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Unsupervised Segmentation of Multilook
Polarimetric Synthetic Aperture
Radar Images

Nizar Bouhlel™, Member, IEEE, and Stéphane Méric

Abstract—This paper proposes a new unsupervised image
segmentation method for multilook polarimetric synthetic aper-
ture radar (PolSAR) data. The statistical model for the Pol[SAR
data is considered as a finite mixture of non-Gaussian com-
pound distributions considered as the product of two statistically
independent random variates, speckle, and texture. With dif-
ferent texture distributions, the product model leads to various
expressions of the compound distribution. The method uses a
Markov random field (MRF) model for pixel class labels. The
expectation-maximization/maximization of the posterior mar-
ginals (EM/MPM) algorithm is used for the simultaneous estima-
tion of texture and speckle parameters and for the segmentation
of multilook PolSAR images. Simulated and real PolSAR data
are shown to demonstrate the method.

Index Terms— Expectation-maximization (EM) algorithm,
Markov random field (MRF), maximum-likelihood (ML), max-
imization of the posterior marginals (MPM), polarimetric
synthetic aperture radar (PolSAR).

I. INTRODUCTION

LASSIFICATION plays an important role in polarimetric
C synthetic aperture radar (PolSAR) image interpretation.
The unsupervised classification approaches cluster the PoOISAR
data into classes according to their statistical characteristics.
The Wishart distribution is considered as the most used in
the classification and segmentation of low-resolution PoISAR
images [1] due to its ease of implementation and low computa-
tional cost. For multilook PolSAR data, it is the scaled Wishart
distribution that is used as the simplest model for classification.
When resolution increases, the homogeneous hypothesis of
the PolSAR is not valid anymore and non-Gaussian statistics
are observed. Consequently, many heterogeneous models have
been proposed in the literature based on the product model.
The multivariate product model, introduced by Yueh et al. [2],
considers the observed signal as the product of two inde-
pendent random variates: a complex Gaussian speckle and
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a positive scalar texture. It was shown that a multilook PoISAR
speckle followed a matrix-variate-scaled complex Wishart
distribution [3]. With varied texture distributions, the product
model leads to different expressions of the compound dis-
tribution. The following distributions are usually used in the
literature to model the texture random variable: gamma (y),
inverse gamma (y ~!), generalized inverse Gaussian (GIG)
(N1, and Fisher (F) with the corresponding compound
distributions g, gg, G4, and Kummer-Uy, respectively
[4]1-[9]. The last two non-Gaussian distributions are more flex-
ible (two texture shape parameters instead of one parameter)
and can fit an extremely heterogeneous clutter compared to
the first two distributions with only one shape parameter.

As a consequence, polarimetric classifications are performed
with non-Gaussian clustering algorithms. Doulgeris et al. [10]
proposed a non-Gaussian K-Wishart clustering algorithm.
It was based upon the iterative expectation—maximization
(EM) algorithm [11] for finite mixture modeling using the
KCa probability density function (pdf) for the probabilities and
the method of matrix log-cumulants (MoMLC) [12] for class
parameter updates [10]. The method was extended in [13]
to incorporate spatial contextual information for multilook
PoISAR data. Their method was based on a Markov random
field (MRF) model that integrated a Ky distribution for the
PolSAR data statistics conditioned to each image cluster and
a Potts model for the spatial context. The latter approach
was recently proposed with the Kummer-U; distribution [14].
Another unsupervised clustering algorithm was presented by
Bombrun ef al. [15] and based on the hierarchical segmen-
tation algorithm adapted to the Kummer-/; distributed target
scattering vector. Khan and Doulgeris et al. [16] used the flexi-
ble G, distribution to model the statistics of each image cluster
and the method of multivariate fractional moment (MoMFM)
to estimate the model parameters. The unsupervised clustering
was achieved using the EM algorithm.

Parameter estimation is very important in the classification
of PolSAR images. The underestimation of the parameters
affects the quality of the classification, and then the analysis
of the PolSAR images. For this, efficient parameter estima-
tion of the compound distributions for each cluster requires
careful consideration. Three parameters need to be estimated:
1) the equivalent number of looks (ENL); 2) the covari-
ance matrix; and 3) the texture parameters. In the literature,
there are several manners to estimate the parameters of the
compound distribution. The most popular method is the
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MoMLC for multilook polarimetric parameter estimation [12].
With the MoMLC, the ENL and the texture parameters are
estimated from the first- and second-order MLC equations
when the distribution has only one texture parameter, as g4
and gg distributions [9], [12] and from the first-, second-,
and third-order MLC equations when the distribution has
two texture parameters, as G; and Kummer-U{; distributions.
The last two distributions involve higher order derivatives of
special functions. Khan and Guida et al. [17] showed that the
MoMFM had a lower bias and variance than the MoMLC-
based estimators. Nevertheless, these estimators, MLC and
MFM, were not maximum-likelihood (ML) parameter esti-
mators. The latter benefits from very desirable mathemati-
cal properties (asymptotic efficiency). Usually, the ML-based
parameter estimators are not available with closed-form solu-
tions. Moreover, a developed method based on the EM algo-
rithm was presented in [18] and proposed to compute the ML
estimates of the unknown parameters of different compound
distributions. The method showed a good performance in terms
of bias and mean square error compared to the performance of
other known estimators such as the MLC and MFM estimators.
The classification method of interest in this paper is a
novel formulation of the unsupervised EM algorithm for finite
mixture modeling using non-Gaussian compound distributions
and ML parameter estimators for class parameter updates [18].
In particular, we estimate: 1) the ENL; 2) the covariance matrix
of the speckle component; and 3) the texture distribution
parameters. The EM algorithm is developed to iteratively
solve the problem of finding the ML estimator when an exact
algebraic solution is not possible. The EM algorithm interprets
the multilook covariance matrix as incomplete data with a
missing class label and a missing texture. The following Ky,
gg, and Gy pdfs are used as compound distributions describing
the statistics of multilook polarimetric SAR data. Since the
MREF have been successfully used in image segmentation to
integrate spatial information, it is adopted in this paper to
improve the accuracy and quality of the segmentation. The
class posterior probabilities are estimated using the maximiza-
tion of the posterior marginals (MPM) algorithm. In summary,
our approach is based on EM/MPM where all parameters are
estimated by EM and the class labels are updated by MPM.
The rest of this paper is organized as follows. Section II
introduces the statistical product model for multilook PolSAR
data. The application to parameter estimation and class label
update for multilook PoISAR data using the EM algorithm is
presented in Section III. The content of Section IV is related
to the concepts of MRFs and the chosen MPM algorithm for
class posterior probability estimates. Section V demonstrates
the performance of the approach with the simulated and real
multilook PolSAR data. Finally, Section VI concludes this

paper.

