Member, IEEE Nizar Bouhlel Bouhlel 
email: nizar.bouhlel@ensta-bretagne.fr
  
Member, IEEE Stéphane Méric 
  
Unsupervised Segmentation of Multilook Polarimetric Synthetic Aperture Radar Images

This paper proposes a new unsupervised image segmentation method for multilook polarimetric synthetic aperture radar (PolSAR) data. The statistical model for the PolSAR data is considered as a finite mixture of non-Gaussian compound distributions considered as the product of two statistically independent random variates, speckle, and texture. With different texture distributions, the product model leads to various expressions of the compound distribution. The method uses a Markov random field (MRF) model for pixel class labels. The expectation-maximization/maximization of the posterior marginals (EM/MPM) algorithm is used for the simultaneous estimation of texture and speckle parameters and for the segmentation of multilook PolSAR images. Simulated and real PolSAR data are shown to demonstrate the method. Index Terms-Expectation-maximization (EM) algorithm, Markov random field (MRF), maximum-likelihood (ML), maximization of the posterior marginals (MPM), polarimetric synthetic aperture radar (PolSAR).

I. INTRODUCTION

, considers the observed signal as the product of two independent random variates: a complex Gaussian speckle and

a positive scalar texture. It was shown that a multilook PolSAR speckle followed a matrix-variate-scaled complex Wishart distribution [START_REF] Goodman | Statistical analysis based on a certain multivariate complex Gaussian distribution: An introduction[END_REF]. With varied texture distributions, the product model leads to different expressions of the compound distribution. The following distributions are usually used in the literature to model the texture random variable: gamma (γ ), inverse gamma (γ -1 ), generalized inverse Gaussian (GIG) (N -1 ), and Fisher (F) with the corresponding compound distributions K d , G 0 d , G d , and Kummer-U d , respectively [START_REF] Gao | Statistical modeling of SAR images: A survey[END_REF]- [START_REF] Khan | Application of Mellin-kind statistics to polarimetric G distribution for SAR data[END_REF]. The last two non-Gaussian distributions are more flexible (two texture shape parameters instead of one parameter) and can fit an extremely heterogeneous clutter compared to the first two distributions with only one shape parameter.

As a consequence, polarimetric classifications are performed with non-Gaussian clustering algorithms. Doulgeris et al. [START_REF] Doulgeris | Automated non-Gaussian clustering of polarimetric synthetic aperture radar images[END_REF] proposed a non-Gaussian K-Wishart clustering algorithm. It was based upon the iterative expectation-maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] for finite mixture modeling using the K d probability density function (pdf) for the probabilities and the method of matrix log-cumulants (MoMLC) [START_REF] Anfinsen | Application of the matrix-variate Mellin transform to analysis of polarimetric radar images[END_REF] for class parameter updates [START_REF] Doulgeris | Automated non-Gaussian clustering of polarimetric synthetic aperture radar images[END_REF]. The method was extended in [START_REF] Akbari | A textural-contextual model for unsupervised segmentation of multipolarization synthetic aperture radar images[END_REF] to incorporate spatial contextual information for multilook PolSAR data. Their method was based on a Markov random field (MRF) model that integrated a K d distribution for the PolSAR data statistics conditioned to each image cluster and a Potts model for the spatial context. The latter approach was recently proposed with the Kummer-U d distribution [START_REF] Doulgeris | An automatic U -distribution and Markov random field segmentation algorithm for PolSAR images[END_REF]. Another unsupervised clustering algorithm was presented by Bombrun et al. [START_REF] Bombrun | Hierarchical segmentation of polarimetric SAR images using heterogeneous clutter models[END_REF] and based on the hierarchical segmentation algorithm adapted to the Kummer-U d distributed target scattering vector. Khan and Doulgeris et al. [START_REF] Khan | Unsupervised clustering of PolSAR data using polarimetric G distribution and Markov random fields[END_REF] used the flexible G d distribution to model the statistics of each image cluster and the method of multivariate fractional moment (MoMFM) to estimate the model parameters. The unsupervised clustering was achieved using the EM algorithm.

Parameter estimation is very important in the classification of PolSAR images. The underestimation of the parameters affects the quality of the classification, and then the analysis of the PolSAR images. For this, efficient parameter estimation of the compound distributions for each cluster requires careful consideration. Three parameters need to be estimated: 1) the equivalent number of looks (ENL); 2) the covariance matrix; and 3) the texture parameters. In the literature, there are several manners to estimate the parameters of the compound distribution. The most popular method is the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING MoMLC for multilook polarimetric parameter estimation [START_REF] Anfinsen | Application of the matrix-variate Mellin transform to analysis of polarimetric radar images[END_REF]. With the MoMLC, the ENL and the texture parameters are estimated from the first-and second-order MLC equations when the distribution has only one texture parameter, as K d and G 0 d distributions [START_REF] Khan | Application of Mellin-kind statistics to polarimetric G distribution for SAR data[END_REF], [START_REF] Anfinsen | Application of the matrix-variate Mellin transform to analysis of polarimetric radar images[END_REF] and from the first-, second-, and third-order MLC equations when the distribution has two texture parameters, as G d and Kummer-U d distributions. The last two distributions involve higher order derivatives of special functions. Khan and Guida et al. [START_REF] Khan | On fractional moments of multilook polarimetric whitening filter for polarimetric SAR data[END_REF] showed that the MoMFM had a lower bias and variance than the MoMLCbased estimators. Nevertheless, these estimators, MLC and MFM, were not maximum-likelihood (ML) parameter estimators. The latter benefits from very desirable mathematical properties (asymptotic efficiency). Usually, the ML-based parameter estimators are not available with closed-form solutions. Moreover, a developed method based on the EM algorithm was presented in [START_REF] Bouhlel | Maximum-likelihood parameter estimation of the product model for multilook polarimetric SAR data[END_REF] and proposed to compute the ML estimates of the unknown parameters of different compound distributions. The method showed a good performance in terms of bias and mean square error compared to the performance of other known estimators such as the MLC and MFM estimators.

The classification method of interest in this paper is a novel formulation of the unsupervised EM algorithm for finite mixture modeling using non-Gaussian compound distributions and ML parameter estimators for class parameter updates [START_REF] Bouhlel | Maximum-likelihood parameter estimation of the product model for multilook polarimetric SAR data[END_REF]. In particular, we estimate: 1) the ENL; 2) the covariance matrix of the speckle component; and 3) the texture distribution parameters. The EM algorithm is developed to iteratively solve the problem of finding the ML estimator when an exact algebraic solution is not possible. The EM algorithm interprets the multilook covariance matrix as incomplete data with a missing class label and a missing texture. The following K d , G 0 d , and G d pdfs are used as compound distributions describing the statistics of multilook polarimetric SAR data. Since the MRF have been successfully used in image segmentation to integrate spatial information, it is adopted in this paper to improve the accuracy and quality of the segmentation. The class posterior probabilities are estimated using the maximization of the posterior marginals (MPM) algorithm. In summary, our approach is based on EM/MPM where all parameters are estimated by EM and the class labels are updated by MPM.

