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Abstract 33 

Long-term survival rates in childhood acute lymphoblastic leukemia (ALL) are 34 

currently above 85% due to huge improvements in treatment. However, 15-20% of children 35 

still experience relapses. Relapses can either occur in the bone marrow or at extramedullary 36 

sites, such as gonads or the central nervous system (CNS), formerly referred to as ALL-blast 37 

sanctuaries. The reason why ALL cells migrate to and stay in these sites is still unclear. In this 38 

review, we have attempted to assemble the evidence concerning the microenvironmental 39 

factors that could explain why ALL cells reside in such sites. We present criteria that make 40 

extramedullary leukemia niches and solid tumor metastatic niches comparable. Indeed, 41 

considering extramedullary leukemias as metastases could be a useful approach for proposing 42 

more effective treatments. In this context, we conclude with several examples of potential 43 

niche-based therapies which could be successfully added to current treatments of ALL.  44 

Keywords: acute lymphoblastic leukemia; niche; cellular microenvironment; children; 45 

relapse; extramedullary; sanctuary; bone marrow; central nervous system; testis 46 
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I. Introduction 47 

Acute lymphoblastic leukemia (ALL) is a hematological malignancy defined by the 48 

clonal expansion and accumulation of abnormal immature lymphoid precursor cells in the 49 

bone-marrow (BM) compartment. This abnormal cell population replaces normal 50 

hematopoietic cells and can spread from the BM to the entire body through systemic 51 

circulation. Relatively rare relative to other hematological malignancies in adults, ALL is the 52 

most frequent malignancy found in children and accounts for approximately 80% of 53 

childhood leukemia, with a maximal incidence rate between one and six years [1]. Over the 54 

last decades, the use of multi-agent chemotherapy protocols, better patient stratification into 55 

risk-adapted groups for treatment, and improved treatments have drastically reduced the 56 

mortality of this young population. Indeed, survival rates have risen from approximately 10% 57 

in the 1960s to above 90% for children in high-income countries in the 2000s.  58 

However, approximately 15 to 20% of children and approximately 50% of adult patients 59 

still relapse [2–6]. This situation is defined as the resurgence of blast cells after the 60 

achievement of complete remission. Relapses are generally classified and stratified according 61 

to three prognostic factors: time of relapse, site of relapse, and immunophenotype B or T 62 

[7].The time of relapse, relative to the beginning and end of treatment, is the most important 63 

prognostic factor: the earlier the relapse occurs, the worse the prognosis. The definition of 64 

relapse is slightly different depending on the classification used (Berlin-Frankfurt-Münster 65 

[BFM] or Children Oncology Group [COG]) [3,7]. The most important factor after timing is 66 

probably the anatomical sites of relapse, which are commonly divided into bone marrow 67 

(BM) alone (worst prognosis), extramedullary alone (best prognosis), and combined relapses 68 

(intermediate prognosis). Although immunophenotype T was initially associated with poor 69 

survival and is still used in tumor classification, its prognostic value appears to be less 70 

important due to better stratification [8]. Furthermore, the assessment of early minimal 71 
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residual disease (MRD) is also used to predict the prognosis of patients presenting a relapse, 72 

as it is for newly-diagnosed ALL [9–12] 73 

 Given the considerable therapeutic progress that has been made, one of the main goals 74 

is to attenuate treatment-related sequelae by reducing their toxicity, while continuing to 75 

improve current survival rates. Decreasing the incidence of relapse and identifying optimal 76 

treatments and therapeutic strategies when relapse occurs, are critical goals as well. Indeed, 77 

deciphering the underlying mechanisms that lead to relapse and understanding how and why 78 

relapses occur is a prerequisite to defining new treatment approaches.  79 

In this review, we will begin with a brief overview of the principal mechanisms 80 

involved in ALL relapses. Second, we will describe where ALL cells reside within some sites 81 

of relapse and compare medullary, extramedullary, and metastatic niches, using a few 82 

examples. We will show how their microenvironments can be considered to be quite similar. 83 

Third, we will discuss the interplay between ALL cells and the microenvironments they 84 

colonize. Fourth, we will discuss the potential predisposition of some ALL cells to reside in 85 

specific niches. Finally, we will conclude with therapeutic perspectives related to 86 

microenvironment targeting. 87 

II. Cellular origin of relapse 88 

Multiple biological factors may contribute to the emergence of ALL relapses [13]. 89 

Cumulative evidence suggests a clonal origin of ALL [14]. It has previously been shown that 90 

clonal evolution is involved in relapse, with the possible emergence of subclones derived 91 

either from the major clone found at initial diagnosis, minor subclones, or a common ancestral 92 

pre-leukemic clone (Figure 1) [15–20]. Several studies have described chemoresistance-93 

related mutations in the BM samples of relapsed patients, such as those that affect the 94 

glucocorticoid response pathway (mutations of the glucocorticoid receptor gene NR3C1 or 95 
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other genes, interfering with its function, such as BTG1) or nucleotide metabolism (for 96 

example, NT5C2 or PRSP1 genes [13,21–25]. Clonal heterogeneity is a common feature in 97 

ALL. Clonal evolution is likely to be a dynamic process in which selection plays a central 98 

role, as in the Darwinian model [14,26]. Both intrinsic and extrinsic factors, such as 99 

microenvironmental conditions or chemotherapeutic pressure, may favor a clone from which 100 

the relapse can develop.  101 

Relapses may originate from a chemoresistant clone, either already present as a minor 102 

clone at diagnosis or resulting from the acquisition of secondary mutations during treatment. 103 

Aside from chemoresistance mechanisms, relapse can also be explained by the presence of 104 

dormant cells within the bulk population. These rare, non-dividing, quiescent cells are less 105 

sensitive to cytotoxic agents. They can therefore resist treatment and give rise to a new 106 

population after reentering the cell cycle, leading to relapse. Aside from the quiescent state 107 

itself, cells may also exert their resistance by residing in niches where the microenvironment 108 

confers protection from chemotherapy. Indeed, drug concentrations may be lower in niches, as 109 

suggested for brain and testicular tissues [27,28]. Local conditions, the cell matrix, cell-cell 110 

interactions, and soluble factors may also maintain quiescence. The origin of such dormant 111 

cells is still an open question, but recent studies have provided some clues to their existence at 112 

diagnosis [29,30]. Why and how they reenter the cell cycle and proliferate to induce relapse 113 

still needs to be addressed for understanding the evolution of these dormant cells. How such 114 

cells reach and invade distant favorable microenvironments from their native marrow niche is 115 

also yet to be elucidated.  116 

Metastasis is the spread of cancer cells from the tissue where they first originate to 117 

another distant one. ALL relapses occur most often in the BM, whereas extramedullary 118 

relapses are less commonly reported. Nevertheless, the occurrence of relapse is generally 119 

thought to be a leukemic event, depending mainly on internal properties of the blast, 120 

7 
 
 

Acc
ep

ted
 M

an
us

cri
pt



regardless of the type of relapse. However, the occurrence of relapse may not depend only on 121 

leukemic cell features, but also on the microenvironment. In the next section, we will describe 122 

the most frequently-reported sites of relapse and the concept of niches, proposing that 123 

extramedullary leukemia relapse is similar to that of solid tumor metastasis, anticipating a 124 

major role of the microenvironment of extramedullary sites.  125 

III. Sites of relapse 126 

Relapse can occur in the BM, the native niche from where the disease spreads at the 127 

onset. It can also emerge from extramedullary sites, such as the central nervous system (CNS) 128 

or gonads. Both used to be called “sanctuary sites”, because of the relative protection these 129 

sites appear to offer to blast cells from systemic chemotherapy. At these sites, the tissue-blood 130 

barrier is an obstacle to drug delivery [27,31,32]. Although CNS and testicular relapses may 131 

be more common in children, they also concern adults. These sites may represent the first 132 

extramedullary sites colonized by leukemic cells but can also be colonized secondary to other 133 

extramedullary sites that may have evaded clinical detection. Prophylactic cranial irradiation 134 

was added to systemic chemotherapy treatment in the 1970s to attempt to prevent CNS 135 

relapses [33]. Intrathecal chemotherapy and the use of high-dose methotrexate for neuro-136 

meningeal prophylaxis have progressively replaced irradiation, with good results for 137 

diminishing neurological sequelae, showing that the blood-tissue barrier problem can be 138 

bypassed [34]. Similarly, treatment intensification, with the introduction of intermediate and 139 

high-dose methotrexate, has significantly decreased the incidence of testicular relapses, thus 140 

considerably improving the historically worse prognosis for boys [35,36]. However, extra-141 

medullary relapses are still a problem and have been reported in many other organs. Several 142 

studies have reported that extramedullary relapses occur in approximately 40% of cases 143 

(approximately 20% combined and 20% presumably isolated) [3,8,37]. Here, we summarize 144 

the evidence that shows the role of the microenvironment in extramedullary relapses. 145 
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1. Different microenvironments 146 

a) Bone marrow (Figure 2a) 147 

BM is the most frequent site of ALL relapse and is involved as an isolated or combined 148 

site of relapse in 75-90% of cases [3,8,38–41]. BM relapses are most often the unique site 149 

involved (approximately 65% of cases) [3,8,34–37]. There is no clear evidence for a 150 

privileged BM site in which lymphoblasts primarily reside. Indeed, contrary to BM aspirates,  151 