II. PRODUCT MODEL FOR MULTILOOK
POLARIMETRIC RADAR DATA

The polarimetric SAR system is characterized by the follow-
ing scattering vector s = [s,-j]T e C4, where i = {h,v} is the
transmit “horizontal” or “vertical” polarization and j = {h, v}
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is the receive “horizontal” or “vertical” polarization [19],
[.]7 means transposition, and d = dim(s) is the vector dimen-
sion. In order to reduce the speckle noise, the polarimetric
multilooking operation is applied and given by

L
1
C:Z;smf, L>d (1)

where L is the number of looks, (.)" denotes the Hermitian
operator, and C € , C C%*¢ is the multilook polarimetric
covariance matrix defined on the cone 2. of the positive def-
inite complex Hermitian matrices. According to the multilook
polarimetric product model, the covariance matrix C is the
product of texture 7 and speckle X, and is given as follows:

C=7X (2)

The texture 7 is a positive scalar random variable with a
pdf fr(7). The speckle X is a random matrix following a
scaled complex Wishart distribution sW;C (L, %) with a pdf
given by the following:

LLd|X|L—d

metr(—LZ_l)() (3)

xX) =

where X is the covariance matrix of the speckle, etr(.) =
exp[tr(.)] is the exponential trace operator, |.| is the determi-
nant operator, and I';(L) is the multivariate gamma function
of the complex kind defined as follows:

d—1
Ty(L) = z4@=D/2 [[ra@-o. 4)
i=0

The function I'(L) is the standard Euler gamma function. The
pdf of C using Bayes’ theorem becomes

400
fe(©) = feir (ClT) fr(T)dT (5)
where fc(C|7) is the pdf of C with a specific value of 7
and given by

ferr (Cl7) 7LLd|C|L*d b t Lz”c (6)
T @By

Therefore, the pdf of C is obtained by substituting (6) in (5)

C —LLdICILd/W L (-Lx-1c dr (7
fe( )—m A Td—Ler(—? )fr(T) T (7

when the texture distribution is one of the following: a normal-
ized gamma to a unit mean (}), a normalized inverse gamma
to a unit mean (7 ~') and GIG (N~!), and the covariance
matrix pdf is respectively, the matrix-variate KCy, gg, and
Ga distributions. Table I lists these distributions as possible
choices of f-(7). It is worth noticing that the matrix variate
Ga distribution is normalized by dividing the covariance matrix
of the speckle X by tr(X)/d [20].
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TABLE 1
TEXTURE AND COVARIANCE MATRIX DISTRIBUTION UNDER MULTILOOK POLARIMETRIC PRODUCT MODEL
Texture pdf Compound pdf Ref.
Symbol | fr(1) Symbol | fc(©)
; a’ric] Ka(Z, L T 12
7 (a) T@— exp(=an) d(X,L,a) WW( tr( ) X [12]
7,0 € Ry Ko_14 (2\/ Latr(271C))
-1 G-D* 1 =1 0 LLcl—4 Q—D T (dL+) ( 1 . )—(dLH)
7T () TO) 147 exp(—+-) gd(za L,2) T,(IZL T() Lu(Z7'C)+4-1 [6]
TERY,L>1
Ld\cL—d ( IC %
—1 1 —1 _wn T L~|Cl ™ 1 2L (X~ CO)+wy
N (a, w, 1) 17“2Ka(111)7a exp( 2(7' + r])) Ga(E, L, a, 0, 1) nTa(L)|z|E Ko (w) ( w/n ) x
n7,weR", aeR KwhdJ%Qud24O+wm) 9]

III. EM FOR PARAMETER ESTIMATION
AND CLASS LABEL UPDATE

We consider C = {C;, 1 <i < N} a set of independent and
identically distributed (i.i.d.) random matrices. We assume that
the pdf of the random matrix C; is described by the following
finite mixture of M distributions:

M
fc,(Ci1®) = D fe1x: (Cilfn) ®)

m=1

where X represents a set of hidden random labels {X;, 1 <
i < N}, each achievement x; of X; takes one of M class

labels, i.e., x; € {1,2,..., M}, m,, corresponds to the mixture
weight of each component and represents the prior prob-
abilities Py, (x; = m) = =, and verifies 7,, > 0 and

M wm = 1, fc,x,(Cilf,) is a compound distribution
describing component m in the form given by (7) with 8,, =
(L, X, 07 ,) where 6;,, are the parameters of the texture
distribution of partition m, and ® is a vector of the whole
set of parameters of a given M-mixture to be estimated and is
defined as ® = {m1, w2, ..., ), 01, ...,03}. The number of
looks is considered the same for all clusters. We suppose that
each covariance matrix C; has a corresponding unobserved and
hiding texture 7;. We assume that the sequence {7;, 1 <i < N}
is also i.i.d. random variables. The joint distribution of i.i.d.
random matrices is given by

fc(C|o)

N M

T1>" 7m fe,ix, (Cilbm)
i=1 m=1

N M 400
=112

fcirxi (CilTi, Om) frix; (1i10m)dTi. (9)
i=1 m=1

To estimate the vectors of the parameters ®, the maximum
of the log-likelihood estimator ® is the following general
choice:

~

0= arg max In fc(C|®)

N M
= argmax z In (Z T fe;1x: (Ci |0m))~ (11)

i=1 m=1

(10)

It is well known that the ML estimate cannot be found
analytically. The usual choice is the EM algorithm, which
interprets C as the incomplete data with the missing class
label X and the missing texture 7. With the complete data set
(C, X, 1), we can define the expected value of the complete-
data log-likelihood In fc x,-(C, X, 7/®) with respect to the
missing data X and 7 given the observed covariance matrix
C and the current parameter estimates ©’. The EM can
provide the estimation ¢) given a current estimate ®’. The
maximization of the conditional expectation of the complete
log-likelihood according to parameters ® is given by

© = argmax Ex ric{In fe.x,+(C, X, 710)|C, ©') (12)

N
= argmgx Ex.ric {zl:ln fe, xi.m (Ci, Xi, 7i1©)|Ci, 9’}
1=
N
= arg max zlj Ex; 1C:AIn fe, 7%, (Ci, 71l X, ©)|Ci, ©')
1=
N
+> " Ex,zic;{In P, (X;10)|C;, @'}

i=1

13)

The conditional expectation of the complete log-likelihood
given by (13) contains two independent terms, one depending
on mw,, and the other on @,,, which can, therefore, be maxi-
mized separately. The first term of (13) is written as follows:

EX;,T;|C; {ln fC,‘,T;|X,‘ (Ci’ Ti|Xl" ®)|Cl’ ®/}

M 400
= Z/O In fe, 1x; (Ci, 7ilm, ©)

m=1

X fx;mi1c (xi = m, 7i|Cj, 0"dr;

M
= Z Px,|c; (m|Ci, ©)

m=1
X Erx;,c;{In fc, 71x, (Ci, 7ilm, ©)m, C;, @'}, (14)
We used the propriety that fx, rc; (i =
m,7i|Ci, ®) = frx.c (7ilm, Ci, ®)Px,c,(m|C;, ®)
with Px,|c; (m|C;, ®') being the posterior probability of X;
belonging to the mth component given C; and written as