The rest of this paper is organized as follows. Section II introduces the statistical product model for multilook PolSAR data. The application to parameter estimation and class label update for multilook PolSAR data using the EM algorithm is presented in Section III. The content of Section IV is related to the concepts of MRFs and the chosen MPM algorithm for class posterior probability estimates. Section V demonstrates the performance of the approach with the simulated and real multilook PolSAR data. Finally, Section VI concludes this paper.

II. PRODUCT MODEL FOR MULTILOOK POLARIMETRIC RADAR DATA

The polarimetric SAR system is characterized by the following scattering vector s = [s i j ] T ∈ C d , where i = {h, v} is the transmit "horizontal" or "vertical" polarization and j = {h, v} is the receive "horizontal" or "vertical" polarization [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF],

[.] T means transposition, and d = dim(s) is the vector dimension. In order to reduce the speckle noise, the polarimetric multilooking operation is applied and given by

C = 1 L L =1 s s H , L ≥ d (1)
where L is the number of looks, (.) H denotes the Hermitian operator, and C ∈ + ⊂ C d×d is the multilook polarimetric covariance matrix defined on the cone + of the positive definite complex Hermitian matrices. According to the multilook polarimetric product model, the covariance matrix C is the product of texture τ and speckle X, and is given as follows:

C = τ X. (2) 
The texture τ is a positive scalar random variable with a pdf f τ (τ ). The speckle X is a random matrix following a scaled complex Wishart distribution sW C d (L, ) with a pdf given by the following:

f X (X) = L Ld |X| L-d d (L)| | L etr(-L -1 X) (3) 
where is the covariance matrix of the speckle, etr(.) = exp[tr(.)] is the exponential trace operator, |.| is the determinant operator, and d (L) is the multivariate gamma function of the complex kind defined as follows:

d (L) = π d(d-1)/2 d-1 i=0 (L -i ). ( 4 
)
The function (L) is the standard Euler gamma function. The pdf of C using Bayes' theorem becomes

f C (C) = +∞ 0 f C|τ (C|τ ) f τ (τ )dτ (5) 
where f C|τ (C|τ ) is the pdf of C with a specific value of τ and given by

f C|τ (C|τ ) = L Ld |C| L-d d (L)| | L 1 τ d L etr - L τ -1 C (6)
Therefore, the pdf of C is obtained by substituting (6) in ( 5)

f C (C) = L Ld |C| L-d d (L)| | L +∞ 0 1 τ d L etr - L τ -1 C f τ (τ )dτ (7)
when the texture distribution is one of the following: a normalized gamma to a unit mean ( γ ), a normalized inverse gamma to a unit mean ( γ -1 ) and GIG (N -1 ), and the covariance matrix pdf is respectively, the matrix-variate K d , G 0 d , and We consider C = {C i , 1 ≤ i ≤ N} a set of independent and identically distributed (i.i.d.) random matrices. We assume that the pdf of the random matrix C i is described by the following finite mixture of M distributions:

G d distributions.
f C i (C i |) = M m=1 π m f C i |X i (C i |θ m ) (8)
where X represents a set of hidden random labels {X i , 1 ≤ i ≤ N}, each achievement x i of X i takes one of M class labels, i.e., x i ∈ {1, 2, . . . , M}, π m corresponds to the mixture weight of each component and represents the prior probabilities P X i (x i = m) = π m and verifies π m ≥ 0 and

M m=1 π m = 1, f C i |X i (C i |θ m
) is a compound distribution describing component m in the form given by [START_REF] Bombrun | Fisher distribution for texture modeling of polarimetric SAR data[END_REF] with θ m = (L, m , θ τ ,m ) where θ τ ,m are the parameters of the texture distribution of partition m, and is a vector of the whole set of parameters of a given M-mixture to be estimated and is defined as = {π 1 , π 2 , . . . , π M , θ 1 , . . . , θ M }. The number of looks is considered the same for all clusters. We suppose that each covariance matrix C i has a corresponding unobserved and hiding texture τ i . We assume that the sequence {τ i , 1 ≤ i ≤ N} is also i.i.d. random variables. The joint distribution of i.i.d. random matrices is given by

f C (C|) = N i=1 M m=1 π m f C i |X i (C i |θ m ) = N i=1 M m=1 π m +∞ 0 f C i |τ i ,X i (C i |τ i , θ m ) f τ i |X i (τ i |θ m )dτ i . (9)
To estimate the vectors of the parameters , the maximum of the log-likelihood estimator is the following general choice:

= arg max ln f C (C|) (10) = arg max N i=1 ln M m=1 π m f C i |X i (C i |θ m ) . ( 11 
)
It is well known that the ML estimate cannot be found analytically. The usual choice is the EM algorithm, which interprets C as the incomplete data with the missing class label X and the missing texture τ . With the complete data set (C, X, τ ), we can define the expected value of the completedata log-likelihood ln f C,X,τ (C, X, τ |) with respect to the missing data X and τ given the observed covariance matrix C and the current parameter estimates . The EM can provide the estimation given a current estimate . The maximization of the conditional expectation of the complete log-likelihood according to parameters is given by = arg max

E X,τ |C {ln f C,X,τ (C, X, τ |)|C, } (12) 
= arg max

E X,τ |C N i=1 ln f C i ,X i ,τ i (C i , X i , τ i |)|C i , = arg max N i=1 E X i ,τ i |C i {ln f C i ,τ i |X i (C i , τ i |X i , )|C i , } + N i=1 E X i ,τ i |C i {ln P X i (X i |)|C i , }. (13) 
The conditional expectation of the complete log-likelihood given by (13) contains two independent terms, one depending on π m and the other on θ m , which can, therefore, be maximized separately. The first term of ( 13) is written as follows:

E X i ,τ i |C i {ln f C i ,τ i |X i (C i , τ i |X i , )|C i , } = M m=1 +∞ 0 ln f C i ,τ i |X i (C i , τ i |m, ) × f X i ,τ i |C i (x i = m, τ i |C i , )dτ i = M m=1 P X i |C i (m|C i , ) × E τ i |X i ,C i {ln f C i ,τ i |X i (C i , τ i |m, )|m, C i , }. (14)
We used the propriety that

f X i ,τ i |C i (x i = m, τ i |C i , ) = f τ i |X i ,C i (τ i |m, C i , )P X i |C i (m|C i , ) with P X i |C i (m|C i , )
being the posterior probability of X i belonging to the mth component given C i and written as

