it has such a high level of invasibility. Taking into account the possibility of 

a niche shift is crucial to improve invasive plants management and control. 

Keywords Plant invasion, invasibility, niche shift, species distribution models, ecological niche  
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Résumé : 

Objectifs : Les espèces envahissantes peuvent aider à comprendre comment la niche climatique 

peut évoluer à une échelle temporelle de l'ordre de celle du changement global en cours. La 

prise en compte de cette possibilité d'un changement de niche est cruciale pour améliorer la 

gestion et le contrôle des plantes envahissantes. Ici, nous abordons le changement de niche 

climatique d'un arbuste envahissant (l'ajonc Ulex europaeus) à l'échelle mondiale et régionale. 

Méthodes : Sur la base d'une base de données de 28 187 occurrences, nous avons utilisé une 

combinaison de 9 modèles de distribution d'espèces (SDM) pour évaluer la niche climatique 

régionale de la zone native native (Europe occidentale) et des zones introduites (Amérique du 

Nord-Ouest, Amérique du Sud, Europe du Nord, Australie et Nouvelle-Zélande). 

Principaux résultats : La gamme des conditions bioclimatiques adaptées aux ajoncs est très 

large, bien qu'elle soit limitée par une température annuelle moyenne comprise entre 4 et 22 °C, 

et des précipitations annuelles supérieures à 300 mm an. Nous avons mis en évidence plusieurs 

changemenbts de niche : une expansion de niche en Amérique du Nord-Ouest, en Amérique du 

Sud et dans une moindre mesure en Australie, un déplacement de niche en Europe du Nord. 

Ces changements de niche ont entraîné une augmentation de 49, 111, 202 et 283 % des zones 

potentiellement colonisables par l'ajonc en Australie, Europe du Nord, Amérique du Nord et 

Amérique du Sud, respectivement. Nous n'avons trouvé aucun indice de changement de niche 

en Nouvelle-Zélande, pays qui présente des conditions climatiques similaires à celles de la zone 

native. Le changement de niche des ajoncs vers de nouvelles conditions climatiques peut 

résulter de la plasticité adaptative ou de l'évolution génétique de l'espèce, et contribue à 

expliquer pourquoi elle est si invasive. 

 

INTRODUCTION 

 

Predicting invasive species distribution is challenging, since they were introduced only recently 

in a new geographic area, where climatic and environmental conditions may be out of the range 

of those present in the area of origin (Barbet-Massin et al., 2018). On the other hand, they 

provide good examples of recent species expansion that may help understand whether and how 

climatic niche can shift at the time scale of current global change (Barbet-Massin et al., 2018). 

In addition, assessing the ecological niche of invasive species is a way of improving the 

efficiency of control programs by focusing on key areas whose climatic conditions are suitable 

under current or future climate (Srivastava et al., 2019). Increasing this efficiency is important 

since biological invasions are considered as one of the most serious global environmental 

threats (e.g. Sala et al. 2000; Thuiller et al. 2007). Plant invaders can alter the native species 

biodiversity and abundance modifying ecosystem processes and negatively impact human 

health or economic activities (Coutts-Smith and Downey 2006; Villa et al. 2006; Vitousek 

1996;). Many countries have planned huge and costly programs to try to eliminate or control 



 

3 
 

invasive species once they are established (Hill  and  Sandrey 1986) and the  efficiency  of  

these  programs  is  a  major issue (e.g. Andersen  et  al., 2004). Anticipation appears the most 

efficient management strategy, and assessing the areas that are climatically suitable to a given 

invasive species is thus a key step (Leung et al. 2002). 

 

At large geographical scales, climate is considered to act as the main initial coarse filter of 

invasive species distribution (Vicente et al. 2010 ; Cabra-Rivas et al. 2016). Niche 

conservatism, the tendency of species to maintain ancestral ecological requirements in native 

and invasive ranges (Wiens and Graham 2005), is often assumed to assess the risk of invasion 

(Pearman et al. 2008, Liu et al. 2017). However this assumption of climatic niche is still in 

debate nowadays for climatic niche. Evidence of climatic niche shifts have been raised for 

various plant invaders (Gallagher et al. 2010; Broennimann et al. 2007; Cornuault et al. 2015; 

Hernandez-Lambraño et al. 2016). A recent review, however, argues that niche shift can only 

be assessed when analog climates are compared between regions - otherwise they correspond 

to filling of preadapted niche - and concluded that ~85% of terrestrial plant invaders did not 

shift their climatic niche (Petitpierre et al. 2012). Webber et al (2012) disagree with this 

argument. They consider that a species can expand its niche in two ways, either by infilling 

novel combinations of variables within the range present in the area of origin, or by expanding 

into environmental variables beyond those previously experienced. They therefore suggest that 

niche conservation for invasive species would be the exception rather than the rule. In any case, 

not taking into account climatic niche shifts of invasive population could lead to underestimate 

current and future biological invasions (Beaumont et al. 2009). 