BM biopsy results are generally not given in published studies, and almost all studies 152 

presenting BM biopsy data concern patients with advanced disease. In contrast, the 153 

engraftment of leukemic cells in BM has been well-studied in murine models [42–45]. In 154 

these models, leukemic cells engraft and proliferate in specific and restricted perivascular 155 

regions, in which C-X-C motif chemokine ligand 12 (CXCL12) and E-selectin are expressed, 156 

and which overlap with perivascular niches of hematopoietic progenitors. CXCL12 appears to 157 

be required for the diapedesis of leukemic cells [42]. Leukemic cells migrate and arrest in 158 

vessels close to endosteum, where they settle. From these perivascular endosteal niches, they 159 

may proliferate and spread to the BM and beyond [44].   160 

b) Gonads (Figure 2b) 161 

Large group studies have reported that isolated testicular relapses could account for  162 

3.5-8% of ALL relapses in children (including boys and girls) followed for up to 20 years 163 

[3,8,38–41,46]. Most studies mentioning testicular biopsies in the context of ALL did not 164 

indicate the precise location of blasts [47–49]. Such information can be retrieved from rare 165 

and old clinical studies and animal models [50–56]. Animal models indicate that leukemic 166 

cells infiltrate the interstitial testicular tissue mainly at the perivascular and peritubular 167 

regions, forming small foci, notably in subcapsular areas. Despite perivascular interstitial 168 

invasion, extensive infiltration of the interstitium is rare. On the other hand, the epididymis is 169 
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more often massively invaded by blast cells [54,55]. Leukemic invasion seems to occur 170 

through the hematogenous route, with possible extension to the epididymis via the lymphatic 171 

route [55]. In these models, although seminiferous tubules were degenerated or destroyed near 172 

leukemic infiltrations, leukemic cells were never found in the tubules nor the gonadal duct 173 

[54–56]. Unlike these in vivo studies, testicular leukemic infiltration was mostly found to be 174 

diffuse in a postmortem series of children who died of very advanced leukemia. Leukemic 175 

cells were found in the tubules in half the patients with heavily infiltrated testes [57]. This 176 

relatively old study included children with uncontrolled leukemia at a time when outcomes 177 

were poor and probably does not reflect the route of initial invasion. Thus, it seems that 178 

leukemic cells invade the testis by the hematogenous route and first infiltrate the perivascular 179 

and peritubular spaces, where they can spread to the epididymis through the local lymphatic 180 

system. Without effective treatment, seminiferous tubules may be destroyed and invaded as 181 

well. This is concordant with the perivascular and peritubular interstitial infiltration observed 182 

in  patients with testicular relapse leukemia [50–52]. 183 

 Although less commonly involved than the testis, ovaries may also be involved in 184 

ALL [58]. Ovarian relapses are scarcely reported in clinical trials [40,59], but autopsies have 185 

provided evidence of ovarian disease in end-stage leukemia [57,60,61]. More recently, 186 

ovarian involvement was found in approximately 8% of leukemia cases in an autopsy series, 187 

regardless of age. However, the authors did not indicate whether the patients had been treated 188 

or not, nor the treatment performed [62]. The effects of chemotherapy could explain the 189 

differences observed between and within the reports mentioned above, in which ovarian 190 

involvement was found in 3% to up to 50% of cases [57,60,61]. Indeed, Pais et al. reported 191 

that the number of ovarian relapses dramatically decreased in their cohort from the moment 192 

they introduced intermediate-dose methotrexate in the treatment regimen (from almost 10% of 193 

all relapses before 1979 to no ovarian relapse noted afterwards, until 1991). As they assumed, 194 
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isolated ovarian relapse has become an exceptional event, likely representing slightly less than 195 

1% of all relapses [40,59]. However, contrary to testicular involvement, which can be 196 

clinically suspected with a simple physical examination, there is no overt clinical sign that 197 

allows suspicion of ovarian leukemic infiltration. In addition, ultrasound evaluation is not 198 

systematically performed during the course of the disease and follow-up, even if it might be 199 

[63]. However, it was possible to detect leukemic cells in up to 70% of samples by 200 

polymerase chain reaction of cryopreserved ovarian tissue retrieved at diagnosis (or shortly 201 

after), even in the absence of enlargement and with a negative histological examination 202 

(except in one patient from a study of Soares et al., whose ovarian medulla was invaded) [64–203 

67]. Most published studies concerning ovarian disease consist of case reports, which usually 204 

do not report the precise location of leukemic cells in the ovary [58]. In their autopsy series, 205 

Reid et al. found that leukemic invasion, which was mostly histologically mild, took place 206 

predominantly in the medulla in the perivascular spaces [57]. However, leukemic cells have 207 

also been detected in the cortex by other authors. Thus, it is difficult to say where the cells 208 

preferentially settle [64–67]. Nonetheless, follicles have never been reported to be invaded in 209 

the literature.  210 

c) Central nervous system (Figure 2c) 211 

Isolated CNS relapses represent approximately 7.5-15% of ALL relapse [3,8,38–41]. 212 

The precise location of leukemic cells in the CNS is rarely indicated in published studies. 213 

Autopsy and animal model studies have allowed a better understanding of how the CNS may 214 

be invaded by leukemic cells [68,69]. Indeed, Price and Johnson studied 126 brains from 215 

children who died of ALL and developed a grading system to evaluate the severity of 216 

arachnoid involvement. They detected leukemic cells in the CNS of 55% of patients. Most 217 

showed moderate leukemic infiltration and the authors observed that infiltration of the brain 218 

parenchyma occurred only in cases of extensive and deep leukemic arachnoid involvement 219 
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with cerebrospinal fluid (CSF) contamination and pia-glial membrane destruction (13.4% of 220 

cases). Arachnoid invasion was most often isolated or multifocal, rather than diffuse. They 221 

concluded that leukemic cells first invade the superficial arachnoid from the vein wall, then 222 

the deep perivascular arachnoid, and finally, the brain parenchyma through disrupted pia-glial 223 

membranes [68]. In vivo rodent models have provided similar results and suggest that 224 

leukemic cells transit through the blood-CSF barrier to reach the leptomeninges [69,70]. 225 

Although Price and Johnson only studied brain and did not consider the spinal cord or dura 226 

matter in their study, diffusion throughout the CNS via the CSF has been confirmed by 227 

leukemic cell DNA detection, both in the lumbar spinal cord and frontal brain of rats 228 

inoculated in the cerebellum [70]. This is consistent with neuroradiological findings, which 229 

indicate that meningeal infiltration is the most common manifestation of CNS leukemia, with 230 

most often diffuse infiltration [71,72]. However, although much rarer and mostly represented 231 

by case reports in the literature, CNS involvement may also consist of epidural masses that 232 

can compress the spinal cord [73]. Thus, leukemic cells do not colonize one specific 233 

anatomical region within the brain or other CNS sites, but rather appear to preferentially 234 

localize to the subarachnoid space, likely in perivascular areas. A very recent study, using a 235 

mouse model, has shown that meningeal invasion occurs through the diapedesis of leukemic 236 

cells from cranial or spinal bone marrow of adjacent bones. The authors reported that 237 

leukemic cells transit through blood vessels, the emissary vessels that bridge the CSF space 238 

from the brain or spinal cord to the calvarium or vertebral bodies. They also discovered that 239 

this mechanism involves an interaction between a6 integrin and laminin and that it can be 240 

blocked by specific PI3Kδ inhibitors [74].  241 

d) Others 242 

Because leukemic cells spread throughout the organism via systemic circulation, other 243 

sites of relapse may be considered. Other extramedullary sites have been little studied and 244 
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published data consist mostly of case reports [75]. Although no site can be defined as 245 

privileged, since ALL can settle in many tissues, breast involvement may be a privileged site 246 

of extramedullary leukemia, mostly described by Isabel Cunningham [75–79].  247 

2. Similarities between sanctuary sites  248 

 We chose not to provide an exhaustive comparison between metastatic niches but 249 

rather to focus on three representative common actors: the CXCL12/C-X-C chemokine 250 

receptor type 4 (CXCR4) axis, hypoxia, and stem cell factor (SCF). 251 

a) The concept of “niche” 252 

The BM microenvironment has been, and is still, extensively studied [80–84]. First 253 

postulated by Schofield in 1978, it is now accepted that hematopoietic stem cells (HSC) reside 254 

in specialized compartments, called “niches”, within the BM [85]. Such niches allow the 255 

maintenance and regulation of HSCs by providing specific local conditions, cytokines, 256 

chemokines, and other soluble factors, as well as various types of specialized stroma cells. 257 

Different types of HSC niches have been described in the literature and may be named 258 

differently, depending on the authors, which can be confusing [80,81,86,87]. Our 259 

understanding of the BM microenvironment is constantly evolving and is still a subject of 260 

debate. For example, some studies have provided evidence for the existence of an osteoblastic 261 

niche [86], but this has been more recently questioned. Indeed, the existence of an authentic 262 

osteoblastic HSC niche has been ruled out, even if osteoblastic lineage cells have an indirect 263 

role in the regulation of HSCs and appear to be part of a specialized niche for lymphoid 264 

progenitors [81,84]. Rather than viewing the BM as a suite of separated niches, it is more 265 

likely a unique continuous niche in which some components are shared (and some others not) 266 

between more specialized compartments within this niche, as proposed by Hira et al. [88]. 267 
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HSCs localize mainly to perivascular zones, as do leukemic cells, with most found close to 268 

sinusoids, whereas approximately 10% are found near small arterioles.  269 

The microenvironments of the testes and CNS also have niches that maintain and 270 

regulate spermatogonia and neural or glial stem cells, respectively[89–93]. It has been shown 271 

in several cancer models that cancer cells can migrate from the tissue they originate to 272 

predisposed distant niches, which they can then remodel to suit their needs [94,95]. Such 273 

metastatic, BM, testicular, and neural niches may share characteristics that attract leukemic 274 

cells and offer them a favorable microenvironment for maintenance and growth. We focus on 275 

some of these shared components that have been found to play a major role in these 276 

microenvironments. 277 

b) CXCL12/CXCR4 278 

CXCL12, also known as stromal derived factor 1 alpha (SDF1α), is one of the most 279 

important chemokines in the BM niche [84]. Through binding to its receptor, CXCR4, 280 