Tm fciix; (Cilm, 6),)

SLy mi fe,x; (Cilk, 07)

PX[‘C[(mICi,G)/) = (15)
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Let 0X = (L,Zl,...,ZM), 6’7’ = (97',1907',29""9T,M)
and using the fact that fc, - x,(Ci, 7ilm, ®) = fc;1m.x;
(Cilti, m, ®©) fr,x; (1ilm, ®), (14) can then be maximized
separately according to the speckle parameter 0x and the

texture parameter 0 as follows:

N M

bx = argmaxz Z Px,|c; (m|C;, ©)
b gt

X Ezx;,¢;{In fc |7, x
N M

. ls

argné?le: z:l Px;c;(m|C;, @)

i=1 m=

XET[lXi’Ci {ln fT[lX,‘ (Ti Ima HT)Ima Cia G)/}

;(CiITi’ m, 0X)|m’ Ci, ®/} (16)

$>
I

A7)

A. Estimation of Speckle Parameters

Substituting (6) in (16), differentiating with respect to
L, and X,, by taking into account the following proper-
ties [21]: 6In|X|/6X = (T~ HT and otr(T~'W)/0% =
—(Z7'WEZHT | and setting the result to zero yields

5 S Priie; (mICi, ©)g™'C

5, = (18)
ZIN=1 PX;|C,‘(m|Ci9®/)
1 N M
. . o
dinL +d—ya(L) = N;z:lPx;\c,.(mlcl,@)
i=1 m=

% (8™ (%,'C;) — |, Ci| +da™)  (19)

(m) (m)

where a;", g; ", and hfm) are three posterior expectations

defined by
l( ) = Eric.xAIn7i|Ci, X; =m, O} (20)
1
" = Enic,.x {—_|Cf,x,- =m,®/} 1)
h™ = Epic, xA7i|Ci, Xi = m, ©'}. (22)

The function w,(L) is the multivariate dlgamma function
defined as w (L) =0InTy(L)/0L = Z/ —o w(L—j), where
w(.) is the digamma function. Equation (18) is the ML esti-
mator of the covariance matrix of the speckle for the parti-
tion m and (19) is the equation needed to solve for the ENL.
An explicit solution for L is not possible from (19) and needs
to be solved numerically by using the trust region method [22].
Specifically, the fsolve function in MATLAB is utilized to
obtain the parameter estimate.

B. Estimation of Prior Probabilities

The second term of (13) is written as

Ex, zc;{In PX-(Xi|®)‘Ci’ 0’}

+o00
_ Z/ InGt) fx,.mc, (my 711Ci, ©')dT:
m=1

S

Z In(x) Px;|c; (m|C;, ©). (23)
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One can introduce the Lagrange multiplier A with the

constraint > 7,, = 1 and find the estimate of z,, as
follows:
N M
O = argnéfxz Z In(7,,) Px,|c; (m|C;, ©)
i=1 m=1
M
+A <Z T — 1) (24)
m=1
where 0, = {my,7m2,...,my}. Using the fact that Znﬂle

Px,ic;(m|C;, @) = 1, we get A = —N resulting in

N

. 1

Tm = El Px;ic;(m|C;, ©). (25)
i=

C. Estimation of Texture Parameters

The texture distribution parameters 0, are estimated using
(17), which need fr,x;(7i|m,6r) and fr,x, c;(7i|Ci, m, ®).
In the following, three texture pdfs are used.

1) Gamma Distribution: Substituting 7 (a,,) in (17), dif-
ferentiating with respect to a,, and setting the result to zero
yields

SN Px,ic, (m|Ci, ©) (" —
SN, Pxyc; (m|Ci, ©)

(m)
N N 4qi )
In(@p) — y(am)+1 = .

(26)

An explicit solution for a;, is not possible from the ML
equation. The solution is found using the trust region method.
As stated before, the ML equation depends on the posterior
pdf of the texture fy.c;.x; (7i|Ci, m) through a™ and h{".
Using Bayes’ rule, the posterior pdf of 7; given X; = m and
C; is given as follows:

feiim.x: (Cilti, m) fr,x, (1i|m)
fCiIXi (Cilm) '

The expression of fr,c;,x; (7:|Ci, m) corresponds to the GIG
distribution (see Appendix B), with parameters (a1 = a,, —d L,

wi = 2,/Lantr(2,'Cy), m =/ Zuw(Z,,'C:)). The poste-

rior expectation expressions in terms of these parameters are
easily calculated using the formulas given in Appendix B.

2) Inverse Gamma Distribution: Similarly, substituting
7 "1 (Am) in (17), differentiating with respect to A,,, and setting
the result to zero yields

Sfric,x; (1ilCi, m) = 27

—1) = wOm) + =
) =y (Am) I

_ S Prie i€ (g +a™)
Zl‘zl PXilCi(mlcz, Q)

The posterior pdf of 7; given C; and X; = m corresponds to
an inverse gamma distribution with parameters (a; = dL+4,,,
b1 = Ltr(Z,;lci) + Am — 1). The posterior expectation
expression in terms of these parameters are calculated by the
formulas given in Appendix C.

In(Ap
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3) Generalized Inverse Gaussian Distribution: Substituting
N, wp, nm) in (17), differentiating with respect to ay,,
wy, and 7,,, and setting the result to zero yields

Ks,, (m)

R h(m)
YLt Pxiic,(m|Ci, ©) <’7mgf'"’ + _)

Mm
= (29)
ZiAlzl PX,‘|C,‘ (m|Ci5 ®/)
A 1 0K; (ﬁ)m)
1 Om
M e @) 04
N (
= Zi=1 PX,"C; (m|Ci’ ®/)aim) (30)

ZiAlzl PX,‘|C,‘ (mlCi, ®/)
n"
A SN Px,ic; (m|Ci, ©) <'— - ng,-(m))
Om Nm
2" = 7 31)
Zi:] PX;|C;(m|Ci9 G)/)
The posterior pdf of 7; given C; and X; = m is a
GIG distribution with parameters (a; = a,, — dL,w; =

W
—1¢.
VB QLI(E, C) + ), i = (| EEERCOnn The

W/ Nm
posterior expectation expressions in terms of these parameters

are easily calculated by the formulas in Appendix B.

IV. MARKOV RANDOM FIELD MODEL

The MRF has been used successfully for various image
processing applications. In image segmentation, where the
problem is reduced to assigning labels to pixels, label depen-
dencies are modeled by MRF and an optimal labeling is
determined by Bayesian estimation. The main advantage of
MRF models is that prior information can be imposed locally
through clique potentials [23].