P X i |C i (m|C i , ) = π m f C i |X i C i |m, θ m M k=1 π k f C i |X i C i |k, θ k . ( 15 
)
Let θ X = (L, 1 , . . . , M ), θ τ = (θ τ ,1 , θ τ ,2 , . . . , θ τ ,M ) and using the fact that [START_REF] Doulgeris | An automatic U -distribution and Markov random field segmentation algorithm for PolSAR images[END_REF] can then be maximized separately according to the speckle parameter θ X and the texture parameter θτ as follows:

f C i ,τ i |X i (C i , τ i |m, ) = f C i |τ i ,X i (C i |τ i , m, ) f τ i |X i (τ i |m, ),
θ X = arg max θ X N i=1 M m=1 P X i |C i (m|C i , ) ×E τ i |X i ,C i {ln f C i |τ i ,X i (C i |τ i , m, θ X )|m, C i , } (16) θτ = arg max θ τ N i=1 M m=1 P X i |C i (m|C i , ) ×E τ i |X i ,C i {ln f τ i |X i (τ i |m, θ τ )|m, C i , }. (17) 

A. Estimation of Speckle Parameters

Substituting ( 6) in ( 16), differentiating with respect to L, and m by taking into account the following properties [START_REF] Hjørungnes | Complex-valued matrix differentiation: Techniques and key results[END_REF]:

∂ ln | |/∂ = ( -1
) T and ∂tr( -1 W)/∂ = -( -1 W -1 ) T , and setting the result to zero yields

ˆ m = N i=1 P X i |C i (m|C i , )g (m) i C i N i=1 P X i |C i (m|C i , ) (18) 
d ln L + d -ψ d ( L) = 1 N N i=1 M m=1 P X i |C i (m|C i , ) × g (m) i tr ˆ -1 m C i -ln ˆ -1 m C i + da (m) i ( 19 
)
where a

(m) i , g (m)
i , and h (m) i are three posterior expectations defined by

a (m) i = E τ i |C i ,X i {ln τ i |C i , X i = m, } (20) 
g (m) i = E τ i |C i ,X i 1 τ i |C i , X i = m, ( 21 
)
h (m) i = E τ i |C i ,X i {τ i |C i , X i = m, }. (22) 
The function ψ d (L) is the multivariate digamma function defined as

ψ d (L) = ∂ ln d (L)/∂ L = d-1 j =0 ψ(L -j )
, where ψ(.) is the digamma function. Equation ( 18) is the ML estimator of the covariance matrix of the speckle for the partition m and ( 19) is the equation needed to solve for the ENL. An explicit solution for L is not possible from ( 19) and needs to be solved numerically by using the trust region method [START_REF] Yuan | A review of trust region algorithms for optimization[END_REF]. Specifically, the fsolve function in MATLAB is utilized to obtain the parameter estimate.

B. Estimation of Prior Probabilities

The second term of ( 13) is written as

E X i ,τ i |C i {ln P X i (X i |) C i , } = M m=1 +∞ 0 ln(π m ) f X i ,τ i |C i (m, τ i |C i , )dτ i = M m=1 ln(π m )P X i |C i (m|C i , ). ( 23 
)
One can introduce the Lagrange multiplier with the constraint M m=1 π m = 1 and find the estimate of π m as follows:

θπ = arg max θ π N i=1 M m=1 ln(π m )P X i |C i (m|C i , ) + M m=1 π m -1 (24) 
where θ π = {π 1 , π 2 , . . . , π M }. Using the fact that

M m=1 P X i |C i (m|C i , ) = 1, we get = -N resulting in πm = 1 N N i=1 P X i |C i (m|C i , ). ( 25 
)

C. Estimation of Texture Parameters

The texture distribution parameters θτ are estimated using [START_REF] Khan | On fractional moments of multilook polarimetric whitening filter for polarimetric SAR data[END_REF], which need

f τ i |X i (τ i |m, θ τ ) and f τ i |X i ,C i (τ i |C i , m, ).
In the following, three texture pdfs are used.

1) Gamma Distribution: Substituting γ (α m ) in ( 17), differentiating with respect to α m and setting the result to zero yields

ln( αm ) -ψ( αm )+1 = N i=1 P X i |C i (m|C i , ) h (m) i -a (m) i N i=1 P X i |C i (m|C i , ) . ( 26 
)
An explicit solution for α m is not possible from the ML equation. The solution is found using the trust region method. As stated before, the ML equation depends on the posterior pdf of the texture

f τ i |C i ,X i (τ i |C i , m) through a (m) i and h (m) i .
Using Bayes' rule, the posterior pdf of τ i given X i = m and C i is given as follows:

f τ i |C i ,X i (τ i |C i , m) = f C i |τ i ,X i (C i |τ i , m) f τ i |X i (τ i |m) f C i |X i (C i |m) . ( 27 
)
The expression of

f τ i |C i ,X i (τ i |C i , m) corresponds to the GIG distribution (see Appendix B), with parameters (α 1 = α m -d L, w 1 = 2 Lα m tr( -1 m C i ), η 1 = L α m tr( -1 m C i )).
The posterior expectation expressions in terms of these parameters are easily calculated using the formulas given in Appendix B.

2) Inverse Gamma Distribution: Similarly, substituting γ -1 (λ m ) in [START_REF] Khan | On fractional moments of multilook polarimetric whitening filter for polarimetric SAR data[END_REF], differentiating with respect to λ m , and setting the result to zero yields

ln( λm -1) -ψ( λm ) + λm λm -1 = N i=1 P X i |C i (m|C i , ) g (m) i + a (m) i N i=1 P X i |C i (m|C i , )
. [START_REF] Comer | The EM/MPM algorithm for segmentation of textured images: Analysis and further experimental results[END_REF] The posterior pdf of τ i given C i and X i = m corresponds to an inverse gamma distribution with parameters

(α 1 = d L+λ m , β 1 = Ltr( -1 m C i ) + λ m -1)
. The posterior expectation expression in terms of these parameters are calculated by the formulas given in Appendix C. 17), differentiating with respect to α m , w m and η m , and setting the result to zero yields

3) Generalized Inverse Gaussian Distribution: Substituting

N -1 (α m , w m , η m ) in (
K αm -1 ( ŵm ) + K αm +1 ( ŵm ) K αm ( ŵm ) = N i=1 P X i |C i (m|C i , ) ηm g (m) i + h (m) i ηm N i=1 P X i |C i (m|C i , ) (29) 
ln ηm + 1 K αm ( ŵm ) ∂ K αm ( ŵm ) ∂α = N i=1 P X i |C i (m|C i , )a (m) i N i=1 P X i |C i (m|C i , ) (30) 2 αm ŵm = N i=1 P X i |C i (m|C i , ) h (m) i ηm -ηm g (m) i N i=1 P X i |C i (m|C i , )
. (

The posterior pdf of τ i given C i and

X i = m is a GIG distribution with parameters (α 1 = α m -d L, w 1 = w m η m (2Ltr( -1 m C i ) + w m η m ), η 1 = 2Ltr( -1 m C i )+w m η m w m /η m
). The posterior expectation expressions in terms of these parameters are easily calculated by the formulas in Appendix B.