CXCL12 favors HSC homing to the BM and participates in the maintenance of these cells in 281 

the niche. CXCR4 is a seven-transmembrane G-protein-coupled receptor that is expressed on 282 

multiple cell types, including, notably, hematopoietic cells [96]. The inhibition of CXCR4 is 283 

frequently used clinically to mobilize HSCs into the peripheral blood as a source of stem cells 284 

for transplantation [84,97–99]. CXCL12 is highly expressed by specialized cells close to 285 

sinusoid vessels within the BM, called CXCL12 abundant reticular cells , and favors HSC 286 

retention in the BM [84,97].  287 

CXCL12 has been shown to be involved in metastasis in many cancer models, such as 288 

breast, prostate, and lung cancer, pancreatic adenocarcinoma, rhabdomyosarcoma, and others 289 

[100]. For example, it was shown in an ovarian cancer model that the most advanced stages of 290 

the disease and most invasive phenotypes are associated with increased CXCR4 expression at 291 
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the cancer cell surface. More importantly, ascites samples from patients with advanced 292 

ovarian cancer showed significantly higher CXCL12 levels [101]. The role of the 293 

CXCL12/CXCR4 axis in the dissemination of peritoneal cancer has been clarified more 294 

recently in a study using a primarily murine colon cancer model. The authors found that 295 

CXCL12-expressing cells, similar to CXCL12 abundant reticular cells and distributed 296 

throughout the perivascular zones of adipose tissue, were a privileged site from which cancer 297 

cells could disseminate [102]. In another example, Ogawa et al. showed that CXCL12 298 

expression increased in the regional lymph nodes of mice with intrapulmonary transplanted 299 

cancer cells in a Lewis lung carcinoma model, and participated in the formation of a pre-300 

metastatic niche [103]. 301 

The CXCL12-CXCR4 axis is also involved in the pathogenesis of leukemia, as it favors 302 

not only ALL cell homing in the BM, but also their survival and proliferation [42,43,104,105]. 303 

Some evidence indicates that, in the human testis, CXCL12 is expressed solely by Sertoli 304 

cells to promote spermatogonial stem-cell migration through the seminiferous tubules during 305 

spermatogenesis [106–109]. Sertoli cells reside in seminiferous tubules, where leukemic cells 306 

are generally not found, or only very late during testicular involvement. However, the use of 307 

transwell migration assays showed that ALL cells can also migrate towards mouse testis 308 

conditioned medium and that such migration was reduced when the cells were treated with 309 

plerixafor, a CXCR4 chemical inhibitor [110]. This result suggests that leukemic-cell 310 

migration towards the testis might be at least partially mediated (or not exclusively) by the 311 

CXCL12/CXCR4 axis. Moreover, McIver et al. have shown that although CXCL12 312 

expression is restricted to Sertoli cells in the normal testis, it is expressed in the tumor stroma 313 

of seminoma samples [107]. Pathological conditions may induce CXCL12 expression in the 314 

interstitium of the testis [111]. Thus, it is possible that leukemic cells could be attracted and 315 

settle in the testis.  316 
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The CXCL12/CXCR4 axis is also known to play an important role in neurogenesis and 317 

neuron migration during development [112–116] and CXCL12 is constitutively expressed in 318 

the adult CNS, where it participates in neuromodulatory functions and acts as a major player 319 

in neuro-inflammation by recruiting leukocytes across the blood-brain barrier [112,117–120]. 320 

McCandless et al. showed that normal expression of CXCL12 on the basolateral side (i.e. 321 

away from vessel lumen) of CNS endothelial cells retains leukocytes in the perivascular 322 

space, thus preventing their egress to the CNS parenchyma [119,120]. Leukemic cells may 323 

therefore be attracted into perivascular areas by such a CXCL12 expression pattern, where 324 

they could stay, possibly in a quiescent state. Indeed, recent studies in a T-ALL model have 325 

shown that the CXCL12/CXCR4 axis plays an important role in leukemic-cell migration into 326 

the CNS [121,122]. Nevertheless, although treating xenografted mice with plerixafor (a 327 

CXCR4 antagonist) reduced engraftment into the BM and liver in a B-ALL model, it failed to 328 

prevent blast infiltration of the CNS, suggesting that CNS infiltration may not be mediated by 329 

the CXCL12/CXCR4 axis in B-ALL [69]. Other studies indicate that the CXCL12/CXCR4 330 

axis is also involved in leukemic-cell infiltration into other extramedullary tissues. Indeed, 331 

Crazzolara et al. found that high CXCR4 expression at the surface of ALL cells was 332 

associated with more pronounced infiltration of extramedullary tissues, such as liver and 333 

spleen, which was confirmed later in another study using a NOD/SCID immunodeficient 334 

mouse model [123,124]. Consistent with the latter studies, Kato et al. demonstrated that the 335 

liver constitutes a favorable niche promoting ALL cell engraftment, survival, and 336 

chemoresistance through the CXCL12/CXCR4 axis [125]. Overall, there is evidence in the 337 

literature showing that the CXCL12/CXCR4 axis plays a major role in ALL cell homing, both 338 

to the BM and extramedullary niches. Thus, CXCL12 represents a common feature of 339 

hematopoietic, extramedullary, and solid tumor niches, which may reconcile ALL and solid 340 

tumor models.  341 
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c) Oxygen content  342 

Improperly termed hypoxia, low oxygen concentrations are physiologically found in 343 

specific areas in mammalian organisms [126]. Indeed, the BM is likely to be one of the tissues 344 

in which the oxygen concentration is the lowest [127]. Ishikawa and Ito measured oxygen 345 

tension in BM samples from 4.9% to 8.8%, but it likely poorly reflects the true oxygen level 346 

found in the BM [128]. Later, mathematical modeling predicted the existence of an oxygen 347 

gradient in the BM, with oxygen tension decreasing progressively, starting from the sinus 348 

[129,130]. Since then, experimental evidence has confirmed very low oxygen concentrations 349 

in the BM, with the lowest value measured at 0.6% [131,132]. Increasing evidence suggests 350 

that the niches in which HSCs reside are hypoxic and that low oxygen concentrations may be 351 

needed to maintain their stemness [132–137].  352 

Low oxygen concentrations have been highlighted during cancerogenesis in solid 353 

tumors. As reviewed elsewhere, hypoxia in cancer cells and in the tumor microenvironment 354 

promotes aberrant angiogenesis, epithelial-mesenchymal transition, radio- and 355 

chemoresistance, and metastasis [138]. For example, it has recently been shown in a breast 356 

cancer model that hypoxia can upregulate pro-metastatic genes and promote metastasis, 357 

particularly under conditions of intermittent hypoxia, [139]. Moreover, the authors found that 358 

breast-cancer cells cultured under hypoxic conditions secreted pro-tumorogenic cytokines. 359 

Hypoxia was similarly shown to enhance the invasiveness of melanoma cell lines in vitro and 360 

promote metastasis in vivo [140].  361 

More importantly, low oxygen concentrations are thought to be an important component 362 

of leukemic niches in the BM and recent results have shown that targeting this hypoxic 363 

microenvironment may be promising [141–148]. Indeed, hypoxia has been shown to enhance 364 

the chemoresistance of ALL cells and appears to confer stem-cell properties, such as 365 
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quiescence [141,149,150]. Drugs active only under conditions of hypoxia were shown to 366 

reduce the leukemia burden in the BM when administrated three days after ALL cell injection 367 

into NOD/SCID mice, suggesting that hypoxia may favor leukemic-cell engraftment 368 

[141,147]. 369 

The testes are also thought to be one of the most hypoxic tissues. Direct measurements 370 

in a rat model established the interstitial testicular oxygen concentration between 1.5 and 371 

3.5% [151,152]. Another study using pimonidazole staining, commonly used as a hypoxic 372 

marker, confirmed these results in a mouse model and suggested an even lower intratesticular 373 

oxygen tension, especially in the seminiferous tubules, as well as the interstitium [153]. 374 

Nevertheless, there is no evidence of an association between the hypoxic features of the testis 375 

and testicular leukemia infiltration as it has not been directly studied.  376 

 Low oxygen concentrations are also found in the CNS, from 0.5% to 7%, both in 377 

humans and animal models [126]. There are few clues in the literature to estimate the oxygen 378 

tension of subarachnoidal tissue, where ALL cells preferentially settle. Some studies have 379 

evaluated the oxygen tension within the CSF, with estimated values of approximately 5 to 6% 380 

[154,155]. More recently, Sharan et al. showed that oxygen tension decreases rapidly from 381 

pial vessels to the extravascular space in a rodent model, with oxygen levels as low as 3% 30 382 