The MRF models are defined via parameterized energy
functions that characterize local interactions between neigh-
boring pixels. The energy of a Gibbs distribution is expressed
as the sum of several potential functions over all possible
cliques C, each ascribed to the cliques of a certain size. Here,
only the cliques of size up to two are considered. Readers
are referred to [24], [25] for details of MRF models. Let
X = {X,Vs € S} be the hidden label field. For a regular
rectangular lattice S, X is considered as a family of random
variables defined on the set S where each random variable X
at a spatial location s takes a value x; in the configuration set
E; ={1,2,..., M}. The notation (X = xy) is used to denote
the event that X takes the value x; and the notation (X = x)
to denote the joint event. Let the unobserved class label X be
an MRF defined on S with respect to a neighborhood system
N = {N§, Vs € S} where N is the set of sites neighboring s.
The joint probability of X has the following form:

1
Px)=—exp | — > Vel x,) (32)

{s,r}eC

where C is the set of all cliques. In this paper, it will include
all pairs of spatially horizontal or vertical adjacent pixels.

The normalizing constant Z is the sum of all possible realiza-
tions of the random field X and has the form of

Z:Zexp — Z Ve(xs, xr)
X

{s,r}eC
with V,(.) being the clique potential associated with a clique c.
The potential function is assumed to have the form

(33)

0 if x; = x,
1 if xg # x,

where f. > 0 is the spatial interaction parameter. The
conditional probability Py, (xs|X, = x,,r € Nj) at site s
is expressed explicitly with respect to clique potentials in the
neighborhood N of s as follows:

exp (= eecec Vel))

ZxSeES exp (_ ZceC/sec VC(xS))

We assume that Vs € S the couples of random variables
(Cs, 75) are conditionally independent, given the label field X.
Moreover, the conditional pdf of (Cs, 7y) given X depends
only on the value of X at location s. Then, the conditional
pdf of (C, 7) given X can be written as

ferix(C,7lx, 0) = [ ] fe, nix(Cs, 7slx, 0)
ses
=[] fe,.ix. (Cs. 75 1xs, 0).
seS
The assumption (36) will be used in Section IV-B. We also
assume that the random matrices C; are conditionally indepen-
dent, given the label field X, and in addition, it only depends
on the value of X at location s

feix(Clx, 0) =T fex(Cslx, )= | fe,1x,(Cslxs, 0) (37)
seS seS

where 6 = {01,...,0), 0.} is a vector whose elements

are the unknown parameters of the conditional pdf of C

given X. A direct consequence of assumptions (36) and (37)

is fric,x (TIC, x,0) = [[;cg friC,.x, (751Cs, x5, 0) justified as
follows:

fC,T|X(C5 T|.X, 0)
=[] fric.x 51Cs. x5, 0) [ | feuix, (Cslxs, 0)

seS seS

= fT|C,X(T|C» X, e)fC‘X(Cl)C, 0)

By using Bayes’ rule and (37), the conditional probability
mass function of X given C to segment the image is given by

Pxic(x|C, 0) o< fcx(Clx, 0) Px (x)

(chsxs(csm,e))%exp = D Vel xr)

ses {s,r}eC

Ve(xs, xr) = fet (x5, xp), t(xs,x,) = [ (34)

Py, (xslxn, Be) = (35)

(36)

(38)

1
= —exp | D Infox, (Cols. ) = D Vel x)
ses {s,r}eC
(39
The conditional probability Pxc(x|C,6) is a Gibbs
distribution.
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A. MPM Segmentation Algorithm

In [26], it was shown that the maximizer of the posterior
marginal (MPM) estimate was more appropriate for image
segmentation than the maximum a posteriori (MAP) estimate
of the label field, given the observed image. The segmen-
tation problem for the MPM algorithm is formulated as an
optimization problem. It consists in minimizing the expected
value of the number of misclassified pixels which is equivalent
to maximizing the marginal posterior probability of the class
label Px,|c(xs|C,0) overallm € {1,2,,...M} ofeachs € §
as follows:

Xmpm = argmax Py c(xs]|C,0), s€S. (40)
Xs

The main difficulty in calculating the MPM criterion is the
computation of the marginal posterior probabilities. Marro-
quin et al. [26] presented an algorithm for approximating
the MPM estimate by using a Markov chain Monte Carlo
(MCMC) sampling process. It consists in using the Gibbs
sampler [27] to generate a discrete-time Markov chain X ()
that converges in distribution to a random field with a proba-
bility mass function given by (39). The marginal conditional
probability mass functions that are to be maximized are then
approximated as a fraction of time the Markov chain spends
in state m at pixel s, for each m and s [26], [28]. Then,
the approximation is given by
T

1
Py, jc(m|C,0) ~ — 3 ums(1), Vm.s (41)
S =1
with
1, if X,(r) =
s (1) = 4 0 O = 42)
’ 0, if X;(t) #m

where T is the number of visits to pixel s made by the Gibbs
sampler.

B. Stochastic EM/MPM Algorithm for Parameter
Estimation and Segmentation

The maximization of the conditional expectation of the com-
plete log-likelihood according the parameters # by considering
the assumption (36) is given by

A

§ = argmax Ex ric{ln fx,r.c(X, C, 716) C.0') (43)

= argmax Ex,ric(In fe,rix (C, 71X, 0) +In Px(X)IC, 0’}

= argmoax EX,T\C [Zln fCS,T5|Xs(CS’ Ts|Xs, 0)|C, 0/}

seS

+Ex,7ic{ln Px(X)|C, ). (44)

Since the probability mass function Px(X) of the class
label X depends only on f., (44) becomes as follows:

6 = arg max > Ex,nic {ln feomx, (Cs, 75l X, 6’)‘C, 6’/}

seS

M +o0
= argmoaxz Z/o In fe, 7 x, (Cy, 75 x5, 0)

seS xs=1

XfTS’Xs|C(TS’xS|C90/)dTS (45)
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M
= argmoaxz Z Px,c(x5|C,0")
seS xg=1
+00
X/) ln fCS,TS\XS(CS, T5|xs, 0)fTS\XS,C(TS|xS; C, 0/)de.
(46)

However, frx, .c(7slxs, C,0") = frx, ¢, (Tslxs, Cy, 0").
Accordingly, we have

M
0= argmoaxz Z Px,c(xs]C, 0"

seS xs=1

XETS\XS,CS{IH fCS,TS\XS (Cy, 751X5, 0)]x5, Cs, 0/} 47)

Equation (47) can be maximized separately according to
the speckle parameter @x and the texture parameter 6, as
follows:

M
Ox = argrrolaxz z Px,ic(xs]C, 0)

seS§ xg=1

X Ez|x,,¢, {In fo, |z, x, (Cs|75, X5, 0x)|x5, Cs, 0} (48)

M
arg max z z Pyx,|c(x]C, 8")

seS§ xg=1

XETS‘Xs;Cs {ln fTs‘Xs (TS|XS5 97-)|XS, CS» 0/}

$>
Il

(49)

As it can be seen, the difference between (16) and (17), and
(48) and (49) is the expression of the posterior probability.
In fact, the first is the marginal conditional probability of X;
belonging to the mth component, given C;, Px;|c; (m|C;, 0,
and the second is the marginal conditional probability of X,
given all data set C, Py, c(m|C, 8"). Using the same calcula-
tion as in Sections III-A and III-C, the equations resulting in
the estimation of the speckle and texture parameters are the
same with the difference that Py, |c,(m|C;, ®’) is replaced by
Px,c(m|C, 0.