IV. MARKOV RANDOM FIELD MODEL

The MRF has been used successfully for various image processing applications. In image segmentation, where the problem is reduced to assigning labels to pixels, label dependencies are modeled by MRF and an optimal labeling is determined by Bayesian estimation. The main advantage of MRF models is that prior information can be imposed locally through clique potentials [START_REF] Kato | Markov random fields in image segmentation[END_REF].

The MRF models are defined via parameterized energy functions that characterize local interactions between neighboring pixels. The energy of a Gibbs distribution is expressed as the sum of several potential functions over all possible cliques C, each ascribed to the cliques of a certain size. Here, only the cliques of size up to two are considered. Readers are referred to [START_REF] Li | Markov Random Field Modeling in Image Analysis[END_REF], [START_REF] Gaetan | Spatial Statistics and Modeling (Springer Series in Statistics)[END_REF] for details of MRF models. Let X = {X s , ∀s ∈ S} be the hidden label field. For a regular rectangular lattice S, X is considered as a family of random variables defined on the set S where each random variable X s at a spatial location s takes a value x s in the configuration set E s = {1, 2, . . . , M}. The notation (X s = x s ) is used to denote the event that X s takes the value x s and the notation (X = x) to denote the joint event. Let the unobserved class label X be an MRF defined on S with respect to a neighborhood system N = {N s , ∀s ∈ S} where N s is the set of sites neighboring s. The joint probability of X has the following form:

P X (x) = 1 Z exp ⎛ ⎝ - {s,r}∈C V c (x s , x r ) ⎞ ⎠ ( 32 
)
where C is the set of all cliques. In this paper, it will include all pairs of spatially horizontal or vertical adjacent pixels.

The normalizing constant Z is the sum of all possible realizations of the random field X and has the form of

Z = x exp ⎛ ⎝ - {s,r}∈C V c (x s , x r ) ⎞ ⎠ (33)
with V c (.) being the clique potential associated with a clique c. The potential function is assumed to have the form

V c (x s , x r ) = β c t (x s , x r ), t (x s , x r ) = 0 if x s = x r 1 if x s = x r ( 34 
)
where β c > 0 is the spatial interaction parameter. The conditional probability P X s (x s |X r = x r , r ∈ N s ) at site s is expressed explicitly with respect to clique potentials in the neighborhood N s of s as follows:

P X s (x s |x N s , β c ) = exp -c∈C/s∈c V c (x s ) x s ∈E s exp -c∈C/s∈c V c (x s ) . ( 35 
)
We assume that ∀s ∈ S the couples of random variables (C s , τ s ) are conditionally independent, given the label field X. Moreover, the conditional pdf of (C s , τ s ) given X depends only on the value of X at location s. Then, the conditional pdf of (C, τ ) given X can be written as

f C,τ |X (C, τ |x, θ ) = s∈S f C s ,τ s |X (C s , τ s |x, θ ) = s∈S f C s ,τ s |X s (C s , τ s |x s , θ ). (36)
The assumption (36) will be used in Section IV-B. We also assume that the random matrices C s are conditionally independent, given the label field X, and in addition, it only depends on the value of X at location s

f C|X (C|x, θ) = s∈S f C s |X (C s |x, θ) = s∈S f C s |X s (C s |x s , θ ) (37)
where θ = {θ 1 , . . . , θ M , β c } is a vector whose elements are the unknown parameters of the conditional pdf of C given X. A direct consequence of assumptions (36) and ( 37)

is f τ |C,X (τ |C, x, θ ) = s∈S f τ s |C s ,X s (τ s |C s , x s , θ ) justified as follows: f C,τ |X (C, τ |x, θ ) = s∈S f τ s |C s ,X s (τ s |C s , x s , θ ) s∈S f C s |X s (C s |x s , θ ) = f τ |C,X (τ |C, x, θ ) f C|X (C|x, θ). ( 38 
)
By using Bayes' rule and (37), the conditional probability mass function of X given C to segment the image is given by

P X |C (x|C, θ ) ∝ f C|X (C|x, θ)P X (x) = s∈S f C s |X s (C s |x s , θ ) 1 Z exp ⎛ ⎝ - {s,r}∈C V c (x s , x r ) ⎞ ⎠ = 1 Z exp ⎛ ⎝ s∈S ln f C s |X s (C s |x s , θ ) - {s,r}∈C V c (x s , x r ) ⎞ ⎠ .
(39)

The conditional probability P X |C (x|C, θ ) is a Gibbs distribution.

A. MPM Segmentation Algorithm

In [START_REF] Marroquin | Probabilistic solution of illposed problems in computational vision[END_REF], it was shown that the maximizer of the posterior marginal (MPM) estimate was more appropriate for image segmentation than the maximum a posteriori (MAP) estimate of the label field, given the observed image. The segmentation problem for the MPM algorithm is formulated as an optimization problem. It consists in minimizing the expected value of the number of misclassified pixels which is equivalent to maximizing the marginal posterior probability of the class label P X s |C (x s |C, θ ) over all m ∈ {1, 2, , . . . M} of each s ∈ S as follows:

xMPM = arg max x s P X s |C (x s |C, θ ), s ∈ S. ( 40 
)
The main difficulty in calculating the MPM criterion is the computation of the marginal posterior probabilities. Marroquin et al. [START_REF] Marroquin | Probabilistic solution of illposed problems in computational vision[END_REF] presented an algorithm for approximating the MPM estimate by using a Markov chain Monte Carlo (MCMC) sampling process. It consists in using the Gibbs sampler [START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF] to generate a discrete-time Markov chain X (t) that converges in distribution to a random field with a probability mass function given by (39). The marginal conditional probability mass functions that are to be maximized are then approximated as a fraction of time the Markov chain spends in state m at pixel s, for each m and s [START_REF] Marroquin | Probabilistic solution of illposed problems in computational vision[END_REF], [START_REF] Comer | The EM/MPM algorithm for segmentation of textured images: Analysis and further experimental results[END_REF]. Then, the approximation is given by

P X s |C (m|C, θ ) ≈ 1 T s T s t =1 u m,s (t), ∀m, s (41) 
with

u m,s (t) = 1, if X s (t) = m 0, if X s (t) = m (42)
where T s is the number of visits to pixel s made by the Gibbs sampler.