 

Ecological niche models (ENMs) (Guisan and Thuiller, 2005), or species distribution models 

(SMDs) are traditionally calibrated using native distributions and then projected onto other 

continents to highlight areas susceptible to invasions (Thuiller et al. 2005; Shah et al. 2012), 

assuming niche conservatism. Recent studies also tend to calibrate models with distribution of 

invaded regions, to take into account potential niche shifts and avoid underestimation of 

potential spread of the species.  Furthermore, detecting significant deviations from niche 

conservatism may highlight invasive species that are characterized by ecological (Klironomos 

et al. 2002) or evolutionary changes (Xu et al. 2010; Fenesi and Botta-Dukat, 2012) during 

invasions, helping us understand when such changes are likely to occur, which is crucial in an 

area of rapid climate change. 

 

In this study, we focused on the climatic niche of Ulex europaeus (common gorse), a shrub 

originating from Western Europe that has been introduced in many parts of the world during 

the 19th century. It has now been recorded in more than 50 countries and islands, and is 

considered as a major invasive plants, one of the 30 most noxious weed species in the world 

(UICN). The potential niche of gorse is considered to be unfilled and the species is still in 

expansion (Hill et al. 2008). Its geographic and climatic distribution is very wide, since it can 

be found at latitudes ranging from 0 to 60°N, 0 to 54°S and at altitudes ranging from sea level 

to 3,550 m asl (Hornoy 2012). This world-scale distribution contrasts with the relatively 
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restricted distribution in the area of origin (from 35 to 50 °N and from 0 to 300m asl), and 

suggests potentially niche expansion with respect to climatic variables. Such niche expansion 

of gorse was recently demonstrated by Hernandez-Lambraño et al. (2016) in mountain regions 

of South America. Here we modeled the climatic niche of gorse at a global scale, in its whole 

area of present distribution. This allows to compare climatic niches and its potential shift in 

different invaded regions. 

 

The objectives of this study were i) To assess climatic niche of Ulex europaeus at the world 

and regional scale based on a SDM approach, ii) to assess whether climatic niche shift occurred 

between native and introduced populations depending on the region and iii) to provide 

information for the evaluation of the degree of invasibility of introduced areas. 

 

METHODS 

 

Gorse presence and environmental data 

Common gorse (Ulex Europeaus) is a highly studied invasive species, furthermore, its bright 

yellow flowering makes it very visible in the landscape, and it easy to identify. As a 

consequence, numerous data of gorse occurrence (geo-localized gorse presence) are available 

from various sources (made available in Atlan and Limbada, 2019). Three main sources were 

used: online database, bibliography, and personal observations or communications (detailed in 

supplementary information, Table S1). In short, main online sources were from scientific 

network and information systems in natural sciences, biodiversity and ecology (CABI, GBIF, 

iNaturalist, CalFlora, Atlas of Living Australia and herbariums). Bibliographic sources include 

scientific papers, PhD and master thesis flora, websites of local invasive species management, 

online reports and gray literature, amateur naturalist websites. Personal observations by our 

group include systematic survey in Reunion Island and Brittany, and visual observations of 

geolocated photos on websites such as Panoramio and Flickr. Personal communications include 

unpublished occurrences transmitted by professional workers on botany, ecology and nature 

conservation. In total, more than 100,000 records were collected. After eliminating double 

records, validity of the points was assessed through 3 criteria, spatial coherence (e.g. 

suppression of geo-localization in the sea), date of registration (only points recorded after 1950 

were retained, to be coherent with current climatic data), formal identification of the species (in 

case of doubt, we verified with georeferenced photos). Points corresponding to samples stocked 

in Herbarium or Museums were also identified and discarded. We retained 28,180 points geo-

referenced around the world (see Table S2 for more details). This constitutes a quasi-exhaustive 

distribution of gorse at the present time. The dataset will be available in the database of the 

CNRS. 