C. MRF Parameter Estimation

The interaction parameter . can be estimated using the
maximum-pseudolikelihood (MPL) [29]. It is the product of
the conditional likelihood terms and is given as follows:

Px(x) = H Py, (xslxpss Be).

seS

(50)

The MPL estimation method is easy to implement and
retains good asymptotic properties in situations where the
ML is more difficult to implement. From (44), the interaction
parameter f. is estimated as follows:

PN

Be = argmﬁax Ex ric{ln Px(X)|C, 0"} (51)
= argmax ) Ex, rc{ln Px, (Xs|Xn;,, f)IC. 0"} (52)
be seS
M +00
= argmaxz Z / InPy, (xs|x./\/},,gc)
pe seS xg=1 0
XfXS,T5|C(xS9 751G, 0/)d7's (53)
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Algorithm 1

I: Input: N,C;,d,e, M, B, T

2: Output:é:(i,il,...,iM,éf,l,..

3: Initialization:

4: Set initial parameters 8" = (0, 0., /) by the

initialization procedure given in the next section.

5: Main Loop:

6:  Repeat

7:  Use the Gibbs sampler to generate the Markov chain
X (t) and sample from the distribution (39) using the
estimate of @ obtained in the previous iteration

'5éT,M;ﬁAC)

8: Approximate the class label probabilities
Px,|c(x5|C, @) using (41)
9: For cluster m calculate Er|c,, x,{.1Cs, X5 =

m, 0’} according to the chosen compound pdf
10: Estimate 3., using (18).! For Gy use %,, «
Zm
w(En)
11:  Estimate L using f)m and (19)!
12: Estimate 6‘;,,,1 using (26)! for ICy, or (28)! for gg,
or (29, 30, 31)! for G,
13:  Estimate ,[§’c using (57) R
14: Calculate stop criterion: D <« 16 — oL + 10x—
ol
15: Set inputs for next iteration:
L/’ Z:n’ (97/',m’ ﬁé <~ L’ Zm’ (97','"’ ﬁC
16: Until D < ¢
17: Return (I:, fll, e, flM,HAle, . ,éT,M,,[;’c)
18:  Final segmentation: The marginal conditional
probability mass functions is maximized according to (40)

M +00
= argmax E E PXS|C(xS|C90/)/ In PXS (xslxM,,Bc)
c 0
seS xg=1

X fry1x,,(Ts x5, C, 0")dTs (54)

M
arg max D> Pxc(IC,0) In Py, (xglxps fe).
¢ seS x=1

(55)

Finding a solution typically requires taking the derivatives
of the previous expression (55) with respect to . as follows:

M
0
E E Px,1c(x5|C, 0")—— In Px, (xs|xpr,, Bc) = 0. (56)
seS xg=1 Gﬁc

Substituting the derivative of In Px, (xs|xn7, fc) in the
previous expression, we have the following equation:

M
DD Pxic(lC,0) D i, x,)

seS§ xg=1 reNy
M
=3 > Px, (sl Bo) D e x). (57)
seS x;=1 reN

This equation is solved numerically to find the solution ﬁc.
For more details of derivation, see Appendix A.

IReplace Py, c, (m|C;, ®') by Py ic(m|C.6")

D. Implementation of EM/MPM Technique

Equations (18), (19), (26), and (57); (18), (19), (28),
and (57); and (18), (19), (29), (30), (31), and (57) represent the
iterative EM algorithm for the estimation of the matrix-variate
Ka, gg and G, distribution parameters and the interaction
parameter of the MRF model, respectively. The algorithm is
iterative and can be initialized with any suitable values of
(0.0, B). The algorithm is stopped when the convergence
criteria is satisfied. The (6/0a) K, (.) function is approximated
using the following relation:

iKa(x) ~ Kot+n(x) — Kg—n(x)

oa 2h
with 4 = 10™*. The unsupervised segmentation and the para-
meter estimation approach are summarized in Algorithm 1.
In our case, the Frobenius norm is used in step 14.

(58)

E. Number of Classes

One of the necessary parameters leading to unsupervised
image segmentation is the number of classes used for cluster-
ing. Usually, this number is assumed to be known, but recently,
many methods have been dedicated to automatically determine
the appropriate number of classes. The most used method is
the goodness-of-fit (GoF) testing performed using the matrix
log cumulants [10], [13], [14], [30]. Subsequently, the GoF
test is incorporated within the EM algorithm and allows to
split or merge the classes. When classes do not fit well, they
are split into two clusters and the EM is reapplied again. The
appropriate number of classes is obtained when all classes
are considered good-fits to the data histograms. In this paper,
the number of classes is determined by the analyst and then
assumed to be known.

F. Initialization Procedure

The initialization procedure is an important step in the
unsupervised segmentation process. With an adequate initial-
ization, we accelerate the estimation of hidden class labels
and associated parameters, and, thus, the convergence of the
algorithm. The idea is to estimate the local values of ENL,
the local estimates of the texture parameters, and the local
estimates of the covariance matrix of the speckle by using
a sliding window of size k x k covering the whole image.
The goal is to make a repartition map of the values of these
parameters. A simple clustering algorithm will use these data
to generate a first clustering where the estimated parameters
of each class will be utilized as an initialization of the
unsupervised classification. The EM-based estimator [18] is
used to estimate the ENL, the texture parameters, and the
covariance matrix of the speckle, assuming the existence of
only one class inside the sliding window, which means that
M = 1 and Px;|c;(x;|C;, ®) = 1. Then, the initialization
procedure takes place as follows.

1) Compute the local estimation of the covariance matrix
of the speckle % and its determinant |fl| by EM-
based estimator using a sliding window of size k x k
where k € {7,9, 11, 13, 15}, covering the whole image.
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The estimated covariance matrix of the speckle is given
by

N
N 1 1
3= Nzgj 'C;. (59)
i=1
2) In a similar manner, compute the local ENL estimates
using the EM-based estimator. The equation to use is as
follows:

1

N
~ ~ 1 ~—1
dnL+d—ya(l) = - 21 ¢V X7 )
P

—n (37l +da®. (60)

A kernel density estimator (KDE) implemented with the
Epanechnikov kernel function and a kernel bandwidth
of ¥ = 0.1 is used to estimate the distribution of
the EM estimator of the ENL. Since the number of
correlated looks L is replaced with an equivalent number
of uncorrelated looks ENL, the mode value of the
distribution of ENL estimates is used as an estimate of
the global ENL.