µM from the vessels, especially the narrowest ones [156]. Thus, although oxygen 383 

concentrations have not been precisely measured in the subarachnoidal space, they are likely 384 

to be low. Recent published data have indeed suggested a role for low oxygen concentrations 385 

in leukemic cell CNS infiltration [157,158]. In these two independent studies, the authors 386 

found that leukemic cells retrieved from the CNS of xenografted mice had a hypoxia-related 387 

gene set profile and expressed a particularly high level of the transcript of the vascular 388 

endothelial growth factor A (VEGFA) gene, which is a principal target of the hypoxia master 389 

transcription factor, hypoxia inducible factor 1 (HIF1). More importantly, Münch et al. further 390 
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showed that VEGFA mediated the migration of ALL cells through a monolayer of a brain-391 

microvasculature cell line [158]. The results from these studies are in accordance with those 392 

of a previous one showing that patients with CNS leukemia had elevated levels of VEGF in 393 

the CSF [159]. Thus, the role of hypoxia in extramedullary leukemia merits exploration and 394 

may offer new therapeutic perspectives, as outlined by Izraeli and Eckert [160].  395 

d) Stem cell factor 396 

 Stem cell factor (SCF), also known as steel factor or mast cell growth factor, is one of 397 

the main growth factors that regulate the proliferation and survival of HSCs and 398 

hematopoietic progenitors in the BM, through binding to its receptor, c-KIT [161–163]. 399 

Indeed, insertion of the Egfp gene into the endogenous locus of the Scf gene in C57BL mice 400 

results in perinatal death with severe anemia. GFP expression patterns within the BM have 401 

suggested that SCF is produced in the BM by perivascular stromal and endothelial cells, 402 

which was further demonstrated using a conditional deletion model in the same mice [164]. 403 

Moreover, Ding et al. demonstrated that SCF is necessary to maintain adult HSCs, using the 404 

same conditional deletion model. Along with its effects on progenitor cell survival and 405 

proliferation, SCF has also been shown to have a chemotactic function in these cells [162]. 406 

Proteolytic cleavage and alternative splicing lead to various tissue-specific isoforms of SCF, 407 

which can be produced as soluble or membrane-bound forms [161–163,165,166]. The 408 

membrane-bound form of SCF appears to be essential [162]. The membrane-bound form of 409 

SCF has notably been shown to enhance human HSC engraftment in murine xenografts. It has 410 

also been shown to promote cell adhesion in vitro and HSC residence in the BM niche in vivo 411 

[162,167–169]. 412 

In solid tumors, SCF/c-KIT signaling is also frequently thought to participate in 413 

tumorigenesis, tumor progression, and metastasis. Soluble SCF is produced by cancer cells 414 
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within tumor tissues in different cancer models [170]. c-KIT has been found to be 415 

overexpressed, abnormally expressed, or associated with an aggressive phenotype in several 416 

types of tumors, including melanoma, lung cancer, renal carcinoma, and seminoma 417 

[163,171,172]. Activating mutations of c-KIT can be found in some tumor types, especially 418 

gastrointestinal stromal tumors, and may be involved in their pathogenesis. The SCF/c-KIT 419 

pathway may also be involved in the pathogenesis of such tumors through its effect on mast 420 

cells [163] and the mast cell accumulation has been associated with a worse prognosis in 421 

several cancer models.  422 

The SCF/c-KIT signaling pathway has also been found to be deregulated mostly in 423 

AML models rather than in ALL models. However, although c-KIT is little expressed in ALL 424 

relative to AML, RNA-seq data indicate that some ALLs overexpress c-KIT, such as ETS 425 

variant 6-runt related transcription factor 1 (ETV6-RUNX1) B-ALL or mixed lineage 426 

leukemia (MLL) rearranged leukemias [173]. Consistent with the expression of c-KIT in these 427 

malignancies, SCF participates in early B-cell development in association with interleukin-7 428 

(IL7) [161]. Moreover, it was shown that ALL cells can modify their microenvironment by 429 

producing SCF [43]. Thus, the involvement of SCF signaling in the homing and 430 

pathophysiology of ALL may merit exploration, as suggested by a recent report [174]. 431 

The SCF/c-KIT axis plays also an important role in male reproduction, as suggested by 432 

the infertility of mice with mutations affecting both the W (encoding c-KIT) or Sl (encoding 433 

SCF) loci [161,163]. In the testis, SCF is produced by Sertoli cells and c-KIT is expressed on 434 

the surface of germ cells and Leydig cells, raising the possibility that Sertoli cells secrete a 435 

soluble form of SCF [171,175,176]. Indeed, a higher percentage of mRNA for the soluble 436 

than membrane form of SCF correlated with higher serum testosterone levels in infertile 437 

patients [177]. These results suggest that Sertoli cells may produce soluble SCF that reaches 438 

Leydig cells and thus enhance testosterone production. Moreover, SCF expression in normal 439 
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adult interstitial testicular tissue has been reported both in mice and humans in several 440 

immunohistochemistry studies, even if several others did not [178–181]. Thus, leukemia cells 441 

may be attracted to or retained in testicular interstitial tissue at least partially through 442 

activation of the SCF/c-KIT pathway. 443 

SCF is also expressed in the adult CNS, as well as in CSF, and is involved in CNS 444 

development during embryogenesis [182–184]. There is no direct evidence in the literature for 445 

a role of the SCF/c-KIT axis in the attraction of leukemia cells to the CNS or their subsequent 446 

survival. However, SCF is one of the specific cytokines expressed by endothelial cells of the 447 

blood-brain barrier [183]. Kallman et al. compared gene expression profiles of human 448 

umbilical vein endothelial cells (HUVEC) and primary human cerebral endothelial cells using 449 

a cDNA array technique and found that 35 genes were differentially expressed in cerebral 450 

endothelial cells, including those for interleukin-6 (IL-6), transforming growth factor β2 451 

(TGF-β2), VEGFA, and SCF [183]. An enzyme-linked immunosorbent assay (ELISA) 452 

confirmed that the supernatant from these cells contained SCF. Thus, endothelial cells of the 453 

CNS can produce SCF that may attract and/or promote the survival of leukemia cells that 454 

express c-KIT. 455 

Overall, these examples suggest that the SCF/c-KIT axis may be an attractive 456 

therapeutic target for leukemia relapse, both at medullary and extramedullary sites, as well as 457 

for various solid tumors.  458 

d) Other shared factors  459 

The extracellular matrix protein osteopontin, which is physiologically produced in the 460 

BM, participates in the pathophysiology of various cancers, including hematological 461 

malignancies, with a potential role in leukemic cell CNS infiltration [185,186]. Colony 462 

stimulating factor 1 (CSF1), a cytokine involved in macrophage differentiation and 463 
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constitutively expressed by osteoblasts, is expressed in prepubertal and adult testicular 464 

interstitial tissue, notably by macrophages, and has a role in regulating spermatogonial stem 465 

cells and their niche[187–189]. CSF1 is also expressed in the CNS, where it maintains 466 

microglia and participates in CNS development [190]. CSF1 deficiency impairs both 467 

reproductive function and integrity of the CNS. Genetic alterations involving the CSF1 468 

receptor, including the recurrent SSBP2-CSF1R fusion, have been identified in B-ALL and 469 

have been found to lead to a functional fusion, suggesting that targeting CSF1 signaling could 470 

be promising [191–193]. Another cytokine, transforming growth factor β1 (TGFβ1), regulates 471 

Leydig cell function in the testis, but is also secreted by the choroid plexus in the CSF, where 472 

it contributes to the maintenance of the choroid plexus itself and appears to be involved in the 473 

protection and repair of nervous tissue. TGFβ1 has been shown to be involved in cancer 474 

stemness, metastasis, and epithelial-mesenchymal transition in several cancer models. 475 

Recently, TGFβ1 was found to promote the escape of leukemic cells from natural killer (NK) 476 

immune surveillance in an ALL model. 477 

All these factors and other components, such as the various cell types found within the 478 

niche, may also contribute to therapy resistance by preventing treatments from reaching their 479 

targets. BM and extramedullary sites may therefore contain pharmacological niches, where 480 

leukemic cells are protected from the effects of chemotherapy. For example, mesenchymal 481 

stem cells have been shown to participate in the resistance of leukemic cells to asparaginase 482 

treatment by providing them with asparagine [194]. Interestingly, it was further found that 483 

vincristine treatment administrated prior to asparaginase can affect mesenchymal cells, thus 484 

blocking the secretion of asparagine and overcoming this resistance mechanism [195]. This 485 

indicates that treatments may exert their effect not only by affecting leukemic cells but also 486 

their microenvironment. 487 
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We have shown that leukemic cells, like other cancer cells, exploit several identical 488 

features of the microenvironment to reach distant sites. We now discuss whether blast cells 489 

may prepare their distant niches for engraftment and proliferation.  490 

IV. The interplay between leukemic cells and the microenvironment  491 

1. Leukemic and cancer cells model their niche 492 

More than one century ago, Stephen Paget noted that breast cancer metastases occur 493 

more often in some tissues than others and, refuting that this could hardly occur by chance or 494 

solely by embolism, formulated his famous “seed and soil” hypothesis [196]. He compared 495 

cancer cells to plant seeds that can only grow in favorable soil, that is, in a tissue somewhat 496 

predisposed to welcome them. At that time, he already recognized that not only cancer cells 497 

but also their “soil” would be worth studying. Since then, a large amount of information has 498 

accumulated on cancer cell biology and the organotropism phenomenon has been 499 

experimentally explored and demonstrated [197,198]. We illustrated above that some 500 

leukemic cells, like some cancer cells, may be prone to home to and remain in certain 501 

microenvironments that resemble that from which they originated. However, such a remote 502 

and different microenvironment will not perfectly match the original niche and will probably 503 

not meet all the needs of the leukemic cells.  504 

Indeed, there is evidence that leukemic cells can remodel their microenvironment [199]. 505 