B. Stochastic EM/MPM Algorithm for Parameter Estimation and Segmentation

The maximization of the conditional expectation of the complete log-likelihood according the parameters θ by considering the assumption (36) is given by

θ = arg max θ E X,τ |C {ln f X,τ ,C (X, C, τ |θ ) C, θ } (43) = arg max θ E X,τ |C {ln f C,τ |X (C, τ |X, θ ) + ln P X (X)|C, θ } = arg max θ E X,τ |C s∈S ln f C s ,τ s |X s (C s , τ s |X s , θ )|C, θ +E X,τ |C {ln P X (X)|C, θ }. ( 44 
)
Since the probability mass function P X (X) of the class label X depends only on β c , (44) becomes as follows:

θ = arg max θ s∈S E X s ,τ s |C ln f C s ,τ s |X s (C s , τ s |X s , θ ) C, θ = arg max θ s∈S M x s =1 +∞ 0 ln f C s ,τ s |X s (C s , τ s |x s , θ ) × f τ s ,X s |C (τ s , x s |C, θ )dτ s (45) = arg max θ s∈S M x s =1 P X s |C (x s |C, θ ) × +∞ 0 ln f C s ,τ s |X s (C s , τ s |x s , θ ) f τ s |X s ,C (τ s |x s , C, θ )dτ s . (46) However, f τ s |X s ,C (τ s |x s , C, θ ) = f τ s |X s ,C s (τ s |x s , C s , θ ). Accordingly, we have θ = arg max θ s∈S M x s =1 P X s |C (x s |C, θ ) ×E τ s |X s ,C s {ln f C s ,τ s |X s (C s , τ s |X s , θ )|x s , C s , θ } (47)
Equation ( 47) can be maximized separately according to the speckle parameter θ X and the texture parameter θτ as follows:

θX = arg max θ X s∈S M x s =1 P X s |C (x s |C, θ ) ×E τ s |X s ,C s {ln f C s |τ s ,X s (C s |τ s , X s , θ X )|x s , C s , θ } (48) θτ = arg max θ τ s∈S M x s =1 P X s |C (x s |C, θ ) ×E τ s |X s ,C s {ln f τ s |X s (τ s |X s , θ τ )|x s , C s , θ }. (49) 
As it can be seen, the difference between ( 16) and [START_REF] Khan | On fractional moments of multilook polarimetric whitening filter for polarimetric SAR data[END_REF], and (48) and ( 49) is the expression of the posterior probability. In fact, the first is the marginal conditional probability of X i belonging to the mth component, given C i , P X i |C i (m|C i , ), and the second is the marginal conditional probability of X s , given all data set C, P X s |C (m|C, θ ). Using the same calculation as in Sections III-A and III-C, the equations resulting in the estimation of the speckle and texture parameters are the same with the difference that P X i |C i (m|C i , ) is replaced by P X s |C (m|C, θ ).

C. MRF Parameter Estimation

The interaction parameter β c can be estimated using the maximum-pseudolikelihood (MPL) [START_REF] Besag | Spatial interaction and the statistical analysis of lattice systems[END_REF]. It is the product of the conditional likelihood terms and is given as follows:

P X (x) = s∈S P X s (x s |x N s ; β c ). ( 50 
)
The MPL estimation method is easy to implement and retains good asymptotic properties in situations where the ML is more difficult to implement. From (44), the interaction parameter β c is estimated as follows:

βc = arg max β c E X,τ |C {ln P X (X)|C, θ } (51) 
= arg max

β c s∈S E X s ,τ s |C {ln P X s (X s |X N s , β c )|C, θ } (52) 
= arg max Use the Gibbs sampler to generate the Markov chain X (t) and sample from the distribution (39) using the estimate of θ obtained in the previous iteration 8:

β c s∈S M x s =1 +∞ 0 ln P X s (x s |x N s , β c ) × f X s ,τ s |C (x s , τ s |C, θ )dτ s (53)
Approximate the class label probabilities P X s |C (x s |C, θ ) using (41) 9:

For cluster m calculate E τ s |C s ,X s {.|C s , X s = m, θ } according to the chosen compound pdf 10: Estimate ˆ m using [START_REF] Bouhlel | Maximum-likelihood parameter estimation of the product model for multilook polarimetric SAR data[END_REF]. 1 Final segmentation: The marginal conditional probability mass functions is maximized according to (40)

= arg max β c s∈S M x s =1 P X s |C (x s |C, θ ) +∞ 0 ln P X s (x s |x N s , β c ) × f τ s |X s ,C (τ s |x s , C, θ )dτ s (54) = arg max β c s∈S M x s =1 P X s |C (x s |C, θ ) ln P X s (x s |x N s , β c ). ( 55 
)
Finding a solution typically requires taking the derivatives of the previous expression (55) with respect to β c as follows:

s∈S M x s =1 P X s |C (x s |C, θ ) ∂ ∂β c ln P X s (x s |x N s , β c ) = 0. ( 56 
)
Substituting the derivative of ln P X s (x s |x N s , β c ) in the previous expression, we have the following equation:

s∈S M x s =1 P X s |C (x s |C, θ ) r∈N s t (x s , x r ) = s∈S M x s =1 P X s (x s |x N s , β c ) r∈N s t (x s , x r ). (57)
This equation is solved numerically to find the solution βc . For more details of derivation, see Appendix A. 1 Replace P X i |C i (m|C i , ) by P Xs |C (m|C, θ )

D. Implementation of EM/MPM Technique

Equations ( 18), ( 19), [START_REF] Marroquin | Probabilistic solution of illposed problems in computational vision[END_REF], and (57); ( 18), ( 19), [START_REF] Comer | The EM/MPM algorithm for segmentation of textured images: Analysis and further experimental results[END_REF], and (57); and ( 18), ( 19), ( 29), ( 30), (31), and (57) represent the iterative EM algorithm for the estimation of the matrix-variate K d , G 0 d and G d distribution parameters and the interaction parameter of the MRF model, respectively. The algorithm is iterative and can be initialized with any suitable values of (θ X , θ τ , β c ). The algorithm is stopped when the convergence criteria is satisfied. The (∂/∂α)K α (.) function is approximated using the following relation:

∂ ∂α K α (x) ≈ K α+h (x) -K α-h (x) 2h (58) 
with h = 10 -4 . The unsupervised segmentation and the parameter estimation approach are summarized in Algorithm 1.

In our case, the Frobenius norm is used in step 14.