3) Compute the local estimation of the texture parameters
using the EM estimator utilizing a sliding window of
size k x k. For example, if a gamma distribution is used
as a texture model, the equation to solve is as follows:

Lm0
1 1
N Zhl — al- .
i=1
4) Any clustering algorithm, like Fuzzy C-means
(FCM) or K-means, is applied to a vector image
consisting of the local estimation of the texture
parameters and the local determinant of the estimated
covariance matrix of the speckle.

In(@) —yw@) +1= (61)

V. EXPERIMENT, RESULTS, AND DISCUSSION
In this section, we try to find out the performance of
the proposed method on both simulated and real SAR data.
Classification with simulated data permits evaluating the
accuracy of the method, whereas the real data allow a visual
comparison.

A. Simulated Multilook PolSAR Images

1) First Example: The simulated image consists of an
image of 200 x 200 pixels with six distinct classes of g4
distribution generated with ten looks and in full PoISAR. The
areas represent homogeneous, heterogeneous, and extremely
heterogeneous texture. To test the robustness of the segmenta-
tion, only a few parameters change between two neighboring
regions. Then, the parameters of the Ky pdf are different
in some regions and similar in others. Fig. 4(a) and (b)
shows the true classes and the corresponding simulated data
with six classes and ten-look covariance, respectively. The
elements of the covariance matrix of the speckle and the
texture parameters are given in Tables II and III for each
area, respectively. Regions 1 and 2 have the same covariance
matrix of the speckle, and regions 2 and 3 have the same
texture parameter a.. Moreover, region 1 represents extremely
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TABLE 11
COVARIANCE MATRICES OF SPECKLE PER AREA

[ Area | Zy) [ T [ ¥33 | Zpp [ T3 | Ty |
1 0.8 1 0.5 0.3j 0.2j 0.1
2 0.8 1 0.5 0.3j 0.2j 0.1
3 3 1 0.5 0.3j 0.2j 0.1
4 2 1 0.5 0.3j 0.5j 0.1
5 3.5 0.8 0.42 | 0.5+0.3j 0.2j 0.1-0.3j
6 1 1 0.5 0.2-0.3j | 0.1+0.5j | 0.1-0.01j
TABLE III
TEXTURE PARAMETERS PER AREA
Texture Area
Symbol | Para. I T 2 1 3 1 417 5 71T 6
Ka o 1.5 3 3 7 12 400
a 1.52 | 296 | 297 | 7.05 | 12.21 | 7577.5
7} o 1 2 2 4 6 +00
w 1 3 3 1 2 400
n 1 4 4 3 2 1
o 096 | 1.22 | 1.50 | 3.79 6.28 161.10
) 097 | 3.22 | 323 | 1.37 1.61 46.23
7 1.00 | 496 | 4.67 | 4.26 1.57 0.14
03 —a=lw=1n=1
—a=2w=3n=4
0.25 —a=4w=1n=3
—a=6w=2n=2
- o 02
2 ~015
0.1
0.05

0 10 2 3 4 50
(b)

Fig. 1. (a) Gamma and (b) GIG texture pdfs used for simulation. Lower
values of a represent extreme heterogeneous areas and higher values represent
homogeneous areas.

heterogeneous texture characteristics of an urban area.
Regions 2, 3, and 4 represent a forest area with a moderate
texture. Regions 5 and 6 represent low heterogeneous regions
and homogeneous regions, respectively. In addition, region 6
has a texture parameter o that tends to infinity leading to a
realization of a scaled Wishart distribution. Fig. 1(a) shows
the pdf when the texture is gamma distributed with different
values of the texture parameter a.

Our aim is to show how accurately the algorithm performs
the parameter estimation. The results of the initialization are
presented in Figs. 2 and 3. Fig. 2(a) depicts the local ENL
estimation images computed for the EM-based estimator using
a sliding window of size k = 9 covering the whole image.
Fig. 2(b) shows the distribution of the local estimates. The
distributions are computed with KDE with an Epanechnikov
kernel as it is mentioned before in Section IV-F. The distribu-
tion is centered around the true number of looks L = 10 since
the random generated data are not correlated. The mode of the
distribution estimates for the EM estimator is considered as an
estimate of the global ENL. Fig. 2(c) illustrates the results of
the local estimation image of the texture parameters using the
EM-based estimator. The matrix-variate Ky distribution is used
to model the multilook polarimetric covariance matrix. For a
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Fig. 2. Parameter estimates as part of initialization procedure. (a) Local
ENL estimates calculated by using EM estimator. (b) Distribution estimates
calculated when slide window is k = 9. (c) Local gy estimates for EM
estimator. (d) Distribution of a for latter estimator. (e) Local |X| estimates
for EM estimator. (f) Distribution of |X| for latter estimator.

better display, we have limited the scale between 0 and 40
for agpy. As a consequence, the homogeneous region 6 is
marked with dark red color. Fig. 2(d) shows the distribution
of the estimates for the previous estimator. Fig. 2(e) highlights
the local determinant of the covariance matrix of the speckle
|f2| estimated on the same sliding window. Fig. 2(f) depicts
the distribution of |f2| estimates. As we can see, several modes
can be detected indicating the existence of several regions. The
final initialization step is shown in Fig. 3, where the result of
a clustering using FCM applied to the local estimation of the
texture parameters is shown in Fig. 3(a). Five different classes
can clearly be recognized corresponding to the different values
of a. When FCM is only applied to the local determinant of
the estimated covariance matrix of the speckle, the clustering
is illustrated in Fig. 3(b). Fig. 3(c) corresponds to the result of
clustering applied to a vector image composed of both the local
estimation of the texture parameters and the local determinant
of the estimated covariance matrix of the speckle. Six classes
can be clearly seen. Fig. 3(c) is used as initialization to our

Fig. 3. (a) Clustering results using FCM applied to local estimation of texture
parameters. (b) Local determinant of estimated covariance matrix of speckle.
(c) Vector image composed of local estimation of texture parameters and local
determinant of estimated covariance matrix of speckle.

(a)

(C))

Fig. 4. Simulated data classification, six classes, ten-look covariance.
(a) True classes. (b) Colored composition of simulated data in Pauli basis.
(c) Unsupervised segmentation using matrix variate Cj. (d) Unsupervised
segmentation using matrix-variate /C;-MRF.

unsupervised segmentation algorithm. The initial parameters
given by step 4 of Algorithm 1 are estimated on each class of
the image initialization.