Colmone et al. used an in vivo microscopy imaging approach and found that ALL cells 506 

remodeled the BM microenvironment they colonized, notably through SCF signaling, leading 507 

to an abnormal niche that recruited and somehow trapped normal hematopoietic progenitors 508 

[43]. More recently, Boyerinas et al. xenografted the leukemic Nalm6 cell line in a mouse 509 

model and showed that the leukemic cells secreted osteopontin into the invaded 510 

microenvironment, which in turn also produced osteopontin [200]. It was also shown using ex 511 
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vivo co-cultures of primary mesenchymal stromal cells and either the Nalm6 cell line or 512 

primary ALL cells that although the CXCL12/CXCR4 axis was involved in leukemic cell 513 

migration, other chemokines, such as C-C motif chemokine ligand 2 (CCL2) and CXCL8 may 514 

be involved in leukemic niche formation, independently of the CXCL12/CXCR4 axis. 515 

Transwell assays also demonstrated that leukemic cells could recruit mesenchymal stromal 516 

cells to initiate the leukemic niche, in which secreted chemokines might attract other leukemic 517 

cells while inhibiting that of healthy hematopoietic progenitors and mesenchymal stromal 518 

cells [201]. These results are consistent with those of other studies including that of Colmone 519 

et al. in which Nalm6 cells colonized CXCL12 niches in the BM of xenografted mice, which 520 

subsequently resulted in marked downregulation [43,202]. A recent report showed that 521 

leukemic cells can promote osteoclast-mediated bone resorption through the production of 522 

receptor activator of nuclear factor κB ligand (RANKL) [203]. This is in accordance with a 523 

previous report that demonstrated in a T-ALL mouse model that ALL cell engraftment in the 524 

BM of mice was associated with bone microenvironment remodeling due to a marked loss of 525 

osteoblastic cells [204]. Duan et al. used ex vivo imaging of xenografted mice to confirm that 526 

engrafting ALL cells alters the BM microenvironment, resulting in damage to the vasculature 527 

and endosteal lining. This report also showed that, following chemotherapy, leukemic cells 528 

secreted cytokines, namely CCL3 and TGFβ, inducing phenotypic changes in the surrounding 529 

mesenchymal stem cells. These cells provided a protective microenvironment for the 530 

leukemic cells by converting a growth differentiation factor 15 (GDF-15) proform secreted by 531 

the leukemic cells into a mature form, which led to the activation of TGFβ signaling, thereby 532 

conferring chemoresistance [44]. 533 

 Recent studies on solid tumors have led to a better understanding of cancer-cell 534 

organotropism and metastatic niche formation. Kaplan et al. first demonstrated, in 2005, that 535 

cancer cells can remotely prepare an appropriate niche before reaching their metastatic site 536 
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[198,205]. The authors demonstrated that cancer cells secrete certain factors that may 537 

predispose them to metastasize toward a specific location. They first suggested cytokines, but 538 

discovered several years later that the cancer cells produced exosomes that could direct 539 

metastatic cancer cells to specific tissues [198,206]. Exosomes are small extracellular vesicles 540 

(30-100 nm of diameter) that can be transferred to other distant cells to deliver functional 541 

molecules, such as peptides or nucleic acids. Thus, exosomes are a means of intercellular 542 

communication suitable for remote cells. Exosomes derived from different cancer cell lines 543 

specifically target different tissues. An elegant experiment showed that exosomes can 544 

“educate” cancer cells to reach a specific tissue. Mice were injected with exosomes from cells 545 

that usually metastasize to the lungs before being transplanted with cells that do not usually 546 

metastasize to the lungs, but to bones. This experiment resulted in a large significant increase 547 

in lung metastases. Going further, the authors found that exosomal organotropism was 548 

determined by their integrins, which allowed exosome uptake by specific tissue-resident 549 

stromal cells within target tissues. Exosome uptake by these cells was followed by 550 

upregulation of the expression of S100 family pro-migratory and pro-inflammatory genes, 551 

which could favor tumor metastasis. Importantly, specific exosomal integrins recovered from 552 

plasma samples of patients with pancreatic or breast cancer correlated with the location of the 553 

metastases, and may even likely predict future metastatic sites at the time diagnosis.  554 

2. Means of communication between ALL cells and supportive cells 555 

 Several means of communication are available to ALL cells to interact and 556 

communicate with their surrounding microenvironment and they may be used simultaneously. 557 

The role of exosomes in the pathophysiology of several cancers is becoming increasingly 558 

understood but has been little studied, to date, in the context of ALL [83,207]. However, 559 

recent findings have shown that large extracellular vesicles (EVs), released through plasma 560 

membrane budding, may be of particular importance for the communication between ALL 561 
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cells and their microenvironment [208,209]. Indeed, the group of Vaskar Saha showed that 562 

ALL cells can produce EVs of varying size, some of which could be transferred horizontally 563 

to other ALL cells, as well as BM stromal cells, resulting in phenotypic changes in the 564 

recipient cells [209]. The transfer of large EVs to BM stromal cells induced a metabolic 565 

change, favoring glycolysis in these cells, which increased the lactate concentration in the 566 

medium, thereby providing the leukemic cells with their preferred fuel, as hypothesized by the 567 

authors [208]. These large EVs were released into the systemic circulation of xenografted 568 

mice. It is thus possible that EVs participate in similar metabolic reprogramming and/or other 569 

phenotypic changes in remote stromal cells to promote ALL-cell migration to the secondary 570 

sites. Although more compelling evidence has yet to be provided, it seems likely that both 571 

exosomes and large EVs are involved in preparing a remote suitable niche for ALL cells. In 572 

addition, large EVs may also contain intact organelles that could be transferred to recipient 573 

cells [209]. Not all cells can generate EVs. Thus, as discussed by the authors, such 574 

mechanisms may allow EV-producing resistant leukemic cells to promote chemoresistance, or 575 

even resistance to targeted therapies, by transferring pro-resistant cellular content to other 576 

sensitive cells.  577 

The transfer of organelles, such as mitochondria, could also allow recipient cells to cope 578 

with acute stress [210]. Another recent study showed that ALL cells also communicate with 579 

mesenchymal stromal cells using tunneling nanotubes to set up their niche [211]. Tunneling 580 

nanotubes are thin plasma membrane protrusions that connect one cell to another and allow 581 

the exchange of cellular content. This means of intercellular communication is independent of 582 

others and can promote leukemic cell survival, chemoresistance, and the release of cytokines 583 

into the microenvironment. The use of fluorescent dyes has made it possible to visualize the 584 

exchange of cellular content in both directions, from leukemic cells to mesenchymal stromal 585 
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cells and vice versa, confirming that ALL cells establish crosstalk with the surrounding 586 

microenvironment to protect themselves and promote their survival [211]. 587 

 Direct contact of leukemic cells with stromal cells has also been previously 588 

highlighted in the pathogenesis of leukemia. Indeed, direct contact with stromal cells favors 589 

ALL cell survival, offers them a protective environment, and may minimize the effects of 590 

cytotoxic drugs [212–215]. Such cell-cell contact was found to be mediated, notably, by the 591 

binding of integrin α4β1, also called very late antigen-4 (VLA4), expressed on the surface of 592 

ALL cells, to the vascular adhesion molecule-1 (VCAM1), expressed on the stromal cell 593 

surface [216]. Integrin α4β1 can also bind to extracellular matrix proteins, such as 594 

osteopontin and fibronectin, and has been shown to play an important role in ALL cell homing 595 

in mice [200,217,218]. In addition to its role in adhesion to extracellular matrix and/or stroma, 596 

it is likely that integrin α4β1 binding to its receptor induces signaling cascades to promote 597 

leukemic cell survival, proliferation, and/or chemoresistance [218]. Gap junctions are also 598 

involved in cell-cell interactions within the leukemic niche. Gap junctions allow the direct 599 

exchange of small molecules between two adjacent cells by creating a channel, most often 600 

through the alignment and docking of two connexons (consisting of hexamers of specialized 601 

proteins called connexins) of each cell. Several studies have suggested that leukemic cells can 602 

communicate with stromal cells through gap junctions formed with connexin 43 (Cx43) [219–603 

223]. Although the mechanisms are still unclear, it appears that Cx43 gap junctions are 604 

dysregulated in leukemic BM. Another connexin, Cx25, has recently been thought to be 605 

involved in the pathogenesis of leukemia through gap junctions [224]. The authors showed, 606 

using both T-ALL and AML cells, that inhibiting gap junctions by selective Cx25 knockdown 607 

sensitized the cells to chemotherapy, suggesting that concomitant Cx25-targeted treatment 608 

could allow reducing the dose of cytotoxic agents in clinical practice, thereby reducing the 609 

side effects of chemotherapy while conserving its efficacy [224].  610 
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 Direct communication of leukemic cells with the surrounding supportive cells, 611 

probably as well as distant communication from the original to the secondary niche, appears 612 

to be of crucial importance. Once in the secondary niche, leukemic cells must deal with the 613 

local cells, which must be suitable surrogates that sufficiently resemble BM stromal cells. In 614 

the CNS, for example, Akers et al. found, in vitro, that ALL cell lines were attracted to 615 

astrocytes, choroid plexus epithelial cells, and even more strongly to meningeal cells, to 616 

which they could strongly adhere. The authors showed that these cells from the CNS secreted 617 

amounts of CXCL12 equivalent to those of BM stromal cells and osteoblasts and that CXCR4 618 

blockade with plerixafor could inhibit ALL cell migration toward meningeal and plexus 619 

choroid epithelial cells. They also observed that co-culture of both ALL cell lines and primary 620 