To homogenize sample effort, we converted the geo-referenced points into a 5 arc min 

(10 km) grid of presence around the world. We obtained 2365 grids with gorse presence.  

Data on current climatic conditions (average climate for 1950–2000; Hijmans et al. 2005), 

represented by 19 bioclimatic variables, were obtained from the WorldClim dataset (Hijmans 
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et al. 2005, Table S3). We used the same spatial resolution of current climate data for gorse 

presence: 5 arc min. Previous results have shown that such a broad resolution can fairly 

represent the climatic niche of gorse and that a finer grid did not improve the resolution of the 

model (Hernandez-Lambraño et al. 2016). To limit the set of variables used as SDM predictors 

and improve the accuracy of the model, we performed a Pearson correlation analysis and 

eliminated the most correlated variables, above a threshold of R>0.7 (Barbet-Massin and Jetz, 

2014). According to previous knowledge on gorse ecology, we retained 14 different 

combinations of 8 to 11 uncorrelated variables (Table S3).  

 

World niche modeling and selection of the combination of climatic variables 

To model species distributions at the global scale for a given climatic combination, we used 

nine different modeling techniques implemented within the Biomod2 (v3.3-7) package 

(Thuiller et al. 2009) in R 3.4 (R Development Core Team 2017): three regression methods 

(GLM, MARS and GAM), a recursive partitioning method (CTA), four machine-learning 

methods (ANN, GBM, RF and MAXENT) and two rectilinear envelope methods (SRE, 

BIOCLIM). To evaluate the predictive performance of the SDMs, we used a random subset of 

70% of the data to calibrate the model, and then used the remaining 30% for evaluation, using 

the area under the relative operating characteristic curve (AUC, Fielding and Bell, 1997). The 

data splitting approach was replicated five times and was the basis for calculating the mean 

AUC of the cross-validation. The final calibration of each model used for making projections 

used 100% of the available data. A current consensus distribution was obtained by calculating 

the weighted mean distributions across SDMs: the nine models were ranked according to their 

predictive performance, and a decay proportional to the evaluation score gave the relative 

importance of the weight.  

We ran the model for the 14 different combinations of bioclimatic variables retained. 

The evaluation of the 14 distributions was based on AUC, sensitivity, specificity and true skill 

statistics (TSS; Allouche et al. 2006) described in Table S4. The four combinations with the 

best results were selected (1, 4, 7 and 9) and visually compared. After eliminating models 

predicting gorse presence in areas where gorse was introduced but not established (e.g. North 

East America), we kept the combined SDM obtained with the climatic combination n°9. It 

combines 9 climatic variables: annual mean temperature (Bio1), mean diurnal range (Bio2), 

maximum temperature of the warmest month (Bio5), minimum temperature of the coldest 

month (Bio6), mean temperature of wettest quarter (Bio8), mean temperature of driest quarter 

(Bio9), annual precipitation (Bio12), precipitation of the wettest month (Bio13) and 

precipitation of the driest month (Bio14). This combination was used for all further modeling. 

 

Regional niche modeling and projections 

Based on the map of U. Europeaus occurrences, we selected 6 regional areas: the native area 

(Western Europe) and five introduced areas (North Europe, North-West America, South 

America, Australia and New Zealand, Fig. 1) with 672, 237, 60, 74, 1019 and 215 cell presence 

respectively. The case of North Europe is unique: it is not part of the natural range of 

distribution, but gorse was introduced there before the 19th century, and it is the only introduced 
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area where gorse is not considered as invasive (Atlan et al. 2015a). First a principal component 

analysis (PCA) was performed on these occurrences to compare climatic data in native area and 

invasive areas. Kernel smooth densities were plotted for visual purpose (Fig. S1). Analyses 

were performed with R packages FactoMineR (v1.35), factoextra (v1.0.4) and ks (v1.11.4). 

Regional SMDs were built for each area (the native and the introduced areas) following 

the same approach as described previously at the global scale. A first model was built using 

only the occurrences from Western Europe and then used to project the probability of gorse 

presence in introduced area (i.e. as if the species would behave like in the native area). We will 

refer to this model as "native model". The projections of the native model were compared with 

models built with the occurrence of each introduced area described previously. We will refer to 

these models as "introduced models". In order to transform the probabilistic consensus 

distribution to a presence/absence distribution, we preserved the suitability values for pixels 

above the sensitivity–specificity sum maximization threshold, and set the suitability for pixels 

under the threshold to zero (Liu et al. 2005; Jimenez-Valverde and Lobo, 2007, R package 

SDMtools v1.1-221.1). Using the simulated presence given by the models, proportion of 

presence depending on 4 climatic variables were calculated (Fig 3): annual mean temperature 

(TMEAN) maximum temperature (TMAX) of the warmest month, minimum temperature (TMIN) of 

the coldest month and annual precipitation (PPT). A PCA was performed on simulated presence 

to compare native and introduced climatic niche in the different introduced areas (Fig 4) 

following the same method as described for observed presences.  

 

Niche change analyses  

We used a threshold-independent niche change index to assess the difference in niche between 

native and introduced populations. We assess a niche overlap based on Schoener’s D metric 

(Schoener 1968) which expresses an overall fit between niches over the full environmental 

space and determines whether we can infer the characteristics of the introduced niche from the 

native niche. Based on this metric we define a global niche change index (INC) which ranges 

from a value of 0, where two distributions are identical, to 1, where two distributions have no 

overlap: 

 
𝐼𝑁𝐶 = 1 − 𝐷 =

1

2
∑ |

𝑃𝐼𝑁𝑇,𝑖

∑ 𝑃𝐼𝑁𝑇,𝑗𝑗
−

𝑃𝑁𝐴𝑇,𝑖

∑ 𝑃𝑁𝐴𝑇,𝑗𝑗
|

𝑖

−  1   (1) 

where PINT,i is the probability of presence for Ulex in the cell i in the introduced model and 

PNAT,i the probability in the native model. Moreover, we quantify the potential variation in 

occupied area by the invasive species due to niche change: 

 
𝐼𝑁𝐶_𝑎𝑟𝑒𝑎 =  

∑ 𝑃𝐼𝑁𝑇,𝑖 𝐶𝑎𝑟𝑒𝑎,𝑖𝑖 − ∑ 𝑃𝑁𝐴𝑇,𝑖 𝐶𝑎𝑟𝑒𝑎,𝑖𝑖

∑ 𝑃𝑁𝐴𝑇,𝑖 𝐶𝑎𝑟𝑒𝑎,𝑖𝑖
 (2) 

where Carea,i is the area of the cell i. 

Multivariate environmental similarity surface (MESS; Zurell et al., 2012) analyses were 

conducted to examine where analog (similar) versus non-analog (novel) climate exists in 

geographic space between each introduced region and the native region (Western Europe). 
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RESULTS 

 

Global scale U. europaeus distribution  

The global scale U. europaeus (common gorse) distribution model built in this study was 

accurate (AUC 0.992 ±0.002, TSS 0.941 ±0.01, sensitivity 0.976 ±0.009 and specificity 0.963 

± 0.008). The presence probability threshold calculated using the sensitivity-specificity sum 

maximization threshold in the model was P = 0.48. Only 2 % of gorse real occurrences were 

present in areas represented by the model below that threshold. The model predicted suitable 

climatic conditions in regions where gorse was effectively observed, such as Western and North 

Europe, North West, central and South America, South Africa, South Australia and New 

Zealand (Fig. 1). The model also predicted suitable climatic conditions in areas where gorse 

was not observed, such as East Africa or Papua New Guinea. The gorse potential distribution 

is globally wide and mostly along oceanic costs. At low longitude, suitable conditions were 

found in high altitude while in high longitude suitable conditions were found in low altitude 

near the costs. 

 

Global scale climatic niche 

Suitable climatic conditions for U. europaeus presence were wide (Fig. 2). Suitable mean 

annual temperatures ranged from 4 to 22°C, but the presence of gorse was limited by low 

temperature (below -6°C for the coldest month) and high temperature (above 32°C for the 

warmest month). In terms of precipitation, U. europaeus was not observed when annual 

precipitation was below 300 mm per year. Nevertheless, it was found in environments with no 

precipitation over the driest month, indicating that the species can support a short period of 

drought. 

 

Estimation of climatic niche shift between native and introduced areas 

The geographic projections of the probabilities distribution of gorse presence, as predicted by 

the native model (calibrated from gorse occurrence in Western Europe) and by the introduced 

models (calibrated from gorse occurrences in each introduced region) will be referred hereafter 

as "native niche" and "introduced niche" (Fig. 3A). To compare these distributions, a kernel-

smoothed PCA was performed in each introduced region, after applying the presence 

probability threshold (Fig. 4). The highest differences between native and introduced niches 

were found in North Europe, North-West America and South America. On the contrary, native 

and introduced niche were similar in Australia and New Zealand. In agreement with the 

previous results, the niche change index (INC) for North Europe, North-West America and South 

America were high, 0.43, 0.47 and 0.45, respectively, while the INC for Australia and New 

Zealand were low, 0.20 and 0.08, respectively (Fig. 4). 

 

Comparison between climatic niche in native and introduced areas. 

In regions with high niche change index, the introduced niches were larger (Fig. 3A) and 

included a larger range of climatic values (Fig. 3B) than in the native niche. In North Europe, 

gorse population were found in colder environments (lower temperature of the coldest month) 
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than those predicted by the native niche. In North-West America and South America, gorse 

populations were found in both colder and warmer environments, particularly in regard of the 

warmest and coldest month. In North-West America, gorse populations were found in much 

drier environments than those predicted by the native niche. In regions with low change index, 

native and introduced niche covered similar areas, but the level of probability was higher for 

the introduced niche (Fig. 3A). In New Zealand, gorse populations were found in the similar 

range of climatic values than those predicted by the native niche. In Australia, gorse populations 

were found in warmer environments than those predicted by the native niche, particularly in 

regard of the warmest month (Fig. 3B).  

Accordingly, to niche change, the potential occupied area by gorse was larger when 

estimated by the introduced model than when estimated by the native model for all regions but 

New Zealand (INC_area, Fig. 5). In regions with the highest niche expansions (South America, 

INC_area = 283% and North West America, INC_area = 202%), this expansion mainly occurred in 

climates dissimilar to the native niche (Fig. 5, MESS <0). In regions with moderate niche 

expansion (North Europe, INC_area = 111% and Australia, INC_area = 49%), this expansion 

occurred in both similar (MESS>0) and dissimilar climatic conditions (MESS<0). The 

geographical details of the MESS analyses between the climate of the native and introduced 

areas are presented in Fig. S2. 

 

 

DISCUSSION 

 

Model simulations and limitations 

The species distribution model built for world gorse distribution using 9 bioclimatic variables 

was accurate and predicted 98% of real occurrences. The potential bioclimatic niche estimated 

by the model was larger than the present gorse distribution, and in agreement with the 

assumption than the species is still expanding (Hill et al. 2008). We have chosen not to build a 

regional model in South Africa, due to the limited number of presence data, which is 

incompatible with the calibration of a species distribution model. For the same reason, a 

regional model was not built in Central America. In addition, we did not include data on the 

presence of the northern part of the South American continent in the regional model "South 

America" because we considered that the area would be too large to have a common history 

between populations. 

 

Bioclimatic conditions suitable for gorse establishment  

The range of bioclimatic conditions suitable for gorse was very large. The presence of the 

species is restricted by annual mean temperature below 4°C and above 22°C, which corresponds 

to the sea level in temperate or cold regions, where it is found until 54° South and 60° North. 

Tropical and equatorial regions may also correspond to temperature requirements of the species, 

but only at high altitudes (the lower the latitude, the higher the altitude when suitable conditions 

can be met). The link between altitude and latitude was already observed on real distributions 

(Hornoy, 2011). The annual extremums. i.e. temperatures of the warmer and coldest months 
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are also limiting. Climates suitable for gorse are those with relatively low seasonal fluctuations 

of temperature, which correspond to oceanic climates. As a consequence, the species is found 

almost only in coastal regions, and in the North Hemisphere, on the Western sides of the 

continents.  

Annual precipitation is more limiting, since the climatic niche excludes areas where 

annual precipitations are lower than 300 mm per year. However, the precipitation of the driest 

month is not limiting, gorse presence being possible in all the range of this variable. Delerue 

(2013) have shown that the seedling stage is the most sensitive to drought, which may explain 

why short lasting droughts are not limiting. Indeed, the fruiting season of gorse is very long 

(Bowman et al. 2008), and its seed dormancy duration highly variable (Hill et al. 2001; Udo et 

al. 2017), so that if the period of drought is limited in time, there is always a possibility that 

some seedlings emerge out of the driest period. 

Solar radiation was not included in the model, but the wide range of altitude and latitude 

where the species can be found suggests low sensitivity to this parameter, which is confirmed 

by the model of Hernadez-Lambraño et al. (2016) for gorse in South America. 

Most regions with climatic conditions corresponding to the gorse niche already contain 

some gorse populations. The exceptions are the central mountain chain of New Guinea, and the 

mountainous regions of Kenya and Ethiopia. It is difficult to know if gorse is absent from these 

places because it was never introduced, or because other dimensions of the niche are not met. 

For example, gorse cannot grow in acid soil or under forest cover (Delerue, 2013 ; Atlan et al. 

2015b). On the other hand, these areas are difficult to access, and no colonial agriculture was 

developed there. Since agriculture was the main reason for introducing gorse (Atlan et al. 

2015a), it is possible that gorse was never introduced there. 

In regions where gorse is already present, it does not cover the whole range of its 

potential climatic niche, except in New Zealand where all favorable areas are already occupied. 

Gorse further expansion may be limited by other dimensions of its ecological niche, but field 

studies have shown that this is far from being always the case, and that the species can still 

expand (Hill et al. 2008). 

 

Niche shift between native and invaded regions 

The climatic niche estimated by the model calibrated on native or invaded regions are different. 

This may come from adaptive evolution in the invaded area, but also from preadaptation to 

conditions that are not present in the native area (Petitpierre et al. 2012). In this study, the 

Kerned-soothed analysis shows that density of probabilities of native and invasive niche are 

different even within the same range of parameter values. This suggests that the differences 

observed result at least partly from real niche shift. The niche shifts observed depended on the 

invasive regions considered, and almost all the situations described in the typology of Guisan 

et al. (2014) are met. This typology considers changes in the niche envelop (expansion or 

contraction), changes in one direction (niche displacement), and changes in the niche centroid 

(i.e. change in probability density). As can be deduced from Fig 4, we observe a displacement 

in North Europe, no significant change in New Zealand, niche expansion in South America, a 

combination of niche expansion, unidirectional displacement and centroid displacement in 
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North-West America, the same combination, at a lesser degree, in Australia, and a combination 

of niche expansion and multidirectional displacement in South America. In particular, in South 

America and North West America, niche expansion occurs in non-analogous environments 

compared to the climatic conditions of the area of origin. 

The niche expansion in South America was already shown in the study of Hernandez-

Lambraño et al. (2016) using the model MAXENT, and is confirmed here by the combination 

of 9 different models. The area of presence predicted by their model is larger, probably because 

they consider North Europe as part of the native area, while we considered it as an introduced 

area. Indeed, in North Europe gorse presence results from human introduction around 1800 

(Atlan et al. 2015a ; Udo, 2016).  

Niche expansion of gorse was observed in all invaded regions but New Zealand, whose 

climate lies within the range of the native niche. In the other regions, the expansion of the gorse 

niche toward new climatic conditions may result from adaptive plasticity or genetic evolution. 

The species has a high potential in both. Adaptive plasticity of reproductive and vegetative traits 

in response to shading and resource availability was demonstrated by experimental studies and 

field observations (Delerue et al. 2013; Atlan et al. 2015b). Genetic evolution of life history 

traits was demonstrated by common garden experiments (Hornoy et al. 2011). Both are 

facilitated by the hexaploid karyotype of the species, and by its high genetic polymorphism in 

both native invasive populations (Hornoy et al. 2013). 

This evolution may result from directional selection in response to different 

environmental conditions. They can also result from the release of natural enemies (EICA 

Hypothesis, Blossey and Notzold, 1995; Joshi and Vrieling, 2005). Indeed, the specific weevil 

Exapion ulicis, that can eat up to 80% of the seeds in the native region, was not introduced in 

the invaded regions as the same time as the plant (it was further introduced in most regions for 

biological control). The release from this weevil may have relaxed the genetic constraints 

resulting by the complex strategies of seed predation avoidance (Atlan et al. 2010). Following 

the Relaxation of Genetic Constraints hypothesis, RGC, (Hornoy et al. 2011), a larger level of 

trait combination may have contributed to niche expansion. 

 

Consequences for gorse management and biodiversity conservation  

Shift, displacement and expansion in gorse climatic niche appeared in most regions where the 

species was introduced. Together with its other characteristics (among which high seed 

production, fast growing and long survival), this may explain why it has such a high level of 

invasibility. The present study shows that the species has the potential to expand in many new 

areas, as suggested by field observation (Hill et al. 2008; Udo, 2016). In agricultural areas, the 

control of gorse is possible, providing adapted technic and financial efforts. In natural areas, its 

spread can be slowed by a combination of methods (physical, chemical, and biological), but its 

control is impossible in many circumstances. Indeed, in tropical regions, the species has a 

tendency to grow in altitude, i.e. in areas where the low level of enthropization often led to high 

levels of biodiversity and site protection, which forbid the use of unspecific methods (Hill et al. 

2008). Early detection followed by eradication would be a means, but it is difficult to apply in 

scarped landscapes. In areas of the potential niche still devoid of gorse, a particular attention 
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should be paid to avoid new introduction. In areas where gorse is already present, beyond 

attempts to control, the concept of novel ecosystem (Hobbs et al. 2006, 2009) and the study of 

potential ecosystem services gorse can produce, may be a useful tool to imagine new directions 

of management. 

The prediction of areas potentially colonized by gorse is necessary to improve the 

efficiency of gorse management, and to decrease its cost. These areas would have been largely 

underestimated without taking into account the possibility of a niche shift. The case of gorse 

may be an exception, as suggested by Petitpierre et al. (2012), but it may also be more common 

than previously thought, especially considering polyploid plant species. In regard of 

biodiversity conservation, this is a bad and good news. On the one hand, it suggests that 

geographic expansion of exotic species will continue beyond the climatic range of their native 

areas, which may threaten indigenous species. On the other hand, it shows that the capacity of 

some species to adapt to new climatic conditions may be higher than estimated from 

experimental studies, which suggest that they also have great potentialities to adapt to global 

climate change. 
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Figure 1. Current world map of Ulex Europeaus occurrence at the global scale (top) and 

probability of presence predicted by the combined species distribution model build at the global 

scale (below). Red squares delimit climatic areas studied to assess climatic niche shift (NZ = 

New Zealand). 
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Figure 2. Global scale climatic niche of Ulex Europeaus (gorse) predicted by the combined 

species distribution model. The nine climatic variables used in the model are described using 

density distribution (beanplot v1.2 R package). The world climatic variable density is presented 

in black while the U. europaeus niche is presented in gray. The presence of U. europaeus was 

assumed when its probability was higher than the sensitivity–specificity sum maximization 

threshold (P=0.48). TMEAN, TMAX, TMIN and PPT are mean, maximum and minimum 

temperature, and precipitation (mm) respectively. 
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Figure 3. Probability of Ulex europaeus presence predicted by the native and introduced 

models (A). The color legend of probability is the same that the one used in Fig 1, and the area 

in green represents native niche for native model, and introduced niche for introduced models. 

Density distribution of U. europaeus presence (B) is presented for four climatic variables 

(annual TMEAN, TMAX of the warmest month, TMIN of the coldest month and annual PPT) 

for both native (blue) and invasive (red) models in introduced regions, using beanplot densities. 

The probability of presence was converted into true presence based on the sensitivity–

specificity sum maximization threshold (P=0.48). The vertical bars indicate the median value 

of the distributions. 
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Figure 4. Comparison of native and introduced niche of Ulex europaeus in different introduced 

regions. This figure represents Kernel-smoothed PCA biplots of U. Europeaus presence 

predicted by species distribution models. Correlation circles show correlations between the 9 

bioclimatic variables used, with principal component axes (see M&M for variable definitions). 

Predicted presences were obtained after the application of a threshold on probability (P > 

0.48). Shading indicates density of presences. The niche change index (INC) between native 

and each introduced region ranges from 0 (identical distributions) to 1 (no overlap). 
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Figure 5. Similarity and divergence between introduced and native climatic niches. Results of 

multivariate climatic similarity surface (MESS) analysis between native and introduced models. 

The bars present the number of areas (5 arc min) where gorse presence is predicted by the 

models calibrated on introduced regions but not by the model calibrated on native regions 

(PINT threshold = 0.48). Climatic similarity is represented by positive values, climatic 

divergences are represented by negative values. 