The main loop of Algorithm 1 is undergoing (step 5). The
result of the segmentation using the compound distribution
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Fig. 5. Local a, ©, 7§ estimates by EM estimator. (a) and (b) ag s and their
distributions. (c) and (d) @gys and their distributions. (e) and (f) g and
their distributions. The slide window is k = 17.

without an MRF is shown in Fig. 4(c) and with an MRF
in Fig. 4(d). To quantify the quality of classification, the
confusion matrix is used. Table IV shows the accuracy of both
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TABLE IV
CONFUSION MATRIX

[ Aea [ 1T [ 2 [ 3 | 4 [ 5 [ 6 ]
Ka 733% | 24.5% 73% 86% 98% 99.9%
K4-MRF | 100% 100% 100% 100% 100% 100%
[F] 74% 67.5% | 689% | 70.1% | 81.8% | 99.2%
Ga-MRF 100% 100% 100% 100% 100% 100%

Fig. 6. Clustering results using FCM applied to vector image composed of
local estimation of texture parameters («, w) and local determinant |X| of
estimated covariance matrix of speckle.

(b)

(@

Fig. 7. Simulated data classification, six classes, four-look covariance.
(a) True classes. (b) Colored composition of simulated data in Pauli basis.
(c) Final unsupervised segmentation using matrix variate Gg. (d) Final
unsupervised segmentation using matrix-variate G;-MRF.

classifiers. A value of 100% indicates a perfect classification
and underneath 100% indicates a nearly perfect classification
performance. With the final classification by K;-MREF, the esti-
mation of the texture parameters a are given in Table IIL
As we can conclude, both classifiers already provide good
classification performances, with accuracies higher than 80%
for classes 4, 5, and 6 characterized by low texture. Low
performances are observed for the highly non-Gaussian classes
(class 1 and 3) that have classification accuracies of 73.3%
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Fig. 8. (Top) EMISAR L-band quad-pol acquisition over Foulum, Denmark,
multilooked with six looks shown as Pauli RGB image. (Bottom) Zoomed-in
view of selected test region surrounded in main image by red rectangle.

and 73% for Ky distribution. The lowest performance is
registered for class 2 with classification accuracy of 24.5% for
the k4. Since class 2 and class 1 have the same covariance
matrix of the speckle and very close texture parameter values,
K4 has difficulty in distinguishing between classes 2 and 1.
The classification with K;-MRF corrects this weakness and
improves the results, yielding a perfect segmentation.

2) Second Example: The simulated quad-pol data contains
four-look PolSAR images of 200 x 200 pixels and have
three polarimetric channels. The simulation contains six areas
where five of them contain independent realizations of the
matrix variate G; distribution, and the last one is a real-
ization of the scaled Wishart distribution which is a special
case of Gy when the two shape parameters o and w tend
toward infinity. Fig. 7(a) shows the true classes chosen the
same as example 1. The corresponding simulated data with six
classes and four-look covariance are illustrated in Fig. 7(b).
The covariance matrix of the speckle and the texture para-
meters are given, respectively, in Tables II and III for each
region. The same values of the covariance matrix used in
the first example are utilized here. It is recalled that the
covariance matrix of the speckle is normalized, meaning that
the covariance matrices verify the normalization condition
tr(¥) = d = 3. Regions 2 and 3 have the same texture
parameter o and w values. Moreover, region 1 represents

extremely heterogeneous texture characteristics of an urban
area. Regions 2, 3, and 4 represent a forest area with a
moderate texture. Regions 5 and 6 represent homogeneous
regions and have the lowest texture. Fig. 1(b) shows the pdf of
the GIG distribution as a texture model with different values
of shape parameters a and w.

Initialization results are shown in Figs. 5 and 6. Fig. 5(a)
depicts the local ENL estimation images computed for the EM
estimator, using a sliding window of size k = 17 covering the
whole image. Fig. 5(b) depicts the distribution estimates. They
produce distributions that are centered around the true number
of looks L = 4. Fig. 5(c), (e), and (g) shows, respectively,
the results of the local estimations image of the texture para-
meters (a, w) and scale parameter (7) using the EM estimator
utilizing a sliding window of size k = 17. We recall that
the matrix-variate Gy distribution is used in this example as a
compound distribution for the product model. The estimated
o and w values for region 6 are significantly higher than the
other regions. This is due to the lack of texture. For a reliable
display, we have limited the scale between 0 and 10 for «
[Fig. 5(c)] and between O and 6 for w [Fig. 5(e)]. Then, for
region 6, & and w values greater than 10 and 6, respectively,
are, therefore, marked by the dark red color. We can easily
see the different regions corresponding to the different a, 0,
and 7 values. Fig. 5(d), (f), and (h) shows the distributions
of these estimates. Fig. 5(i) illustrates the local determinant of
the covariance matrix of the speckle |fl| estimated on a sliding
window of size k = 17. Fig. 5(j) depicts the distribution of
|fl| estimates. As we can see, several modes can be detected.
The result of clustering applied to a vector image composed of
both the local estimation of the texture parameters (a,w) and
the local determinant (|f2 |) of the estimated covariance matrix
of the speckle is shown in Fig. 6. There are six clearly seen
classes. Fig. 6 is used as an initialization to our unsupervised
segmentation algorithm. The initial parameters given by step
4 of Algorithm 1 are estimated on each class of the image
initialization.

After applying the Algorithm 1 from step 5 to step 18,
the result of the unsupervised segmentation using the com-
pound distribution without an MRF is shown in Fig. 7(c)
and with an MRF shown in Fig. 7(d). This example clearly
demonstrates that the G4;-MRF clustering gives good seg-
mentation results. With the final classification, the estimation
of the texture parameters are given in Table III for the
matrix-variate Gy distribution. The results of classification
show that both classifiers G; and G4-MRF already provide
good classification performances, with accuracies higher than
80% for classes 5 and 6, which are homogeneous regions.
Low performances are observed for the highly non-Gaussian
classes (class 1, 2, 3, and 4). The lowest performance
is registered for class 2 and class 3 with classification
accuracies of 67.5% and 68.9%, respectively, for the Gy
classifier. Despite the fact that these two classes have the
same texture parameter values, classifier G; can distinguish
between them in contrast to example 1. The classification with
G4-MRF improves the results drastically, yielding a perfect
segmentation.
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Local estimation of speckle and texture parameters of the whole Foulum image. (a) Local ENL estimation. (b) Distribution estimates of ENL.

(c) Local texture parameter Ina estimate. (d) Local log determinant of the covariance matrix of speckle In|X|.

B. Real SAR Images

The unsupervised segmentation is demonstrated on real Pol-
SAR data. The test image is a small section of the image of an
agricultural area from an airborne Electromagnetics Institute
Synthetic Aperture Radar (EMISAR) L-band quad-pol SAR
acquisition over Foulum, Denmark, in 1998. A Pauli RGB
composite image is shown in Fig. 8(top) and the selected test
region is shown in Fig. 8(bottom). The data are multilooked
to six looks.