ALL cells with any of these CNS cells decreased the effects of commonly used chemotherapy 621 

drugs on leukemic cell viability. The provided chemoprotection was likely the result of the 622 

combined effects of soluble factors and cell-cell contacts between the ALL cells and the CNS 623 

cells [225]. This study illustrates that ALL cells can interact with supportive cells other than 624 

those which belong to the niche from which they originate. Such cells may therefore be 625 

similar to those of the BM niche and ALL cells can communicate with them to enhance their 626 

leukemic-supportive properties and adapt themselves to better settle into secondary niches.  627 

 The interconnections involved in this interplay are complex, but the methods used in 628 

studies usually only focus on one aspect of one component of the leukemic 629 

microenvironment. For example, cell-cell interactions have mostly been studied through co-630 

culture systems consisting of only leukemic cells and one type of stromal cell, although 631 

leukemic cells probably interact not only with supportive stromal cells but also other cells 632 

within the microenvironment. Similarly, hypoxia can induce CXCL12 and CXCR4 633 

expression, as well as that of SCF, and SCF itself has been found to increase HIF1α 634 

expression [226]. Leukemic cells may escape the effects of therapy by taking advantage of 635 
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this system, of which the complexity is even more pronounced if we consider other 636 

parameters, such as temporality.  637 

3. The chicken or the egg causality dilemma in ALL relapses  638 

 An intriguing question is whether the cells found far from their original niche are the 639 

result of the development of a resistant clone that reached its secondary niche in response to 640 

treatment, or whether these cells were already there as leukemic or preleukemic clones, even 641 

before diagnosis. Recently, Williams et al. addressed this question in the context of B-ALL 642 

and found that most leukemic cells had the capacity to infiltrate the CNS and were not 643 

restricted to a specific population [69]. They demonstrated, in clonal tracking experiments, 644 

that the populations engrafting the CNS were polyclonal, and that the clones found in the 645 

CNS were also found in the spleen or BM of xenografted mice. The authors concluded that 646 

CNS invasion is a “generic” capacity of leukemic cells but, as they also discussed, their 647 

results do not rule out the possibility of the existence of specific clones particularly well-648 

adapted for invading the CNS microenvironment and surviving there. They also did not 649 

discuss whether the cells already possessed this capacity to invade the CNS at a preleukemic 650 

stage. Also, one cannot exclude that a leukemic cell may had been generated during 651 

embryonic or fetal hematopoiesis and would stay in a dormant state in the CNS.  652 

Similarly, solid tumor cells can settle at tissues distant from their original site early 653 

during the course of the disease, even before detection of the primary tumor [227,228]. Solid 654 

cancers, as well as leukemia, must be viewed as a systemic disease, in which cancer cells 655 

spread and engraft early at predisposed tissues that provide protection against insults, such as 656 

chemotherapy, notably through the induction and maintenance of a dormant state [227,229]. 657 

However, as metastasis is an inefficient process, only a few cells may have the ability to 658 

survive and grow out of their original niche [230]. Such rare cells would be able to adapt 659 
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themselves to a new microenvironment, where they could become quiescent or grow slowly, 660 

explaining why some patients experience very late relapses in distant tissues. The existence of 661 

leukemic stems cells (LSCs) that would be responsible for late relapses may also be evoked. 662 

However, these LSCs are not well characterized, especially in B-ALL, and several reports 663 

indicate that ALL cells with the capacity to initiate leukemia are relatively frequent [231, Le 664 

viseur 2008]. We have therefore chosen to focus on the role of the microenvironment, which 665 

appears to play an important part in the leukemia-initiating ability of ALL cells.  666 

Ebinger et al. recently used an ingenious cell labeling system in patient-derived 667 

xenografts to provide evidence that such dormant cells exist in ALL and provided a robust 668 

preclinical model [45]. The authors found that these dormant cells shared a similar 669 

transcriptional program with leukemic cells found at MRD level in patients. Moreover, these 670 

dormant cells were resistant to conventional chemotherapy in vivo, but became sensitive to 671 

drugs when retrieved from their microenvironment and treated ex vivo [45]. This result has 672 

two principal clinically relevant implications: first, the dormant phenotype that appears to be 673 

harbored by MRD cells is reversible and second, the microenvironment appears to play a 674 

critical role, strongly suggesting that targeting the microenvironment could be a promising 675 

strategy to kill the disease and prevent relapse and treatment failure. As the authors state, it 676 

may also explain why children treated for ALL benefit from standard maintenance therapy 677 

that continues for two years from diagnosis: daily doses of low-dose chemotherapy might help 678 

to progressively eradicate all ALL cells, including the dormant cells that may reenter the cell 679 

cycle after the intensive phase of treatment. Although the authors showed that dormant ALL 680 

cells were preferentially found close to the BM endosteum, they did not explore engraftment 681 

in other tissues. It would be informative to use their model to verify whether such dormant 682 

cells can also be found in the extramedullary tissues frequently invaded in clinical practice, 683 

especially the perivascular areas described above. This study also argues in favor of an 684 
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extramedullary origin for combined ALL relapses, especially late relapses [59], as the 685 

dormant ALL cells were shown to have leukemia-initiating properties. 686 

V. From bench to bedside 687 

Leukemic cells interact dynamically with their microenvironment. Indeed, intravital 688 

microscopy experiments, which allowed the high-resolution observation of leukemic cells in 689 

live animals, showed the leukemic cells to be motile without any objective preference for a 690 

specific location or supportive cells [204]. Treatment of the mice with drugs commonly used 691 

in clinical practice (vincristine, dexamethasone, and asparaginase) reduced the leukemic 692 

burden and induced an increase in the proportion of quiescent cells, but did not modify the 693 

patterns of cell distribution and the cells kept moving, even faster than those of untreated mice 694 

[204]. These results suggest that leukemic engraftment was randomly driven, in contrast with 695 

other reports and commonly held beliefs. Thus, as stated by Williams et al., engraftment 696 

potential may not be restricted to a specific cell population but may be shared by most ALL 697 

cells. This was recently corroborated by two independent studies [69,231,232]. In these 698 

studies, the authors used a cellular barcoding strategy to track leukemic clone engraftment in 699 

the BM of different bones and several extramedullary tissues of xenografted mice [231,232]. 700 

Both studies showed that the engrafting cell populations were polyclonal, similarly to solid 701 

tumors, suggesting that all founder cells were able to reconstitute a leukemic bulk population. 702 

However, the authors found that the clonal distribution differed depending on the tissues 703 

analyzed: a clone could be more highly represented in one tissue, whereas another could be 704 

predominant in another tissue. The authors stated that this asymmetric clonal distribution was 705 

presumably stochastic and probably not due to clonal preference or a predisposition to settle 706 

in one site over another. As the authors discussed, the specific microenvironment may confer 707 

an advantage to arriving leukemic cells that favors settlement and/or the proliferation, 708 

explaining the observed asymmetric distribution. Notwithstanding the evidence provided by 709 
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the intravital microscopy experiment of Hawkins et al., some cells from the founder 710 

population exposed to such a niche may become quiescent and be the ancestor of a subsequent 711 

relapse [204].  712 

 Aside from these studies, there is evidence in the literature suggesting that leukemic 713 

cells could themselves carry specific features that may direct their engraftment to one or 714 

another tissue. Van der Velden et al. recently identified a protein profile that could potentially 715 

help predict CNS relapse at the initial diagnosis. A comparison of the gene expression profiles 716 

between leukemic cells from the BM and CNS of patients allowed the identification of  genes 717 

differentially expressed by leukemic cells from the CNS. Among these genes, SSP1 (coding 718 

for osteopontin) and SCD (coding for stearoyl-CoA desaturase) were found to be upregulated, 719 

which was further confirmed both at the mRNA and protein levels. Retrospective flow 720 

cytometry analysis of BM samples from patients who experienced a CNS relapse showed that 721 

both SPP1 and SCD proteins were elevated in a small subpopulation of cells, suggesting that 722 

this expression profile might be used in a clinical setting to predict CNS relapse [233]. As 723 

Frishman-Levy and Izraeli discussed in a recent review, in which they summarized current 724 

knowledge concerning CNS leukemia, the contradictory nature of these results with those of 725 

Williams et al. could be partially explained by methodological discrepancies (mouse 726 

xenograft model versus a human model). The idea that CNS tropism may be linked to a 727 

specific ALL population is also supported by the association of several recurrent genetic 728 

alterations with the incidence of CNS relapse. Indeed, the chromosomal rearrangement 729 

t(1;19), leading to the TCF3-PBX1 fusion transcript, has been associated with an increased 730 

risk of ALL relapse in the CNS [234,235]. This clinical finding has recently been supported 731 

by a biological explanation. It was shown that primary leukemic cells expressing the TCF3-732 

PBX1 transcript expressed high levels of Mer tyrosine kinase, for which the signaling 733 
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pathway was further shown to be involved in ALL cell survival and chemoresistance in the 734 

CNS microenvironment [236].  735 

Leukemia with the t(12;21) chromosomal rearrangement, which leads to the ETV6-736 

RUNX1 fusion protein, is associated with an increased risk of testicular relapse [4]. We 737 

previously compared the expression profiles of ETV6-RUNX1 with those of other B-ALL and 738 

found that fourteen genes were differentially expressed in this type of leukemia [237]. Among 739 

these genes, CD9 (tetraspanin) was found to be underexpressed, which was further confirmed 740 

by flow cytometry of patient samples [238]. We reasoned that CD9 may be involved in the 741 

pathogenesis of this particular B-ALL subtype [239]. We found that CD9 has a role in 742 

leukemic cell dissemination through the Ras-related C3 botulinum toxin substrate 1 (RAC1) 743 

signaling pathway. Importantly, we showed that the more CD9 was expressed at the surface of 744 

ALL cells, the more cells were able to migrate into the testes in a mouse xenograft model 745 

[110]. Thus, ETV6-RUNX1 ALL relapses may be partially explained by enhanced CD9 746 

expression, which favors blast dissemination and engraftment into the testis. 747 

 We postulate that ALL relapses occurring at specific sites could be explained by the 748 

association of both extrinsic and intrinsic factors, thus reconciling biological and clinical 749 

research findings. Specific genetic alterations may modify cell signaling pathways that could 750 

render the cells stochastically exposed to a specific microenvironment to take advantage of it 751 

and durably settle in it.  752 

The role of the microenvironment in the pathogenesis of ALL has also been suggested 753 

by the good results obtained by treating or preventing extramedullary relapses with 754 

specifically directed local treatments. Indeed, aside from the introduction of high-dose 755 

methotrexate or aracytine, successful treatment of testicular or meningeal involvement has 756 

been specifically directed at the tumor: surgery/radiation therapy for the testis and intrathecal 757 

chemotherapy or radiation therapy for the meninges. This may explain the relatively good 758 
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prognosis for relapses at these sites and is another argument for an important role of the 759 

microenvironment, which is removed by surgery and radiotherapy. The role of the intrinsic 760 

properties of leukemic cells concerning their interaction with their surrounding 761 

microenvironment may be illustrated by the worse prognosis seen in Ph-like and Ph+ B-762 

ALLs. Ph+ B-ALL and Ph-like B-ALLs share similar genetic alterations and a poor response 763 

to chemotherapy relative to other B-ALL subtypes. Within these subtypes, alteration of the 764 

Ikaros gene is frequently found. This alteration was shown to alter the adhesive properties of 765 

leukemic cells and may influence their settlement in their niche.[240].  766 

VI. Therapeutic challenges  767 

 Therapeutic efforts in the past 15 years have mainly focused on the development of 768 

new molecules and immunological approaches directed against specific targets expressed on 769 

leukemic cells. Treatment intensification in patients with the most unfavorable prognostic 770 

factors has not only improved their survival, but also allowed to efficiently treat 771 

extramedullary leukemia without using local treatments. As mentioned earlier, the use of high 772 

doses of certain drugs, such as methotrexate, reduced the incidence of extramedullary 773 

involvement. Apart from these leukemic cell-oriented targeted therapies, therapeutic strategies 774 

oriented toward leukemic niches are also attracting increasing interest [241]. Figure 3 775 

illustrates a few examples of strategies that could be used to target leukemic cells in their 776 

microenvironment and Table 1 shows several examples of molecules that could be used or 777 

tested in clinical practice during the coming years. These strategies may also be applied to 778 

reach cancer cells in solid tumor metastatic niches.  779 

First, preventing cell migration and engraftment into the niche or, conversely, the 780 

mobilization of niched cells could be attempted, for example by disruption of the 781 

CXCL12/CXCR4 axis using CXCR4 inhibitors, such as plerixafor [105,124,242,243]. 782 
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Targeting cell adhesion to the extracellular matrix or supportive cells may also be a useful 783 

strategy, for example, by inhibiting α4β1 integrin-mediated adhesion with a specific 784 

monoclonal antibody, such as natalizumab, or a chemical inhibitor, such as TCB3486 785 

[244,245]. Another possible niche-oriented therapeutic strategy could be to target integrins, 786 

since exosomes home to future metastatic sites via integrins in melanoma and lung cancer 787 

models. Directly targeting integrins could thus interrupt cellular communication with the 788 

secondary niches [206]. Targeting niche features may also be a beneficial strategy, for 789 

example by using hypoxia-activated prodrugs, such as PR104 and TH-302 [141,145–790 

147,246]. In ALL, modifying the leukemic microenvironment to reverse the phenotype of 791 

dormant blast cells could be also a viable option [45]. This could be achieved by restoring a 792 

healthy microenvironment, for example by using bisphosphonates that could prevent bone 793 

degradation, which is observed in leukemia pathogenesis [203,204]. Another possible strategy 794 

could target signaling pathways that are upregulated upon the interaction of malignant cells 795 

with their microenvironment, such as the TGFβ and HIF1α pathways, for which several 796 

preclinical or early clinical studies have been published [246,247]. The immune system could 797 

also be manipulated, as seen in Hodgkin lymphoma, a hematological malignancy with a rich 798 

microenvironment, with impressive results from recent early clinical trials testing specific 799 

anti-programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) antibodies [248,249].  800 

Many challenges have yet to be addressed concerning these and other strategies that 801 

could target malignant cells in their niches in hematological and solid cancers. Given the 802 

complexity of the microenvironment, successful treatment will probably require a 803 

combinatory approach, by associating these therapies both between themselves and with 804 

conventional chemotherapies. It is likely that such treatments would exert their full potential 805 

by adding them to chemotherapy after the initial diagnosis to prevent the occurrence of 806 
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relapse. They should probably be reserved for refractory patients or those with the highest risk 807 

of relapse. 808 

VII. Conclusion and future directions 809 

Leukemic niches and their interplay with leukemic cells are of tremendous complexity, 810 

for which we have only limited information. The aim of this review was to illustrate this 811 

concept by giving a few examples, rather than being exhaustive, to describe potential niche-812 

targeted therapeutic strategies that could be considered in the near future. We chose to 813 

consider leukemia relapses like solid tumor metastases. We described several features of the 814 

microenvironments of medullary, extramedullary, and metastatic niches, focusing on their 815 

similarities, suggesting that ALL relapses might be considered more like leukemic metastases. 816 

We provide lines of evidence showing that ALL cells, as well as other cancer cells, can 817 

communicate with and remodel their microenvironment. Similar to solid tumors, ALL cells 818 

can reach secondary sites and settle down, where they can remain dormant for years before 819 

initiating a relapse. Although some intrinsic factors may predispose cells to invade one tissue 820 

over another, the microenvironment undoubtedly plays an important role in leukemic cell 821 

engraftment, making niche-based targeted therapies promising and worth developing. 822 

However, given the complexity of the niches and the dynamic interconnections between each 823 

microenvironmental actor, it will be a considerable challenge to elaborate therapies that can 824 

efficiently and durably overcome resistance. Determining the appropriate placement of such 825 

therapies in current treatment strategies is also an open question that will need to be 826 

addressed.  827 

VIII. Practice points 828 

• ALL cells appear to localize preferentially in perivascular regions of the tissues they 829 

colonize. 830 
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• Testicular, CNS and BM leukemic niches and solid tumor metastatic niches display 831 

similarities potentially accounting for the residence of leukemic cells in these 832 

preferred microenvironments. 833 

• The interplay between leukemic niches and ALL cells is complex, dynamic and 834 

bidirectional. 835 

• Relapses in specific tissues can be explained by both the microenvironment in these 836 

tissues and the intrinsic properties of ALL cells. 837 

• Niche-based targeted therapies are currently being developed and may effectively 838 

prevent ALL relapses. 839 

• Systemic treatments such as chemotherapy remain the best option to successfully treat 840 

extramedullary leukemia.  841 

 842 

IX. Research agenda 843 

• Further efforts are required to determine why leukemic cells settle preferentially in 844 

specific niches, to identify the most relevant microenvironmental features for 845 

therapeutic targeting. 846 

• The combination of niche-based targeted treatments and conventional chemotherapy 847 

may prevent relapse. 848 

• Clinicians should define the categories of patients most likely to benefit from such 849 

treatments. 850 
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FIGURE LEGENDS 1591 

 1592 

Figure 1. Clonal evolution of leukemic cells from preleukemic stage to relapse. A first 1593 

genetic hit, such as an ETV6-RUNX1 rearrangement, in a hematopoietic progenitor leads to 1594 

the apparition of a preleukemic clone, which can subsequently accumulate other genetic 1595 

alterations to give rise to leukemic “ancestral clones”. Such clones may be present before 1596 

birth, as notably shown for ETV6-RUNX1. Further genetic hits favor the emergence of clones 1597 

that give rise to an overt acute lymphoblastic leukemia (ALL), which may be composed of a 1598 

major clone and minor clones. After diagnosis, treatment of ALL with chemotherapy can 1599 

eradicate all or almost all leukemic cells. Some cells from the bulk population may survive 1600 

and give rise to a relapse with the same major clone found at diagnosis (situation C). 1601 

Alternatively, cells derived from either major or minor clones may undergo other genetic 1602 

alterations, leading to a different type of relapse, as shown in situations B and D. Relapsed 1603 

leukemia may also derive from another ancestral clone or even directly from the preleukemic 1604 

clone, which may have evolved on their own (situations A and E).  1605 
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 1606 

Figure 2. Main sites of acute lymphoblastic leukemia (ALL) relapse. (A) Bone marrow. 1607 

This extensively simplified schematic view of the bone marrow (BM) illustrates where ALL 1608 

cells are mainly found in the perivascular spaces close to the endosteum. The endosteum 1609 
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corresponds to a thin layer of conjunctive tissue delineating BM and covered with osteoblasts 1610 

and osteoclasts, which participate in balancing the renewal and remodeling of bone tissue.  1611 

CXCL12-abundant reticular cells, specialized stromal cells near vessels, produce CXCL12, 1612 

which appears to be necessary for ALL cell engraftment in BM. (B) Testis. Testis is the organ 1613 

in which male gametes are produced. Germ-cell maturation takes place in specialized 1614 

structures called seminiferous tubules, which are surrounded by an interstitial tissue and 1615 

regrouped into lobules. The lobules are separated by fibrous septa which are in continuity 1616 

with the capsular region. The testis is encapsulated in a fibrous covering called the tunica 1617 

albuginea. The production of germ cells begins at the basement membrane, which surrounds 1618 

the seminiferous tubule and where germ cells are the most immature. The germ cells mature 1619 

as they progress from the basal part of the tubule to the lumen, where fully mature sperm cells 1620 

are found. Throughout the maturation process, germ cells are enclosed by Sertoli cells, which 1621 

form tight junctions between themselves to protect the germ cells and compartmentalize the 1622 

maturation steps. The role of the  blood-testis barrier is to protect germ cells from potentially 1623 

deleterious molecules or cells. The blood-testis barrier is anatomically composed of the 1624 

basement membrane, Sertoli cells, and their tight junctions, but does not encompass blood 1625 

vessels, making the term “blood-testis barrier” inaccurate. Between the seminiferous tubules, 1626 

the interstitial tissue, or interstitium, is composed mainly of supportive cells, called Leydig 1627 

cells, of which one of the main roles is to produce testosterone. During testicular leukemia, 1628 

ALL cells are mainly found in the interstitial perivascular spaces, and occasionally in 1629 

seminiferous tubules, but only at very advanced stages of the disease, following inappropriate 1630 

treatment. (C) Central nervous system. The central nervous system (CNS) consists of the 1631 

brain, cerebellum, and spine. CNS tissue is surrounded by three meningeal layers: the thick 1632 

dura mater, the arachnoid membrane, from which trabeculae fibers cross the subarachnoid 1633 

space to reach the third thin layer, the pia mater, which is in direct contact with CNS tissue. 1634 
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Cerebrospinal fluid circulates in the subarachnoid space, where blood vessels are found. 1635 

When the CNS is involved, ALL cells localize mainly in the subarachnoid space, close to 1636 

vessels, whereas some cells may circulate freely in the cerebrospinal fluid. 1637 

 1638 

Figure 3. Potential therapeutic strategies to target the leukemic niche. The leukemic 1639 

niche is a highly complex microenvironment made of many components or aspects that could 1640 

be targeted. Potential niche-based treatments are represented by the darts, which could be 1641 

used simultaneously to target different components, as symbolized by the blurry delineations 1642 

on the target.  1643 
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TABLE LEGENDS 1644 

Table 1. Examples of studies using molecules that target components of the leukemic niche. 1645 

Target Study [ref] Type of 
study 

Tested 
molecule 

Number of 
patients 

Main 
results/comments 

CXCL12/CXR4 
axis 

Cooper et 
al., 2017 
[243] 

Phase I Plerixafor 
20 (5 ALL, 
12 AML, 1 
AML/MDS) 

Maximum dose 15 
g/m2 without DLT 
Heavily pretreated 
patients 
Plerixafor 
administrated prior to 
chemotherapy (HD-
araC + VP16) 
Mobilization of 
lymphoblasts achieved 
No clinical response in 
ALL patients (4 SD, 1 
PD) 

 
Juarez et al., 
2007 [124] 

Preclinical 
(animal 
study) 

Plerixafor, 
TC14012, 
AMD3465 

NA 

Reduced 
extramedullary 
engraftment of ALL 
cells in xenografted 
mice 
Mobilization of ALL 
cells in PB and spleens 
of xenografted mice 
Continuous 
administration 
equivalent to 
intermittent 
administration 

 

Ranhawa et 
al, 2016 
[244] 

Preclinical 
(in vitro 
and animal 
study) 

Plerixafor, 
BKT140, 
CXCR4 genetic 
deletion 

NA 

Reduced chemotaxis of 
B-ALL cells 
Restoration of drug 
sensitivity of resistant 
B-ALL cells co-
cultured with BMSCs 
Delayed engraftment 
and prolonged survival 
of mice xenografted 
with CXCR4-deleted 
B-ALL cells 

 
Juarez et al. 
2003, [105] 

Preclinical 
(in vitro 
study) 

Plerixafor, 
TC14012 NA 

Reduced chemotaxis of 
B-ALL cells 
Reduced proliferation 
of B-ALL cells 
cultured on stromal 
BM cells 
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Target Study [ref] Type of 
study 

Tested 
molecule 

Number of 
patients 

Main 
results/comments 

Augmentation of 
inhibitory effects of 
chemotherapy 

Integrin alpha4 Hsieh et al. 
2013 [245] 

Preclinical 
(in vitro 
and animal 
study) 

Natalizumab NA 

Prolonged survival of 
xenografted mice 
Synergistic effect with 
chemotherapy (marked 
prolonged survival) 
Reduced engraftment 
in liver, spleen, and 
BM of xenografted 
mice and enhanced 
engraftment in lungs. 

 
Hsieh et al. 
2014 [246] 

Preclinical 
(in vitro 
and animal 
study) 

TBC3486 NA 

Reduced 
chemoresistance of B-
ALL cells 
Prolonged survival of 
xenografted mice 
Synergistic effects with 
chemotherapy in vivo 

HIF1a Badar et al., 
2016 [146] Phase I TH-302 

(evofosfamide) 

49 (39 AML, 
9 ALL, 1 
CML) 

Heavily pretreated 
patients 
5 days of 
administration over 21-
day cycles 
Maximum tolerated 
dose 460 mg/m2 as 
intermittent 
administration and 330 
mg/m2 as continuous 
infusion. 
1 patient with T-ALL 
with PR 

 
Benito et al. 
2016 [147] 

Preclinical 
(in vitro 
and animal 
study) 

TH-302 
(evofosfamide) NA 

Cytotoxicity on B-ALL 
cells in hypoxic culture 
conditions 
Not tested in an in vivo 
ALL model 

 

Konopleva 
et al. 2015 
[145] 

Phase I/II PR104 

50 (40 AML, 
10 ALL[3 T-
ALL, 7 B-
ALL]) 

Heavily pretreated 
patients 
Chosen doses for phase 
II: 3 g/m2 and 4g/m2 
2 responses (1 CR and 
1 MLFS) in 7 B-ALL 

 
Benito et al. 
2011 [141] 

Preclinical 
(in vitro 
and animal 

PR104 NA 
Cytotoxicity on B-ALL 
cells in hypoxic culture 
conditions 
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Target Study [ref] Type of 
study 

Tested 
molecule 

Number of 
patients 

Main 
results/comments 

study) Delayed engraftment of 
mice xenografted with 
B-ALL cells 
Prolonged survival of 
xenografted mice with 
maintained complete 
response at 550 mg/kg 

Restoring normal 
microenvironment 

Cheung et 
al, 2018 
[203] 

Preclinical 
(in vitro 
and animal 
study) 

Zolendronic 
acid NA 

Reduced leukemia 
burden in xenografted 
mice with B-ALL cells 
Prolonged survival of 
mice xenografted with 
B-ALL cells 

Immune system Chen et al. 
2017, [250] Case report Nivolumab 2 

Heavily pretreated 
patients with one or 
two prior HSCTs 
Off-label use 
Low-dose nivolumab 
(40-80 mg/course) 
administrated to 
prevent GVHD 
Clinical response with 
the 2 patients alive 13 
months and 4 months 
after relapse, but with 
persistent disease 

 

Boekstegers 
et al. 2017 
[251] 

Case report Pembrolizumab 1 

Refractory T-ALL 
treated with HSCT 
followed by 4 DLIs 
Fast clinical response 
with MRD decrease 
Severe acute GVHD, 
leading to 
immunosuppressive 
treatment with 
subsequent re-increase 
of MRD, multi-organ 
failure, and death 

 1646 

Table 1. Examples of studies using molecules that target components of the leukemic 1647 

niche. The apparently disappointing results from clinical studies may be explained by the use 1648 

of new treatments mostly alone in heavily pretreated patients. The association of each of these 1649 
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molecules with each other and/or conventional chemotherapy or immunotherapy might lead to 1650 

better outcomes. 1651 

Abbreviations: AML: acute myeloid leukemia; ALL: acute lymphoblastic leukemia; BM: 1652 
bone marrow; BMSC: bone marrow stem-cell; CML: chronic myeloid leukemia; CR: 1653 
complete remission; DLI: donor lymphocyte infusion; DLT: dose-limiting toxicity; GVHD: 1654 
graft versus host disease; HD-AraC: high-dose aracytine; HSCT: hematopoietic stem cell 1655 
transplantation; MLFS: morphological leukemia-free state; MRD: minimal residual disease; 1656 
NA: not applicable; PB: peripheral blood; PD: progressive disease; PR: partial response; SD: 1657 
stable disease 1658 
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