E. Number of Classes

One of the necessary parameters leading to unsupervised image segmentation is the number of classes used for clustering. Usually, this number is assumed to be known, but recently, many methods have been dedicated to automatically determine the appropriate number of classes. The most used method is the goodness-of-fit (GoF) testing performed using the matrix log cumulants [START_REF] Doulgeris | Automated non-Gaussian clustering of polarimetric synthetic aperture radar images[END_REF], [START_REF] Akbari | A textural-contextual model for unsupervised segmentation of multipolarization synthetic aperture radar images[END_REF], [START_REF] Doulgeris | An automatic U -distribution and Markov random field segmentation algorithm for PolSAR images[END_REF], [START_REF] Anfinsen | Goodness-of-fit tests for multilook polarimetric radar data based on the Mellin transform[END_REF]. Subsequently, the GoF test is incorporated within the EM algorithm and allows to split or merge the classes. When classes do not fit well, they are split into two clusters and the EM is reapplied again. The appropriate number of classes is obtained when all classes are considered good-fits to the data histograms. In this paper, the number of classes is determined by the analyst and then assumed to be known.

F. Initialization Procedure

The initialization procedure is an important step in the unsupervised segmentation process. With an adequate initialization, we accelerate the estimation of hidden class labels and associated parameters, and, thus, the convergence of the algorithm. The idea is to estimate the local values of ENL, the local estimates of the texture parameters, and the local estimates of the covariance matrix of the speckle by using a sliding window of size k × k covering the whole image. The goal is to make a repartition map of the values of these parameters. A simple clustering algorithm will use these data to generate a first clustering where the estimated parameters of each class will be utilized as an initialization of the unsupervised classification. The EM-based estimator [START_REF] Bouhlel | Maximum-likelihood parameter estimation of the product model for multilook polarimetric SAR data[END_REF] is used to estimate the ENL, the texture parameters, and the covariance matrix of the speckle, assuming the existence of only one class inside the sliding window, which means that M = 1 and P X i |C i (x i |C i , ) = 1. Then, the initialization procedure takes place as follows. The estimated covariance matrix of the speckle is given by

ˆ = 1 N N i=1
g (1) i C i .

(59)

2) In a similar manner, compute the local ENL estimates using the EM-based estimator. The equation to use is as follows:

d ln L + d -ψ d ( L) = 1 N N i=1
g (1) i tr(

ˆ -1 C i ) -ln | ˆ -1 C i | + da (1)
i . (60) A kernel density estimator (KDE) implemented with the Epanechnikov kernel function and a kernel bandwidth of h = 0.1 is used to estimate the distribution of the EM estimator of the ENL. Since the number of correlated looks L is replaced with an equivalent number of uncorrelated looks ENL, the mode value of the distribution of ENL estimates is used as an estimate of the global ENL.

3) Compute the local estimation of the texture parameters using the EM estimator utilizing a sliding window of size k × k. For example, if a gamma distribution is used as a texture model, the equation to solve is as follows:

ln( α) -ψ( α) + 1 = 1 N N i=1
h (1) ia (1) i .

(61) 4) Any clustering algorithm, like Fuzzy C-means (FCM) or K-means, is applied to a vector image consisting of the local estimation of the texture parameters and the local determinant of the estimated covariance matrix of the speckle.

V. EXPERIMENT, RESULTS, AND DISCUSSION In this section, we try to find out the performance of the proposed method on both simulated and real SAR data. Classification with simulated data permits evaluating the accuracy of the method, whereas the real data allow a visual comparison.

A. Simulated Multilook PolSAR Images 1) First Example:

The simulated image consists of an image of 200 × 200 pixels with six distinct classes of K d distribution generated with ten looks and in full PolSAR. The areas represent homogeneous, heterogeneous, and extremely heterogeneous texture. To test the robustness of the segmentation, only a few parameters change between two neighboring regions. Then, the parameters of the K d pdf are different in some regions and similar in others. Fig. 4(a) and(b) shows the true classes and the corresponding simulated data with six classes and ten-look covariance, respectively. The elements of the covariance matrix of the speckle and the texture parameters are given in Tables II and III for each area, respectively. Regions 1 and 2 have the same covariance matrix of the speckle, and regions 2 and 3 have the same texture parameter α. Moreover, region 1 represents extremely heterogeneous texture characteristics of an urban area. Regions 2, 3, and 4 represent a forest area with a moderate texture. Regions 5 and 6 represent low heterogeneous regions and homogeneous regions, respectively. In addition, region 6 has a texture parameter α that tends to infinity leading to a realization of a scaled Wishart distribution. Fig. 1(a) shows the pdf when the texture is gamma distributed with different values of the texture parameter α.

Our aim is to show how accurately the algorithm performs the parameter estimation. The results of the initialization are presented in Figs. 2 and3. Fig. 2(a) depicts the local ENL estimation images computed for the EM-based estimator using a sliding window of size k = 9 covering the whole image. Fig. 2(b) shows the distribution of the local estimates. The distributions are computed with KDE with an Epanechnikov kernel as it is mentioned before in Section IV-F. The distribution is centered around the true number of looks L = 10 since the random generated data are not correlated. The mode of the distribution estimates for the EM estimator is considered as an estimate of the global ENL. Fig. 2(c) illustrates the results of the local estimation image of the texture parameters using the EM-based estimator. The matrix-variate K d distribution is used to model the multilook polarimetric covariance matrix. For a better display, we have limited the scale between 0 and 40 for αEM . As a consequence, the homogeneous region 6 is marked with dark red color. Fig. 2(d) shows the distribution of the estimates for the previous estimator. 3, where the result of a clustering using FCM applied to the local estimation of the texture parameters is shown in Fig. 3(a). Five different classes can clearly be recognized corresponding to the different values of α. When FCM is only applied to the local determinant of the estimated covariance matrix of the speckle, the clustering is illustrated in Fig. 3(b). Fig. 3(c) corresponds to the result of clustering applied to a vector image composed of both the local estimation of the texture parameters and the local determinant of the estimated covariance matrix of the speckle. Six classes can be clearly seen. Fig. 3(c) is used as initialization to our The main loop of Algorithm 1 is undergoing (step 5). The result of the segmentation using the compound distribution without an MRF is shown in Fig. 4(c) and with an MRF in Fig. 4(d). To quantify the quality of classification, the confusion matrix is used. Table IV shows the accuracy of both III. As we can conclude, both classifiers already provide good classification performances, with accuracies higher than 80% for classes 4, 5, and 6 characterized by low texture. Low performances are observed for the highly non-Gaussian classes (class 1 and 3) that have classification accuracies of 73.3% Initialization results are shown in Figs. 5 and6. Fig. 5(a) depicts the local ENL estimation images computed for the EM estimator, using a sliding window of size k = 17 covering the whole image. Fig. 5(b) depicts the distribution estimates. They produce distributions that are centered around the true number of looks L = 4. Fig. 5(c), (e), and (g) shows, respectively, the results of the local estimations image of the texture parameters (α, w) and scale parameter (η) using the EM estimator utilizing a sliding window of size k = 17. We recall that the matrix-variate G d distribution is used in this example as a compound distribution for the product model. The estimated α and w values for region 6 are significantly higher than the other regions. This is due to the lack of texture. For a reliable display, we have limited the scale between 0 and 10 for α [Fig. 5(c)] and between 0 and 6 for w [Fig. 5(e)]. Then, for region 6, α and ŵ values greater than 10 and 6, respectively, are, therefore, marked by the dark red color. We can easily see the different regions corresponding to the different α, ŵ, and η values. After applying the Algorithm 1 from step 5 to step 18, the result of the unsupervised segmentation using the compound distribution without an MRF is shown in Fig. 7(c) and with an MRF shown in Fig. 7(d). This example clearly demonstrates that the G d -MRF clustering gives good segmentation results. With the final classification, the estimation of the texture parameters are given in Table III for the matrix-variate G d distribution. The results of classification show that both classifiers G d and G d -MRF already provide good classification performances, with accuracies higher than 80% for classes 5 and 6, which are homogeneous regions. Low performances are observed for the highly non-Gaussian classes (class 1, 2, 3, and 4). The lowest performance is registered for class 2 and class 3 with classification accuracies of 67.5% and 68.9%, respectively, for the G d classifier. Despite the fact that these two classes have the same texture parameter values, classifier G d can distinguish between them in contrast to example 1. The classification with G d -MRF improves the results drastically, yielding a perfect segmentation. 