The local estimation of the covariance matrix of the speckle
and texture parameters for the whole image are illustrated
in Fig. 9. The local ENL estimation image computed for the
EM-based estimator using a sliding window of size k = 9 cov-
ering the whole image is depicted in Fig. 9(a). The distribution
estimates are shown in Fig. 9(b). As we can see, the estimated
ENL is 4.8. Fig. 9(c) presents the local texture parameter In &
estimate using the EM-based estimator. The logarithmic scale
is used to reduce the dynamics of the image. The extremely
heterogeneous texture regions (low o value) are marked by
dark blue color and the homogeneous regions are marked by
dark red color. Fig. 9(d) shows the local log determinant of the
covariance matrix of the speckle In |):?| estimated on a sliding
window of size k = 9. The same behavior is observed but,

this time, in the opposite direction. Thus, the heterogeneous
texture regions are marked by red color and the homogeneous
regions are marked by blue color.

The number of classes for the selected test image is fixed
to 14. As illustrated in Fig. 10(d), the KC;s-MREF classifier splits
fields A and G into two classes (red and magenta), whereas
the Ky classifier [Fig. 10(c)] groups them as a single class
(red). This happens also for field C (forest area), where the
K4-MRF classifier splits field C into four classes: class 12
(dark green), class 13 (dark magenta), class 14 (dark red), and
class 4 (yellow), whereas the /C; classifier groups them into
two classes: class 12 (dark green) and class 9 in low pro-
portion. For forest areas (fields C and F), the ;-MRF clas-
sifier can distinguish significant differences in forest density
correctly.

Despite the low number of looks and the noisy aspect of
the image, Ky and z-MRF classifiers are able to generate
spatially homogeneous segmentation results. In fields B, D,
and E, it is observed that the Cy classifier already does a
good job in smoothing the fields into quite homogeneous areas,
as shown in Fig. 10(c). The fields are further smoothed by the
K4-MREF classifier but without removing small distinct targets.
The conclusion of this experiment is that the combination
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(©) (d

Fig. 10. Unsupervised segmentation of selected test region. (a) Local estimation of texture parameters (In @) on selected test region. (b) Local estimation of
speckle (In |X]) on selected test region. Fourteen class segmentation results with (¢) Kz and (d) Kgz-MRF classifiers.
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Fig. 11. Comparison between estimated pdf of tr():*lC) and class histograms of each cluster. (ai) and (bi) show respectively, for class ’i’ the fitting of the
estimated entity tr():*lC) pdf produced by the Kyz-MRF and C; classifier to the class histograms of real data. The figure shows a good visual fit of the
K4-MRF classifier to all class histograms.
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TABLE V
PDFOFY = tr(T~! C) FOR DIFFERENT TEXTURE DISTRIBUTIONS
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of compound s distribution with an MRF model improves
the segmentation results. The /Cz-MRF classifier produces the
most reliable clustering, as shown in Fig. 10(d).

To fit the histogram of each class, the multilook polari-
metric covariance matrix is transformed into scalar by the
variable ¥ = tr(X~'C). The statistical model for tr(X~'C) =
rtr(27'X) is derived using the distribution of the texture
7 and the distribution of tr():71X) [18]. The pdf of the
scalar variable Y is given in Table V for each texture pdf.
Fig. 11 shows the fitting of the estimated entity tr(X~'C)
pdf produced by the Ky and IC;-MREF classifiers to the class
histograms of real data. Fig. 11(ai) and (bi) illustrates the
fitting for class i produced by the Kz-MRF and K, classifier,
respectively. It is clear to see that the y-MRF model fits well
the class histograms.

VI. CONCLUSION

In this paper, a new unsupervised segmentation of multilook
PolSAR images has been presented. The method combines
non-Gaussian compound distribution as an observed model
for the PolSAR data statistics conditioned to each class with
spatial information as an MRF used as prior model. Three
distributions, K4, gg, and G4, have been used in this paper as
compound distributions. The ML method has been proposed
to estimate the parameters of these distributions for each
class. Parameter estimation by ML is a very difficult task due
to the complexity of the likelihood function. Thus, the EM
algorithm has been developed to derive the ML estimates
for the product model. The MRF has been adopted in this
paper to integrate spatial information and then to improve
the accuracy and quality of segmentation. The class posterior
probabilities have been estimated using the MPM algorithm.
In summary, the unsupervised segmentation method is based
on the combination of EM and MPM where all parameters are
estimated by EM and the class labels are updated by MPM.
Three examples have been presented and tested with the
method. The segmentation results are perfect. A comparison
with a segmentation without MRF leads to improvement
brought by the MRF.

APPENDIX A

Finding a solution typically requires taking the derivatives
of the previous expression (55) with respect to f. as follows:

> Z Px,ic(x]C, 0’ )— In Py, (xslxp;, fe) = 0.

62
o (62)

seS xs=1
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According to (35), In Px, (xs]xn7, fc) is given
In Px, (s | XA Be) = —Be Y, (x5, x7)

reNy
M
—In Z exp | —Bc Z t(xs, Xr)
xg=1 reN;

(63)

The derivative of In Py, (xs|xa7,, fc) with respect to f. is
given as follows:

(64)

aﬂL Zivj_l exp (_ﬁC ZreM t(-xS’ xr))

Zxé_l exp ( Be ZreM 1(xs, xr))
(65)

—InP
Gﬁc n Px, (xslxn, Be)

= - Z t(xs,xr)

reN;

= - Z t(xg, xr)

reNj
Zii[:l ZrEM t()CS, x") eXp (_ﬁC ZrEM t(xS» Xr))
Som—iexp (=B X, en 16, X))
M

= - Z t(xs, xr) + Z PXS(xs|xr,r E-/vs) Z t(xs, Xr).
reN; reN;

+

xg=1

(66)

Substituting the derivative of In Py (xs|xas, fc) in (62),
we have the following equation:

M
DD Pxic(lC,0) D i(xg, x,)

seS xy=1 reN;

M
=" > Prics[C.0)

seS x;=1

M
D Px (sl Be) D 1k, xr) (67)

xs=1 reNs

Knowing that Z;[z=1 Px,ic(x|C,0") = 1,
expression becomes as follows:

M
z z Px,ic(xs|C, 0" Z £ (x5, Xr)

seS xy=1 reN;

M
= Z Z Px, (xslxr, r € N, Be) Z t(xg, x7).

seS xs=1 reN;

then the

(68)

APPENDIX B
GIG DISTRIBUTION

The pdf of the GIG distribution is given by

1-1 wy (m .z
2K (o) 0 2 (? i E) '
The following moments exist and are finite as follows:
k Ka1+k (wl)
! Kal( 1) '
L Kayra(WD)la=o

Kq, (w1)

fz o, wi, ) = (69)

E{ZF) =g keZ (70)

E{lnZ} =Inn +

(71)
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APPENDIX C
INVERSE GAMMA DISTRIBUTION

The pdf of the inverse gamma distribution is given by

o p =L e (21 (72)
<, 1, 1) = F(a])zl+a1 p z .
The following moments exist and are finite:
EZ)= P foray =1, Ezy = (73
o] — 1 ﬂl
E{lnZ} = —y(a1) + In py. (74)
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