B. Real SAR Images

The unsupervised segmentation is demonstrated on real Pol-SAR data. The test image is a small section of the image of an agricultural area from an airborne Electromagnetics Institute Synthetic Aperture Radar (EMISAR) L-band quad-pol SAR acquisition over Foulum, Denmark, in 1998. A Pauli RGB composite image is shown in Fig. 8(top) and the selected test region is shown in Fig. 8(bottom). The data are multilooked to six looks.

The local estimation of the covariance matrix of the speckle and texture parameters for the whole image are illustrated in Fig. 9. The local ENL estimation image computed for the EM-based estimator using a sliding window of size k = 9 covering the whole image is depicted in Fig. 9 To fit the histogram of each class, the multilook polarimetric covariance matrix is transformed into scalar by the variable Y = tr( -1 C). The statistical model for tr( -1 C) = τ tr( -1 X) is derived using the distribution of the texture τ and the distribution of tr( X) [START_REF] Bouhlel | Maximum-likelihood parameter estimation of the product model for multilook polarimetric SAR data[END_REF]. The pdf of the scalar variable Y is given in Table V for each texture pdf. d , and G d , have been used in this paper as compound distributions. The ML method has been proposed to estimate the parameters of these distributions for each class. Parameter estimation by ML is a very difficult task due to the complexity of the likelihood function. Thus, the EM algorithm has been developed to derive the ML estimates for the product model. The MRF has been adopted in this paper to integrate spatial information and then to improve the accuracy and quality of segmentation. The class posterior probabilities have been estimated using the MPM algorithm. In summary, the unsupervised segmentation method is based on the combination of EM and MPM where all parameters are estimated by EM and the class labels are updated by MPM. Three examples have been presented and tested with the method. The segmentation results are perfect. A comparison with a segmentation without MRF leads to improvement brought by the MRF.

APPENDIX A

Finding a solution typically requires taking the derivatives of the previous expression (55) with respect to β c as follows: 

f (z; α 1 , w 1 , η 1 ) = z α 1 -1 η α 1 1 2K α 1 (w 1 )
exp -w 1 2

η 1 z + z η 1 . ( 69 
)
The following moments exist and are finite as follows:

E{Z k } = η k 1 K α 1 +k (w 1 ) K α 1 (w 1 ) , k ∈ Z (70) E{ln Z } = ln η 1 + ∂ ∂a K α 1 +a (w 1 )| a=0 K α 1 (w 1 ) . ( 71 
)
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 1 Compute the local estimation of the covariance matrix of the speckle ˆ and its determinant | ˆ | by EMbased estimator using a sliding window of size k × k where k ∈ {7, 9, 11, 13, 15}, covering the whole image. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 1 .

 1 Fig. 1. (a) Gamma and (b) GIG texture pdfs used for simulation. Lower values of α represent extreme heterogeneous areas and higher values represent homogeneous areas.

Fig. 2 .

 2 Fig. 2. Parameter estimates as part of initialization procedure. (a) Local ENL estimates calculated by using EM estimator. (b) Distribution estimates calculated when slide window is k = 9. (c) Local αE M estimates for EM estimator. (d) Distribution of α for latter estimator. (e) Local | ˆ | estimates for EM estimator. (f) Distribution of | ˆ | for latter estimator.

Fig. 2 (

 2 e) highlights the local determinant of the covariance matrix of the speckle | ˆ | estimated on the same sliding window. Fig. 2(f) depicts the distribution of | ˆ | estimates. As we can see, several modes can be detected indicating the existence of several regions. The final initialization step is shown in Fig.

Fig. 3 .

 3 Fig. 3. (a) Clustering results using FCM applied to local estimation of texture parameters. (b) Local determinant of estimated covariance matrix of speckle. (c) Vector image composed of local estimation of texture parameters and local determinant of estimated covariance matrix of speckle.

Fig. 4 .

 4 Fig. 4. Simulated data classification, six classes, ten-look covariance. (a) True classes. (b) Colored composition of simulated data in Pauli basis. (c) Unsupervised segmentation using matrix variate K d . (d) Unsupervised segmentation using matrix-variate K d -MRF.

Fig. 5 .

 5 Fig. 5. Local α, ŵ, η estimates by EM estimator. (a) and (b) αE M and their distributions. (c) and (d) ŵE M and their distributions. (e) and (f) ηE M and their distributions. The slide window is k = 17.

Fig. 6 .

 6 Fig. 6. Clustering results using FCM applied to vector image composed of local estimation of texture parameters (α, w) and local determinant | | of estimated covariance matrix of speckle.

Fig. 7 .

 7 Fig. 7. Simulated data classification, six classes, four-look covariance. (a) True classes. (b) Colored composition of simulated data in Pauli basis. (c) Final unsupervised segmentation using matrix variate G d . (d) Final unsupervised segmentation using matrix-variate G d -MRF.

Fig. 8 .

 8 Fig. 8. (Top) EMISAR L-band quad-pol acquisition over Foulum, Denmark, multilooked with six looks shown as Pauli RGB image. (Bottom) Zoomed-in view of selected test region surrounded in main image by red rectangle.

Fig. 5 (

 5 d), (f), and (h) shows the distributions of these estimates. Fig. 5(i) illustrates the local determinant of the covariance matrix of the speckle | ˆ | estimated on a sliding window of size k = 17. Fig. 5(j) depicts the distribution of | ˆ | estimates. As we can see, several modes can be detected. The result of clustering applied to a vector image composed of both the local estimation of the texture parameters ( α, ŵ) and the local determinant (| ˆ |) of the estimated covariance matrix of the speckle is shown in Fig. 6. There are six clearly seen classes. Fig. 6 is used as an initialization to our unsupervised segmentation algorithm. The initial parameters given by step 4 of Algorithm 1 are estimated on each class of the image initialization.

Fig. 9 .

 9 Fig. 9. Local estimation of speckle and texture parameters of the whole Foulum image. (a) Local ENL estimation. (b) Distribution estimates of ENL. (c) Local texture parameter ln α estimate. (d) Local log determinant of the covariance matrix of speckle ln | ˆ |.

  (a). The distribution estimates are shown in Fig. 9(b). As we can see, the estimated ENL is 4.8. Fig. 9(c) presents the local texture parameter ln α estimate using the EM-based estimator. The logarithmic scale is used to reduce the dynamics of the image. The extremely heterogeneous texture regions (low α value) are marked by dark blue color and the homogeneous regions are marked by dark red color. Fig. 9(d) shows the local log determinant of the covariance matrix of the speckle ln | ˆ | estimated on a sliding window of size k = 9. The same behavior is observed but, this time, in the opposite direction. Thus, the heterogeneous texture regions are marked by red color and the homogeneous regions are marked by blue color. The number of classes for the selected test image is fixed to 14. As illustrated in Fig. 10(d), the K d -MRF classifier splits fields A and G into two classes (red and magenta), whereas the K d classifier [Fig. 10(c)] groups them as a single class (red). This happens also for field C (forest area), where the K d -MRF classifier splits field C into four classes: class 12 (dark green), class 13 (dark magenta), class 14 (dark red), and class 4 (yellow), whereas the K d classifier groups them into two classes: class 12 (dark green) and class 9 in low proportion. For forest areas (fields C and F), the K d -MRF classifier can distinguish significant differences in forest density correctly. Despite the low number of looks and the noisy aspect of the image, K d and K d -MRF classifiers are able to generate spatially homogeneous segmentation results. In fields B, D, and E, it is observed that the K d classifier already does a good job in smoothing the fields into quite homogeneous areas, as shown in Fig. 10(c). The fields are further smoothed by the K d -MRF classifier but without removing small distinct targets. The conclusion of this experiment is that the combination

Fig. 10 .Fig. 11 .

 1011 Fig. 10. Unsupervised segmentation of selected test region. (a) Local estimation of texture parameters (ln α) on selected test region. (b) Local estimation of speckle (ln | ˆ |) on selected test region. Fourteen class segmentation results with (c) K d and (d) K d -MRF classifiers.

  Fig. 11 shows the fitting of the estimated entity tr( -1 C) pdf produced by the K d and K d -MRF classifiers to the class histograms of real data. Fig. 11(ai) and (bi) illustrates the fitting for class i produced by the K d -MRF and K d classifier, respectively. It is clear to see that the K d -MRF model fits well the class histograms. VI. CONCLUSION In this paper, a new unsupervised segmentation of multilook PolSAR images has been presented. The method combines non-Gaussian compound distribution as an observed model for the PolSAR data statistics conditioned to each class with spatial information as an MRF used as prior model. Three distributions, K d , G 0

TABLE I TEXTURE

 I AND COVARIANCE MATRIX DISTRIBUTION UNDER MULTILOOK POLARIMETRIC PRODUCT MODEL III. EM FOR PARAMETER ESTIMATION AND CLASS LABEL UPDATE

  Input: N, C i , d, , M, β c , T s 2: Output: θ = ( L, ˆ 1 , . . . , ˆ M , θτ,1 , . . . , θτ,M , βc )

	Algorithm 1		
	1: 3: Initialization:		
	4:	Set initial parameters θ = (θ X , θ	τ , β	c ) by the
	initialization procedure given in the next section.
	5: Main Loop:		
	6:	Repeat		
	7:			

  For G d use ˆ m ← d

			ˆ m	
	11: 12: 13:	tr( ˆ m ) Estimate L using ˆ m and (19) 1 Estimate θτ,m using (26) 1 for K d , or (28) 1 for G 0 d , or (29, 30, 31) 1 for G d Estimate βc using (57)
	14:	θ X	Calculate stop criterion: D ← θτ -θ	τ + θX -
	15:		Set inputs for next iteration:	
		L ,		

m , θ τ ,m , β c ← L, ˆ m , θτ,m , βc 16:

Until D < 17: Return ( L, ˆ 1 , . . . , ˆ M , θτ,1 , . . . , θτ,M , βc ) 18:

TABLE IV CONFUSION MATRIX

 IVMATRIX 

  According to (35), ln P X s (xs |x N s , β c ) is given ln P X s (x s |X N s , β c ) = -β cThe derivative of ln P X s (x s |x N s , β c ) with respect to β c is given as follows:∂ ∂β c ln P X s (x s |x N s , β c ) =1 exp -β c r∈N s t (x s , x r ) M x s =1 exp -β c r∈N s t (x s , x r ) (x s , x r ) exp -β c r∈N s t (x s , x r ) M x s =1 exp -β c r∈N s t (x s , x r ) X s (x s |x r , r ∈ N s ) r∈N s t (x s , x r ).Substituting the derivative of ln P X s (x s |x N s , β c ) in (62), we have the following equation:|C (x s |C, θ ) X s (x s |x N s , β c ) =1 P X s |C (x s |C, θ ) = 1,then the expression becomes as follows: |C (x s |C, θ ) X s (x s |x r , r ∈ N s , β c )

						t (x s , x r )
						r∈N s	⎛	⎞
						M
						-ln	exp	⎝ -β c	t (x s , x r )	⎠ .
						x s =1	r∈N s
						(63)
						(64)
		= -	r∈N s	t (x s , x r ) -	∂ ∂β c	M x s (65)
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			r∈N s		
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			M		
		s∈S	x s =1	P X s r∈N s	t (x s , x r )
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			=			t (x s , x r ). (68)
			s∈S	x s =1	r∈N s
						APPENDIX B
						GIG DISTRIBUTION
		The pdf of the GIG distribution is given by
		M			
	s∈S	x s =1			

P X s |C (x s |C, θ ) ∂ ∂β c ln P X s (x s |x N s , β c ) = 0. (
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APPENDIX C INVERSE GAMMA DISTRIBUTION

The pdf of the inverse gamma distribution is given by

The following moments exist and are finite: