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To sense the outside world, some neurons protrude across epithelia, the cellular barriers that line every surface of our bodies. To study the morphogenesis of such neurons, we examined the C. elegans amphid, in which dendrites protrude through a glial channel at the nose. During development, amphid dendrites extend by attaching to the nose via DYF-7, a type of protein typically found in epithelial apical ECM. Here, we show that amphid neurons and glia exhibit epithelial properties, including tight junctions and apical-basal polarity, and develop in a manner resembling other epithelia. We find that DYF-7 is a fibril-forming apical ECM component that promotes formation of the tube-shaped glial channel, reminiscent of roles for apical ECM in other narrow epithelial tubes. We also identify a requirement for FRM-2, a homolog of EPBL15/moe/Yurt which promote epithelial integrity in other systems. Finally, we show that other environmentally-exposed neurons share a requirement for DYF-7. Together, our results suggest that these neurons and glia can be viewed as part of an epithelium continuous with the skin, and are shaped by mechanisms shared with other epithelia.

INTRODUCTION

Between each of us and the outer world sits an epithelium. These sheets of cells, held together by tight and adherens junctions, create a barrier at every surface of our body and provide the interface through which we perceive our surroundings.

Neurons form intimate connections with epithelia in order to transmit information from the exterior surfaces of the body to the brain. For example, our sense of touch is mediated by mechanosensory neurons that branch along the basal ("inner") side of the skin epithelium. The skin plays a major role in shaping these sensory neurons, and these epithelia-neuron interactions have been extensively studied in vertebrates [START_REF] Wang | Journey to the skin: Somatosensory peripheral axon guidance and morphogenesis[END_REF][START_REF] Zimmerman | The gentle touch receptors of mammalian[END_REF], Drosophila [START_REF] Parrish | The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in drosophila sensory neurons[END_REF]Han et al., 2012;[START_REF] Kim | Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in drosophila sensory neurons[END_REF]Jiang et al., 2014;[START_REF] Tenenbaum | Enclosure of Dendrites by Epidermal Cells Restricts Branching and Permits Coordinated Development of Spatially Overlapping Sensory Neurons[END_REF], and C. elegans [START_REF] Dong | An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis[END_REF][START_REF] Liang | Sarcomeres Pattern Proprioceptive Sensory Dendritic Endings through UNC-52/Perlecan in C. elegans[END_REF][START_REF] Díaz-Balzac | Muscle-and Skin-Derived Cues Jointly Orchestrate Patterning of Somatosensory Dendrites[END_REF][START_REF] Liu | Receptor tyrosine phosphatase CLR-1 acts in skin cells to promote sensory dendrite outgrowth[END_REF]Zou et al., 2016;[START_REF] Zhu | Dynein and EFF-1 control dendrite morphology by regulating the localization pattern of SAX-7 in epidermal cells[END_REF]Celestrin et al., 2018). Similarly, our senses of hearing and taste are mediated by afferent neurons that are positioned at the basal surfaces of epithelia and receive information from specialized non-neuronal sensory cells (hair cells, taste cells) within these epithelia [START_REF] Roper | Taste buds as peripheral chemosensory processors[END_REF]Frank and Goodrich, 2018). In each of these examples, neurons make intimate connections with epithelia, but they remain restricted to the "inside" surface and do not directly contact the outside world.

In contrast, our sense of smell is mediated by sensory neurons with a different topology: they protrude through the epithelium to the apical ("outside") surface where they detect odorants in the outside world [START_REF] Firestein | How the olfactory system makes sense of scents[END_REF]. On one side, the neurons extend dendrites that form tight junctions with glial-like cells in the epithelium [START_REF] Steinke | Molecular composition of tight and adherens junctions in the rat olfactory epithelium and fila[END_REF]. On the other side, the neurons extend axons that pierce the basal lamina of the epithelium and extend into the brain (Graziadei and Graziadei, 1979). Thus, based on their anatomy, these sensory neurons have properties of both epithelial cells and neurons -like an epithelial cell, they have an outwardfacing surface exposed to the environment but, like a true neuron, they have an axon that projects Low et al.

Morphogenesis of epithelial neurons 4 into the brain. Sensory neurons with this anatomy are prevalent in invertebrates, and might represent an ancestral sensory structure [START_REF] Mclachlan | Shaping dendrites with machinery borrowed from epithelia[END_REF]. In most cases, they are surrounded by glial supporting cells that are also exposed to the outside environment. These interesting structures raise several questions. Do the neurons and glia exhibit other epitheliallike properties, such as apical-basal polarity, in addition to axon-dendrite polarity? Do they develop using mechanisms of morphogenesis that are similar to those used by epithelia? What role do the glia play during neuron development?

Here, we address these questions using the C. elegans amphid, which consists of 12 neurons and two glial cells [START_REF] Ward | Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans[END_REF]. Each neuron extends an unbranched dendrite to the nose where it senses environmental stimuli, as well as an axon that projects into the nerve ring, or "brain" [START_REF] White | The structure of the nervous system of the nematode Caenorhabditis elegans[END_REF]. The two glial cells, called the sheath and socket, each extend a single process to the nose where they form a tube-shaped pore through which most of the dendrites have direct access to the outside environment [START_REF] Ward | Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans[END_REF]. The sheath completely wraps the dendrite endings, creating a local environment that can affect sensory function [START_REF] Perens | C. elegans daf-6 encodes a patched-related protein required for lumen formation[END_REF][START_REF] Bacaj | Glia are essential for sensory organ function in C. elegans[END_REF][START_REF] Wang | A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans[END_REF][START_REF] Oikonomou | Opposing activities of LIT-1/NLK and DAF-6/patched-related direct sensory compartment morphogenesis in C. elegans[END_REF][START_REF] Procko | Glia delimit shape changes of sensory neuron receptive endings in C. elegans[END_REF][START_REF] Oikonomou | Some, but not all, retromer components promote morphogenesis of C. elegans sensory compartments[END_REF][START_REF] Singhvi | A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC[END_REF][START_REF] Wallace | PROS-1/Prospero Is a Major Regulator of the Glia-Specific Secretome Controlling Sensory-Neuron Shape and Function in C. elegans[END_REF][START_REF] Wang | IGDB-2, an Ig/FNIII protein, binds the ion channel LGC-34 and controls sensory compartment morphogenesis in C. elegans[END_REF], while the socket forms an opening continuous with the skin. Most of the dendrite endings protrude through this tube-shaped glial pore into the environment, and are decorated with cilia bearing receptors for specific smells, tastes, or other stimuli [START_REF] Bargmann | Chemosensation in C. elegans[END_REF].

In the embryo, the amphid dendrites develop by a mechanism called retrograde extension, which is distinct from the typical growth-cone-mediated outgrowth of axons or dendrites (Heiman and Shaham, 2009). First, amphid neurons and glia are assembled into a polarized multicellular rosette that is carried to the nose by the migrating skin epithelium [START_REF] Fan | A multicellular rosette-mediated collective dendrite extension[END_REF].

Then, the nascent tips of the amphid dendrites stay anchored at the nose while the neuronal cell bodies migrate away, stretching the dendrites out behind them (Heiman and Shaham, 2009). DYF-7, a zona pellucida (ZP) domain protein, is required to keep the dendrite tips anchored at the nose; in the absence of DYF-7, the nascent dendrites are dragged along behind the migrating neuronal cell bodies and fail to extend (Heiman and Shaham, 2009). Interestingly, ZP domain proteins like DYF-7 are typically associated with epithelia, rather than with developing neurons [START_REF] Plaza | From A to Z: apical structures and zona pellucida-domain proteins[END_REF]. They are almost always found in the apical extracellular matrix (ECM), which coats the outer (or luminal) surfaces of epithelia in the kidney, liver, and many other tissues. ZP domain proteins, along with other apical ECM proteins, play important roles in shaping epithelia, especially narrow epithelial tubes [START_REF] Sundaram | Time to make the doughnuts: Building and shaping seamless tubes[END_REF]. This led us to consider whether epithelial features of amphid neurons and glia might be important for their development.

Here, we show that amphid neurons and glia exhibit hallmarks of epithelial cells, including tight junctions and apical-basal polarity. Consistent with the idea that DYF-7 acts as a component of apical ECM, we find that it is required for the formation of fibrils at the apical surface of the developing amphid and that incorporates into fibrils when expressed in vitro. Loss of DYF-7 leads to failure to form the continuous tube-shaped glial pore that surrounds the dendrites, reminiscent of rupture defects seen in other epithelial tubes upon disrupting apical ECM. These defects are exacerbated by loss of FRM-2, a homolog of proteins that are also involved in epithelial integrity in other systems. Finally, we show that a requirement for DYF-7 is shared by other sensory neurons that are exposed to the environment. Our results suggest that these environmentally-exposed sensory neurons and their associated glia should be viewed as part of an epithelium that is continuous with the skin, with apical-basal polarity and a mechanism of development that shares key features with other epithelia, especially narrow epithelial tubes.
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RESULTS

Amphid neurons and glia exhibit hallmarks of an epithelium

Two hallmarks of an epithelium are the presence of tight junctions and apical-basal polarity that divide an outward-facing surface from an inward-facing surface. (Note that, in this context, "outward" and "inward" do not refer to the extracellullar and cytoplasmic faces of the plasma membrane, but to the regions of the cell that face the outer environment or internal tissues, respectively.) Outward-facing apical surfaces are exposed to the outside world or topologically equivalent spaces such as the lumen of a secretory duct, airway, blood vessel, or brain ventricle.

In the mature amphid, the terminal ~5 µm of most dendrites are exposed directly to the environment through a tube-shaped glial pore, while the remaining ~95 µm of the dendrites are exposed to the internal tissues (pseudocoelom) of the organism (Fig. 1A-D, Fig. S1A-D). We asked whether amphid neurons and glia exhibit properties of true epithelial cells, namely the presence of tight junctions and apical-basal polarity. Tight junctions. Classical EM analysis described electron-dense tight junctions between amphid neurons and the sheath glial cell; the sheath and socket glia; and the socket and skin [START_REF] Ward | Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans[END_REF][START_REF] Perkins | Mutant sensory cilia in the nematode Caenorhabditis elegans[END_REF]. Consistent with these observations, recent studies noted localization of the tight junction protein AJM-1 near amphid dendrite endings [START_REF] Nguyen | Ciliopathy proteins establish a bipartite signaling compartment in a C. elegans thermosensory neuron[END_REF][START_REF] Nechipurenko | A Conserved Role for Girdin in Basal Body Positioning and Ciliogenesis[END_REF]. We used promoters specific to the ASE neuron, the sheath, or the socket (gcy-5pro, F16F9.3pro, and grl-2pro, respectively; Fig. 1D) to drive expression of a portion of AJM-1 cDNA tagged with CFP or YFP in each of these cell types. This approach allowed us to visualize defined tight junctions with single-cell resolution.

AJM-1-YFP expressed in the sheath glial cell labeled 13 ring-shaped junctions (Fig. 1E, yellow). Their positions are consistent with a single large junction to the socket plus 12 smaller junctions to each of the dendrites. The ASE dendrite passes through one of the more anterior of these smaller rings (Fig. 1E, red). AJM-1-CFP expressed in the ASE neuron labels a ring that is Low et al.

Morphogenesis of epithelial neurons 7 concentric with one of the sheath rings and is positioned near the dendrite ending, proximal to the cilium (Fig. 1E,arrowhead). We obtained similar results with other amphid neurons (AWB and AWC; Fig. S1E). These results indicate that each neuron forms an individual ring-shaped tight junction with the sheath glial cell.

AJM-1-CFP expressed in the socket glial cell labels two ring-shaped structures whose positions are consistent with the presence of socket:skin and socket:sheath junctions (Fig. 1F, blue). The latter overlaps AJM-1-YFP expressed in the sheath glial cell (Fig. 1F, yellow). AJM-1-CFP also labels a stripe connecting these rings, consistent with the auto-junction that the socket makes on itself as it wraps into a single-cell tube (Fig. 1B,F). We obtained similar results using another tight junction component (DLG-1, Fig. S1F). Together, the neuron:sheath, sheath:socket, and socket:skin tight junctions delineate an outward-facing surface continuous with the skin epithelium (Fig. 1B).

Apical-basal polarity. Another hallmark of epithelia is the presence of biochemically distinct apical and basolateral membranes. We recently developed constructs derived from the transmembrane protein SAX-7 that localize exclusively to apical or basolateral surfaces in a canonical epithelium ( Fig. S2). For simplicity, we will refer to these markers as ApiGreen and BasoRed. We expressed these markers under control of promoters specific to single amphid neurons or glia.

In the neuron, ApiGreen localized distal to the tight junction in the dendrite ending (Fig. 1G, green). BasoRed localized along the length of the dendrite and was excluded from the dendrite ending (Fig. 1G,red). This suggests that the outward-and inward-facing surfaces of the neuron are biochemically distinct. The region labeled by ApiGreen has been referred to as the periciliary membrane compartment (PCMC) and is a site of membrane trafficking important for ciliogenesis [START_REF] Blacque | Compartments within a compartment: what C. elegans can tell us about ciliary subdomain composition, biogenesis, function, and disease[END_REF]. ApiGreen was typically, but not always, excluded from the cilium itself; in general, transmembrane proteins are excluded from the cilium via a diffusion barrier called the ciliary gate (Garcia-Gonzalo and Reiter, 2017) but higher expression levels of ApiGreen may have allowed it to leak through this barrier in some cases.

In the sheath glial cell, ApiGreen localized in a pattern consistent with the outward-facing surface between the sheath:socket junction and the most posterior of the sheath:neuron junctions (Fig. 1H, green). This surface is more extensive than that observed for the ASE neuron, which forms one of the more anterior junctions with the sheath (see Supp Fig. S1A-D). A marker of apical cytoskeleton, ERM-1, localized in a similar pattern ( Fig. S1G). BasoRed localized to the rest of the glial surface and did not overlap with ApiGreen (Fig. 1H,red). Similarly, in the socket glial cell, ApiGreen localized to the outward-facing surface between the sheath:socket and socket:skin junctions, with BasoRed localizing to the rest of the glial surface (Fig. 1C,I).

Together, the presence of tight junctions and apical-basal polarity suggest that amphid neurons and glia can be viewed as part of an epithelium continuous with the skin.

DYF-7 is an apical ECM component that promotes integrity of the amphid epithelium

Next, we considered how the epithelial properties of these neurons and glia might relate to their morphogenesis in the embryo. We previously found that the ZP domain protein DYF-7 is required for amphid dendrite extension during development. Most ZP domain proteins are found at the apical surfaces of epithelia, where they polymerize into fibrils and play important roles in epithelial morphogenesis, including preventing rupture of narrow epithelial tubes [START_REF] Plaza | From A to Z: apical structures and zona pellucida-domain proteins[END_REF]. We therefore considered the hypothesis that DYF-7 promotes dendrite extension by acting as an apical ECM component. Further justification for this idea comes from two recent studies that showed that DEX-1, a protein we identified as acting similarly to DYF-7, plays a role in apical ECM in other model epithelia [START_REF] Cohen | Epithelial Shaping by Diverse Apical Extracellular Matrices Requires the Nidogen Domain Protein DEX-1 in[END_REF][START_REF] Flatt | Epidermal Remodeling in Caenorhabditis elegans Dauers Requires the Nidogen Domain Protein DEX-1[END_REF]. Thus, viewing the amphid neurons and glia as part of an epithelium, we tested three predictions about DYF-7: first, that it localizes to apical surfaces; second, that it polymerizes into fibrils; and Low et al.

Morphogenesis of epithelial neurons 9 third, that dendrite defects caused by disruption of DYF-7 reflect the loss of epithelial integrity in the amphid. DYF-7 localizes to apical surfaces. We examined the localization of DYF-7 in the developing amphid and other tissues. Most ZP domain proteins are synthesized with a membrane anchor and undergo proteolytic cleavage at a consensus furin cleavage site (CFCS) to release the ectodomain [START_REF] Bokhove | Structure of Zona Pellucida Module Proteins[END_REF]. DYF-7 contains a CFCS and can undergo proteolytic cleavage in vitro (Heiman and Shaham, 2009). In order to determine whether DYF-7 undergoes cleavage in vivo and to track the localization of its ectodomain, we tagged DYF-7 with superfolderGFP (sfGFP) on its ectodomain (DYF-7 ecto ) and mCherry on its cytoplasmic tail (DYF-7 cyt ) (Fig. 2A). This construct completely rescues a dyf-7 null mutant ( Fig. S3A).

We expressed this construct under control of the dyf-7 promoter, which is expressed in sensory neurons, and examined embryos at the time of dendrite extension. We found that the DYF-7 ecto and DYF-7 cyt fragments localized differently, consistent with proteolytic cleavage at the CFCS (Fig. 2B). Deletion of the CFCS led to increased colocalization, confirming that DYF-7 undergoes CFCS-dependent proteolysis in vivo ( Fig. S3B). The membrane-anchored cytoplasmic tail of DYF-7 localized diffusely across the neuronal membrane with enrichment at dendrite endings (Fig. 2B, red), consistent with our previous observations (Heiman and Shaham, 2009). In contrast, the ZP domain of DYF-7 ecto localized with exquisite precision to caps at dendrite endings (Fig. 2B,green). This localization requires the ZP domain, as a construct lacking the ZP domain localized diffusely throughout the extra-embryonic space ( Fig. S3C).

Multiple dendrite caps were observed, corresponding to the amphid and other sense organs in the head (Fig. 2C). In some cases, these structures took the shape of short linear segments, consistent with the luminal surface of a tube (Fig. 2C, arrow). Immunostaining with an antibody against AJM-1 revealed that each of these caps is situated adjacent to a tight junction (Fig. 2D).
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The position of these caps is thus consistent with the outward-facing apical surfaces of the dendrites.

Next, we asked where DYF-7 would localize if it were misexpressed in other epithelia. We expressed the tagged DYF-7 ecto construct under control of gut-specific or ubiquitously-expressed promoters. In the gut, DYF-7 ecto localized to the lumen, which is the apical surface of this wellstudied model epithelium [START_REF] Leung | Organogenesis of the Caenorhabditis elegans intestine[END_REF] (Fig. 2E). When expressed ubiquitously, DYF-7 ecto localized to the lumens of the gut and pharynx as well as to dendritic caps at the developing nose (Fig. 2F). It was absent from non-epithelial regions of the embryo. Immunostaining against AJM-1 confirmed that misexpressed DYF-7 ecto localizes in the pharynx and gut specifically to apical surfaces (Fig. 2G). DYF-7 forms fibrils in vivo and in vitro. Other ZP domain proteins contribute to apical ECM by polymerizing into fibrils that form a meshwork at the apical surfaces of epithelia [START_REF] Jovine | The ZP domain is a conserved module for polymerization of extracellular proteins[END_REF][START_REF] Jovine | A duplicated motif controls assembly of zona pellucida domain proteins[END_REF]Jovine et al., 2006;[START_REF] Schaeffer | Analysis of uromodulin polymerization provides new insights into the mechanisms regulating ZP domain-mediated protein assembly[END_REF]. We therefore asked whether DYF-7 also forms fibrils.

Previous EM studies noted the appearance of extracellular fibrils in the developing amphid [START_REF] Oikonomou | Opposing activities of LIT-1/NLK and DAF-6/patched-related direct sensory compartment morphogenesis in C. elegans[END_REF]. However, these structures are difficult to visualize using standard approaches because their appearance depends on the angle of sectioning and the developmental stage of the embryo. We used a method called positional correlative anatomy EM to provide greater control over these variables (Kolotuev, 2014a;[START_REF] Burel | Four specific immunoglobulin domains in UNC-52/Perlecan function with NID-1/Nidogen during dendrite morphogenesis in[END_REF]. Briefly, a highpressure frozen sample is flat-embedded at the surface of a resin block, a region of interest is identified at high magnification, and the sample is then oriented for ultramicrotome sectioning with respect to known anatomical features.

Using this method, we identified embryos undergoing dendrite extension -between the comma and 1.5-fold stages of embryogenesis (~420 min post-fertilization) -and sectioned Low et al.
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them at an angle parallel to the long axis of the dendrites (Fig. 3A, top). In wild-type animals at this stage, cilia had not yet formed but a centriole/basal body was always present at the dendrite endings (annotated in Fig. 3Aiii, arrowheads). We found that the developing dendrites form direct contacts on each other, rather than making individual junctions to the sheath as in the mature structure. The dendrites are bundled together in a single channel of the sheath glial cell that is continuous with the channel of the socket glial cell, which in turn is open to the extraembryonic space (Fig. 3A). In all cases, we observed fibrils that originate near the dendrite endings, extend through the sheath:socket channel, and terminate near the extra-embryonic ECM, extending ~1.5µm in total (Fig. 3A; fibrils, brackets). These fibrils were consistently visible across serial sections in all embryos imaged (n=3 amphids).

Next, we compared this to dyf-7 mutant embryos at the same stage. In dyf-7 embryos at this stage, the nascent dendrites and sheath have just begun to withdraw from the developing nose (Fig. 3B, top). The dendrites are organized within the sheath in a manner similar to wild type but the sheath forms a closed cavity rather than an open channel (Fig. 3Bvii-ix). We did not observe fibrils in any of the dyf-7 embryos imaged (n=6 amphids). We considered the possibility that fibrils might be present but disorganized and hard to recognize (e.g., too short, or oriented randomly). However, we were unable to identify fibril-like structures in any serial sections across a variety of embryo orientations and a range of section thicknesses (60-100nm). This finding suggests that DYF-7 is required for formation of these fibrils.

Finally, we asked whether DYF-7 would be incorporated into fibrils when expressed in vitro.

We expressed sfGFP-DYF-7 in Drosophila S2 cells. We observed GFP-positive clumps and tangles extending from the surfaces of cells (Fig. 3C). In some cases, GFP-positive fibrils appeared to wrap around the cells (Fig. 3Cii, iii). Thus, our results indicate that DYF-7 is incorporated into fibrils in vitro and that it is necessary for the formation or maintenance of such Low et al.
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12 fibrils at the apical surface of the developing amphid in vivo. These observations support the idea that, like ZP domain proteins in other systems, DYF-7 is an apical ECM component. DYF-7 is required for the tube-shaped glial pore to form. Studies in C. elegans and Drosophila have shown that disrupting ZP domain proteins that are part of the apical ECM leads to epithelial rupture, including loss of a continuous lumen in the narrow epithelial tubes of the C. elegans excretory system and the Drosophila tracheal system [START_REF] Wilkin | Drosophila dumpy is a gigantic extracellular protein required to maintain tension at epidermal-cuticle attachment sites[END_REF]Jaźwińska et al., 2003;[START_REF] Bökel | Papillote and Piopio: Drosophila ZP-domain proteins required for cell adhesion to the apical extracellular matrix and microtubule organization[END_REF][START_REF] Kelley | FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis. Elife 4[END_REF]Gill et al., 2016;[START_REF] Cohen | Epithelial Shaping by Diverse Apical Extracellular Matrices Requires the Nidogen Domain Protein DEX-1 in[END_REF].

Previously, we focused on the role of DYF-7 in anchoring dendrites to the embryonic nose, however, viewing DYF-7 as an apical ECM component, we decided to ask if dendrite anchoring defects might be related to failure to form the tube-shaped glial pore that normally surrounds the dendrites.

In dyf-7 mutants, amphid dendrites and the sheath glial cell fail to extend but the socket glial cell still extends a process to the nose (Heiman and Shaham, 2009) (Fig. 4A). First, we examined tight junctions and apical-basal markers in the socket. At the nose, tight junctions were still present between the socket and the skin, and the apical marker ApiGreen still localized to the outward-facing surface (Fig. 4B,C). However, the auto-junction that normally seals the socket into a tube was absent and no signs of the normal socket channel could be seen. In 32 of 48 amphids, the sheath and socket appeared completely dissociated from each other; however, in the remaining 16 amphids, the socket glial cell extended an ectopic posterior process to contact the shortened sheath glial cell (see schematic in Fig. 4A). In these examples, tight junction markers colocalized at the sheath:socket contact, but appeared as a small dot rather than a ring as in wild type (Fig. 4D). ApiGreen did not localize to the sheath:socket contact (Fig. 4E). These results suggest that the socket cell retains tight junctions and apical-basal polarity, but no longer forms a continuous channel with the sheath.

Low et al.
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Next, we examined these markers in the amphid sheath and an amphid neuron. Both cells retained their tight junctions and apical-basal polarity (Fig. 4F-H). The dendrite still appeared to enter the sheath and form tight junctions with it, consistent with our previous EM analysis (Heiman and Shaham, 2009) (Fig. 4F). However, the apical surface of the sheath glial cell appeared to be organized in a network of cyst-like internal pouches rather than an open channel (Fig. 4H). These defects are reminiscent of the loss of lumen integrity caused by disruption of ZP domain proteins in other narrow epithelial tubes.

Together, these results strongly suggest that amphid neurons and glia use a developmental mechanism that shares key features with other epithelia, namely, the use of a fibril-forming ZP domain protein in the apical ECM to generate a narrow epithelial tube.

DYF-7 defects are enhanced by loss of FRM-2, a homolog of epithelial integrity proteins

Next, we wanted to identify additional factors that help to promote morphogenesis of amphid neurons and glia. We reasoned that, if the amphid shares developmental features with epithelia, then it might use additional factors that are typically found in developing epithelia, such as proteins involved in apical-basal polarity or cell junction integrity. Conversely, if the amphid differs in important ways from conventional epithelia, then it might rely more heavily on factors that are typically associated with neuronal or glial development, or novel factors.

To this end, we performed an unbiased genetic screen using a sensitized background in which DYF-7 activity is mildly impaired. We took advantage of a hypomorphic missense allele, dyf-7(ns117), in which only ~35% of amphids are affected (Heiman and Shaham, 2009). Briefly, we performed chemical mutagenesis of dyf-7(ns117) mutants bearing a fluorescent marker for a single amphid neuron. 1000 F2 self-progeny bearing novel unique homozygous mutations were picked to individual plates and their clonal F3 offspring were visually screened for increased Low et al.

Morphogenesis of epithelial neurons 14 (enhanced) penetrance of the dendrite extension defect (Fig. 5A). We isolated two mutants with heritably increased penetrance: hmn162 and hmn169. As hmn169 was less strongly enhanced and exhibited semi-dominance (see Methods), we chose to focus on hmn162.

Single-step mapping and sequencing of hmn162 identified a nonsense mutation in a previously uncharacterized gene called frm-2 (Fig. 5B). Mutants bearing frm-2(hmn162) alone exhibit very rare (1±1%) dendrite defects (Fig. 5C). However, whereas dyf-7(ns117) exhibits 35±5% penetrant dendrite defects, the dyf-7(ns117); frm-2(hmn162) double mutant exhibits an enhanced penetrance of 70±4% (Fig. 5C). A wild-type frm-2 genomic fragment expressed under its own regulatory sequences completely rescues this phenotype, returning the penetrance to the level of the dyf-7(ns117) single mutant (37±5%) (Fig. 5C).

frm-2 is predicted to encode a FERM-domain protein most closely related to mammalian EPB41L5, zebrafish mosaic eyes (moe), and Drosophila Yurt (Yrt) (Fig. 5B). Each of these proteins has been shown to interact with the Crumbs apical polarity complex to regulate epithelial morphogenesis (Hsu et al., 2006;[START_REF] Laprise | The FERM protein Yurt is a negative regulatory component of the Crumbs complex that controls epithelial polarity and apical membrane size[END_REF]Gosens et al., 2007;[START_REF] Laprise | Yurt, Coracle, Neurexin IV and the Na(+),K(+)-ATPase form a novel group of epithelial polarity proteins[END_REF][START_REF] Salis | Crumbs, Moesin and Yurt regulate junctional stability and dynamics for a proper morphogenesis of the Drosophila pupal wing epithelium[END_REF]. Disruption of EPB41L5, moe, and Yrt has been shown in each of these systems to cause disorganized tight junctions and loss of epithelial integrity (Jensen and Westerfield, 2004;[START_REF] Salis | Crumbs, Moesin and Yurt regulate junctional stability and dynamics for a proper morphogenesis of the Drosophila pupal wing epithelium[END_REF][START_REF] Schell | The FERM protein EPB41L5 regulates actomyosin contractility and focal adhesion formation to maintain the kidney filtration barrier[END_REF]. Interestingly, in Drosophila trachea, the relationship between Yrt and apical ECM has been examined, and these pathways were found to act independently and in parallel to shape epithelial tubes, an observation that would be consistent with the loss of FRM-2 enhancing dyf-7 defects [START_REF] Laprise | Epithelial polarity proteins regulate Drosophila tracheal tube size in parallel to the luminal matrix pathway[END_REF].

To determine whether FRM-2 might be acting directly in the amphid, we examined its expression. At the time of dendrite extension, a frm-2pro:GFP reporter is expressed brightly in the developing epithelium of the pharynx and gut, with much weaker but consistent expression in sensory neurons (Fig. 5D, arrowheads). We did not observe rescue using a dyf-7pro:FRM-2 construct, which is expressed only in the sensory neurons, possibly suggesting a requirement for Low et al.
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15 FRM-2 in other cells such as glia (data not shown). We examined FRM-2 protein localization using a frm-2pro:FRM-2-GFP reporter. We consistently observed localization at developing amphid dendrite endings (Fig. 5E, arrow), although it was sometimes obscured by the much brighter signal from the pharynx and gut. We did not detect FRM-2 in the mature amphid although expression persisted in the pharynx ( Fig. S4), suggesting it may act mainly in the embryo to promote amphid morphogenesis, similar to DYF-7 (Heiman and Shaham, 2009).

These results support the idea that FRM-2 acts apically in the developing amphid to promote epithelial integrity, similar to what has been shown for EPB41L5, moe, and Yrt in other epithelia. Our results are consistent with the idea that, like Yrt, FRM-2 acts in parallel to apical ECM proteins like DYF-7 to regulate the formation of a narrow epithelial tube. While our unbiased screen was not comprehensive, it is interesting that it identified a factor that most closely resembles ones found in other epithelia, rather than ones typically involved in the development of neurons or glia.

Other environmentally-exposed neurons also require DYF-7

In addition to the amphid, other sensory neurons in the head are exposed directly to the environment and are thus likely to have epithelial properties [START_REF] Ward | Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans[END_REF]. These include the cephalic (CEP), inner labial (IL), and outer labial (OL) neurons. Each of these classes of neuron has its own dedicated glia (CEP sheath and socket; IL sheath and socket; OL sheath and socket) that form a tube-shaped channel around the dendrites. In all cases, there are junctions between the dendrites and sheath; the sheath and socket; and the socket and skin to delineate an outward-facing surface [START_REF] Ward | Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans[END_REF]. We wondered if these neurons also require DYF-7.

To test this idea, we used cell-specific promoters to visualize amphid, CEP, OL, and IL dendrites in wild-type and dyf-7 animals (Fig. 6). In dyf-7 mutants, amphid neurons are typically ~10% of wild-type length (Fig. 6B,C). We found that CEP, OL, and IL neurons are also affected Low et al.
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16 by the loss of DYF-7 (Fig. 6B,C). The defects were highly penetrant, with >90% of dendrites having lengths at least five standard deviations below the wild-type mean (Fig. 6C). These dendrites were typically ~80% of wild-type length (Fig. 6C), but length varied even within a class; for example, ventral CEPs were consistently more affected than dorsal CEPs (75.2±17.4 and 91.2±3.2 percent of nose length, respectively).

For comparison, we also examined the URY sensory neuron. This neuron extends an unbranched dendrite to the nose that associates with sheath glia, but its dendrite ending does not enter the glial channel and is not exposed to the environment; thus, it is not expected to have epithelial properties [START_REF] Ward | Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans[END_REF]. We found that these dendrites were mostly unaffected by loss of DYF-7, suggesting that its role is specific to environmentally-exposed neurons (Fig. 6B,C).

Together, these results indicate that the amphid, CEP, OL, and IL neurons share a dependence on DYF-7. Thus, what we have learned about epithelial features of amphid neurons and glia might apply broadly to other environmentally-exposed neurons in C. elegans and, perhaps, in other organisms as well.

DISCUSSION

Epithelial properties of amphid neurons and glia

Our results suggest that amphid neurons and glia exhibit features of an epithelium, including the use of apical ECM to shape the structure during development and the presence of tight junctions and apical-basal polarity in the mature structure. These epithelial features allow the neurons to gain direct access to environmental stimuli, similar to the arrangement of neurons and glia in the olfactory and vomeronasal systems of mammals. This cellular anatomy is also the predominant sensory structure in invertebrates, including the campaniform, trichoid, and chordotonal neurons of Drosophila and most sensory neurons of C. elegans (IL, OL, CEP in the head as discussed above, as well as phasmids, deirids and male-specific tail sensory neurons) [START_REF] White | The structure of the nervous system of the nematode Caenorhabditis elegans[END_REF]Hartenstein, 1988). Thus, neurons with epithelial properties may be an ancestral type of sensory structure.

Viewed as an epithelium, the glial pore of the amphid especially resembles narrow epithelial tubes found in capillaries and the branching ductwork of kidney, pancreas, lung, or other organs [START_REF] Sundaram | Time to make the doughnuts: Building and shaping seamless tubes[END_REF]. The development of narrow epithelial tubes has been studied extensively in the C. elegans excretory system, which includes three tube-forming cells: the canal, duct, and pore cells [START_REF] Sundaram | The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity[END_REF]. The canal and pore cells bear anatomical similarities to the amphid sheath and socket, respectively, with the canal and sheath forming seamless tubes that are not lined with cuticle, and the pore and socket using autojunctions to create cuticle-lined tubes that are open to the environment via junctions with the skin. An additional curious parallel is that the excretory pore and amphid socket can each act in a stem cell-like manner, undergoing a post-embryonic division that results in self-renewal plus the production of a neuron [START_REF] Sulston | Post-embryonic cell lineages of the nematode, Caenorhabditis elegans[END_REF][START_REF] Sammut | Glia-derived neurons are required for sex-specific learning in C. elegans[END_REF]. Besides their anatomical similarities, the excretory system and amphid share genetic and molecular features: Several mutants have been described that cause strong phenotypes affecting both the excretory system and amphid (Rdy phenotype, for "rod-like larval lethality and dye-filling defective"), and several molecular markers exhibit prominent expression shared by both these organs (e.g., pros-1, daf-6, lin-48, grl-2) [START_REF] Michaux | CHE-14, a protein with a sterol-sensing domain, is required for apical sorting in C. elegans ectodermal epithelial cells[END_REF]Johnson et al., 2001;[START_REF] Perens | C. elegans daf-6 encodes a patched-related protein required for lumen formation[END_REF]Hao et al., 2006b;[START_REF] Liégeois | Genes required for osmoregulation and apical secretion in Caenorhabditis elegans[END_REF][START_REF] Kolotuev | A pathway for unicellular tube extension depending on the lymphatic vessel determinant Prox1 and on osmoregulation[END_REF][START_REF] Kage-Nakadai | Caenorhabditis elegans homologue of Prox1/Prospero is expressed in the glia and is required for sensory behavior and cold tolerance[END_REF][START_REF] Wallace | PROS-1/Prospero Is a Major Regulator of the Glia-Specific Secretome Controlling Sensory-Neuron Shape and Function in C. elegans[END_REF].

These parallels are consistent with the idea that the development of the amphid resembles that of other narrow epithelial tubes. With its easily visualized morphology and the ability to label or genetically manipulate each neuron and glial cell with single-cell specificity, the amphid offers a novel and potentially powerful model system with which to ask questions about epithelial development. The epithelial properties of amphid neurons also raise new questions, including (1) how can a cell simultaneously have apical-basal and axon-dendrite polarity?; (2) given that the transcription factor LIN-26 is thought to promote epithelial fates while repressing neuronal fates [START_REF] Labouesse | The Caenorhabditis elegans gene lin-26 is required to specify the fates of hypodermal cells and encodes a presumptive zincfinger transcription factor[END_REF][START_REF] Labouesse | The Caenorhabditis elegans LIN-26 protein is required to specify and/or maintain all non-neuronal ectodermal cell fates[END_REF], what kind of transcriptional programs allow the simultaneous expression of epithelial and neuronal genes?; and (3) why do DYF-7 and FRM-2 affect epithelia that contain neurons and glia more strongly than they affect other epithelia?

DYF-7 as an apical ECM component

ZP domain proteins are found in the apical ECM of nearly all epithelia and are present from cnidaria to chordates [START_REF] Plaza | From A to Z: apical structures and zona pellucida-domain proteins[END_REF][START_REF] Matveev | Aurelia aurita-Cnidarian with a prominent medusiod stage[END_REF]. They play important roles in human disease: the tectorins of the inner ear are mutated in deafness; the tumor suppressor DMBT1 is expressed in many epithelia and is frequently mutated in cancer; uromodulin in the kidney is mutated in hereditary nephropathy; GP-2 is expressed in the pancreas and intestine and acts as an autoantigen in Crohn's disease; and the TGF-β co-receptor endoglin is expressed in endothelia and is mutated in vascular dysplasia and elevated in pre-eclampsia (Legan et al., Low et al. Morphogenesis of epithelial neurons 19 1997;[START_REF] Ligtenberg | Salivary agglutinin/glycoprotein-340/DMBT1: a single molecule with variable composition and with different functions in infection, inflammation and cancer[END_REF]Gregory et al., 2014;[START_REF] Roggenbuck | Crohn's disease specific pancreatic antibodies: clinical and pathophysiological challenges[END_REF][START_REF] Cohen | Epithelial Shaping by Diverse Apical Extracellular Matrices Requires the Nidogen Domain Protein DEX-1 in[END_REF]. Previously, it was unclear how the expression of DYF-7 in neurons fit with this wellestablished literature on ZP domain proteins in the apical ECM of epithelia. Our results clarify that, like other ZP domain proteins, DYF-7 localizes to apical surfaces and polymerizes into fibrils, and thus it is likely to be an apical ECM component as well.

Morphogenesis of neurons and glia within an epithelium

Our results suggest a model in which epithelial properties of amphid neurons and glia play an integral role in their morphogenesis. First, amphid neurons and glia form an apical-basal polarized rosette shortly after the cells are born [START_REF] Fan | A multicellular rosette-mediated collective dendrite extension[END_REF]. Next, this rosette interacts with the developing epithelium of the skin and is carried to the nose [START_REF] Fan | A multicellular rosette-mediated collective dendrite extension[END_REF]. Finally, the cell bodies migrate away while their apical surfaces and cell junctions remain anchored at the nose (Heiman and Shaham, 2009). This anchoring requires apical ECM including DYF-7 and contributions from apically-localized FRM-2. The absence of these factors could prevent formation of a continuous tube-shaped glial pore around the dendrites, or the tube might form initially but then rupture at sheath:socket glial junctions. Thus, although each of the individual cells retains its apical-basal polarity, the continuous lumen from sheath to socket is lost. These defects are comparable to phenotypes seen in the C. elegans excretory system or Drosophila tracheal tubes upon disruption of apical ECM (Jaźwińska et al., 2003;[START_REF] Wang | Septate-junction-dependent luminal deposition of chitin deacetylases restricts tube elongation in the Drosophila trachea[END_REF][START_REF] Stone | Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system[END_REF][START_REF] Mancuso | Extracellular leucine-rich repeat proteins are required to organize the apical extracellular matrix and maintain epithelial junction integrity in C. elegans[END_REF]Gill et al., 2016;[START_REF] Forman-Rubinsky | Lipocalins Are Required for Apical Extracellular Matrix Organization and Remodeling in[END_REF][START_REF] Pu | The Lipocalin LPR-1 Cooperates with LIN-3/EGF Signaling To Maintain Narrow Tube Integrity in[END_REF][START_REF] Cohen | Epithelial Shaping by Diverse Apical Extracellular Matrices Requires the Nidogen Domain Protein DEX-1 in[END_REF][START_REF] Rosa | An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity[END_REF]. Thus, amphid dendrites are shaped by interactions within an epithelium composed of neurons, glia, and skin.

These features seem to be shared with other epithelial sense organs in C. elegans (CEP, IL, and OL). Intriguingly, retrograde extension has recently been reported in developing olfactory neurons in vertebrates. In zebrafish, olfactory placodes (which will give rise to Low et al.

Morphogenesis of epithelial neurons 20 olfactory epithelia) develop adjacent to the surface of the brain [START_REF] Breau | Extrinsic mechanical forces mediate retrograde axon extension in a developing neuronal circuit[END_REF]. Olfactory placode neurons attach nascent axons near the brain surface and then the cell bodies move away, extending axons behind them [START_REF] Breau | Extrinsic mechanical forces mediate retrograde axon extension in a developing neuronal circuit[END_REF]. The mechanism of anchoring in this case has not been described. However, given that much of our nervous system develops as a neuroepithelium -including sensory placodes, the cortex, and the cerebellum -it will be interesting to explore whether neuron-epithelial interactions might also help to shape dendrites and axons in other contexts.
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METHODS

Strains and Plasmids

Strains were constructed in the N2 background and cultured under standard conditions [START_REF] Brenner | The genetics of Caenorhabditis elegans[END_REF][START_REF] Stiernagle | Maintenance of C. elegans[END_REF]. Strains, transgenes, and plasmids are listed in Tables S1-S3 respectively. All strains and plasmids are available upon request.

Fluorescence microscopy and image processing

Animals were mounted on 2% agarose pads in water or M9 buffer [START_REF] Sulston | The embryonic cell lineage of the nematode Caenorhabditis elegans[END_REF]) with 0-50 mM sodium azide depending on developmental stage, and imaged using a Deltavision Core imaging system (Applied Precision) with UApo/340 40x 1.35NA, PlanApo 60x 1.42NA, and U-PlanApo 100x 1.4NA objectives (Olympus) and CoolSnap HQ2 camera. The amphid socket promoter (grl-2pro) yields bright expression in the excretory system that obscures the amphid features we wished to highlight in Fig. 4 and Fig. S1; we therefore used a fluorescence stereomicroscope to select rare mosaic animals that lacked excretory system expression to obtain the amphid images in these figures. Images were deconvolved using Softworx (Applied Precision) and maximum-brightness projections were obtained from contiguous optical sections using ImageJ. All projections used the same upper and lower limits across wavelengths, however, a thinner optical stack was often used in high-magnification images shown as insets.

Due to large differences in signal intensity between neuronal and glial cell bodies and their thin processes, gamma settings were adjusted for the red signal in S1C in order to show the relevant structures clearly.

Immunofluorescence

Embryos were fixed using a methanol-acetone procedure and stained with anti-AJM-1 primary antibody MH27 [START_REF] Francis | Muscle cell attachment in Caenorhabditis elegans[END_REF] obtained from Developmental Studies Low et al.
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Hybridoma Bank established at the University of Iowa by the NICHD/NIH) and sheep antimouse DyLight649 secondary antibody (Jackson ImmunoResearch). Briefly, embryos were cracked by sandwiching them between a coverslip and Superfrost Plus slide (Fisher), then freezing them 5 min on a metal block on dry ice, and briskly removing the coverslip. The slide was placed in methanol at -20°C for 20 min followed by acetone at -20°C for 10 min, then washed in PBST (phosphate buffered saline with 0.1% Tween) and incubated in blocking solution (0.5% I-Block (ThermoFisher) in PBST) at room temperature for 1 h. Primary and secondary antibodies were used at 1:10 and 1:100 respectively in blocking solution. GFP fluorescence was preserved and visualized directly.

Electron microscopy

Samples were subjected to high pressure freezing followed by freeze-substitution as described previously [START_REF] Kolotuev | A precise and rapid mapping protocol for correlative light and electron microscopy of small invertebrate organisms[END_REF]. Samples were flat embedded, targeted and sectioned using the positional correlation and tight trimming approach [START_REF] Kolotuev | Positional correlative anatomy of invertebrate model organisms increases efficiency of TEM data production[END_REF]. This method facilitates identification of rare features in complex samples by using a precisely targeted region for sectioning. The sample was first viewed on a high-magnification optical microscope (Leica SPE confocal, 63x Leica oil immersion objective) and the distance between the first section and the expected location of the feature of interest was calculated. The sample was next mounted for ultramicrotome sectioning, and advancement of the sectioning was tracked following the feed count parameters of the ultramicrotome. 100nm sections were collected on the slot-formvar coated grids and observed with respect to the desired position using a JEOL JEM 1400 TEM microscope (JEOL, Japan).

S2 cells

Drosophila Schneider (S2) cells (Invitrogen) were cultured and transfected with FuGene HD (Roche) as described previously (Heiman and Shaham, 2009). Two days after transfection, cells and medium were harvested, applied in a small volume (~10 µl) directly to a coverslip without a slide, and imaged as described above.

Genetic screen and mutant identification

Fourth larval stage (L4) animals of strain CHB99 (oyIs44 V; dyf-7(ns117) X) were mutagenized using 70 mM ethyl methanesulfonate (EMS, Sigma) at 20°C for 4 h. Nonclonal F2 progeny were picked to 1000 individual plates. F3 populations were scored visually using a fluorescence stereomicroscope for increased (enhanced) or decreased (suppressed) penetrance of dendrite extension defects. Isolates corresponding to hmn162 and hmn169 exhibited 87% and 61% penetrance, respectively (n=100). Following a backcross to dyf-7(ns117) kyIs136 X males, cross-progeny exhibited 37% and 55% penetrance, respectively (n>150), suggesting a recessive mode of inheritance for hmn162 and a dominant or partially dominant mode of inheritance for hmn169. In both cases, penetrance was similar between hermaphrodite and male cross-progeny, suggesting an absence of sex linkage. For mapping, 160 backcrossed F2 animals were picked to individual plates and the resulting F3 progeny were screened for enhanced penentrance of dendrite defects. 40 plates of animals with enhanced penetrance were identified, and these recombinants were pooled and subjected to genomic DNA extraction and wholegenome sequencing for one-step mapping [START_REF] Doitsidou | C. elegans mutant identification with a one-step whole-genome-sequencing and SNP mapping strategy[END_REF]. The parental strains were also sequenced. Analysis with CloudMap [START_REF] Minevich | CloudMap: a cloud-based pipeline for analysis of mutant genome sequences[END_REF] identified a linked region on LG III including a nonsense mutation in frm-2 (AAGTTTGTT[C>T]AGTGCAAGG).

Dendrite length measurements

L4 animals were mounted and imaged as described above, and dendrite lengths were measured using the segmented line tool in ImageJ. The dendrite was traced from the point where it joins the cell body to the point where it ends at the nose, then normalized by the distance from the cell body to the nose to account for variance in the size of the animal. 
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 4 Figure 4. Disruption of the amphid glial channel in dyf-7 mutants
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 56 Figure 5. Loss of FRM-2 enhances weak dyf-7 defects

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table S1 . Strains used in this study

 S1 

	Strain	Genotype	Figure
	CHB1566 hmnEx801	1D
	CHB1612 hmnEx864	1E
	CHB1665 hmnEx824	1F
	CHB2721 hmnEx1535	1G
	CHB2717 hmnEx1533	1H
	CHB2719 hmnEx1534	1I
	CHB440 dyf-7(ns119) X; hmnEx149	2B
	CHB1939 hmnEx1105	2C
	CHB436 oyIs44 V; dyf-7(ns119) X; hmnEx145	2D
	CHB1530 hmnEx799	2E
	CHB1557 hmnEx821	2F
	CHB558 oyIs44 V; dyf-7(ns119) X; hmnEx216	2G
	N2	wild type	3A
	CHB157 dyf-7(ns119) X	3B
	CHB1560 dyf-7(ns119) X; hmnEx824	4B,D
	CHB2718 dyf-7(ns119) X; hmnEx1534	4C,E
	CHB1556 dyf-7(ns119) X; hmnEx864	4F
	CHB2720 dyf-7(ns119) X; hmnEx1535	4G
	CHB2716 dyf-7(ns119) X; hmnEx1533	4H
	CHB1743 oyIs44 V; hmnEx954	5A
	CHB1741 oyIs44 V; hmnEx953	5A
	CHB1745 oyIs44 V; hmnEx955	5A
	CHB1739 oyIs44 V; hmnEx952	5A
	CHB1742 oyIs44 V; dyf-7(ns119) X; hmnEx954	5B
	CHB1740 oyIs44 V; dyf-7(ns119) X; hmnEx953	5B
	CHB1744 oyIs44 V; dyf-7(ns119) X; hmnEx955	5B
	CHB1738 oyIs44 V; dyf-7(ns119) X; hmnEx952	5B
	PY2417	oyIs44 V	5C
	CHB99	oyIs44 V; dyf-7(ns117) X	5C
	CHB1211 frm-2(hmn162) III; oyIs44 V; dyf-7(ns117) X	5C
	CHB2750 frm-2(hmn162) III; oyIs44 V; dyf-7(ns117) X; hmnEx1553	5C
	CHB2950 hmnEx1667	5D, S4A
	CHB2951 hmnEx1668	5E, S4B
	CHB1477 hmnEx730	S1E
	CHB1343 hmnEx660	S1F
	CHB1475 hmnEx756	S1G
	CHB370 oyIs44 V; dyf-7(ns119) X; hmnEx97	S3A
	CHB443 oyIs44 V; dyf-7(ns119) X; hmnEx151	S3A
	CHB436 oyIs44 V; dyf-7(ns119) X; hmnEx145	S3A
	CHB1613 hmnEx865	S3B
	CHB1615 hmnEx867	S3C

Table S2 . Transgenes used in this study

 S2 

	A. Stably integrated transgenes	
	Allele	Plasmids	Reference
	oyIs44	odr-1pro:RFP, lin-15(+)	P. Sengupta, unpublished
	hmnIs27	pCW11, pDP#MM051	this study
	B. Unstable extrachromosomal transgenes	
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Allele

Plasmids hmnEx97 pMH285, pRF4 hmnEx145 pCW11, pRF4 hmnEx149 pCW13, pRF4 hmnEx151 pCW12, pRF4 hmnEx216 pCW32, pCW33, pRF4 hmnEx660 pIL11, pIL12, pRF4 hmnEx730 pCW94, pIL34, pMH339 hmnEx756 pCW93, pIL23, pMH2 hmnEx762 pCW31, pMH28, pRF4 hmnEx799 pCW34, pIL1, pRF4 hmnEx801 pKM15, pKM16, pMH91, pMH130 hmnEx821 pCW32, pCW33, pIL44, pIL45, pRF4 hmnEx824 pCW95, pIL34, pIL41 hmnEx864 pIL43, pIL34, pMH130 hmnEx865 pCW17, pRF4 hmnEx867 pIL46, pRF4 hmnEx952 pMH434, pMH421, pRF4 hmnEx953 pEL5, pMH457, pRF4 hmnEx954 pMH419, pMH428, pRF4 hmnEx955 pMH424, pMH431, pRF4 hmnEx1105 pCW11, pMH406, pRF4 hmnEx1533 pMH522, pMH524, pRF4 hmnEx1534 pMH523, pMH525, pRF4 hmnEx1535 pCY184, pMH510, pRF4 hmnEx1553 pMC23, pCY159 hmnEx1667 pMC33, pMH406, pRF4 hmnEx1668 pMC34, pMH406, pRF4
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Table S3. Plasmids used in this study

Plasmid

Description Expression Notes pCW11 dyf-7pro:DYF-7(ZP-sfGFP) SuperfolderGFP (sfGFP) inserted at position 3 (Supp. Fig. S3A) between ZP domain and CFCS pCW12 dyf-7pro:DYF-7(ZPN-sfGFP-ZPC) sfGFP inserted at position 2 (Supp. Fig. S3A) between ZPN and ZPC pCW13 dyf-7pro:DYF-7(ZP-sfGFP)-mCherry pCW14 pAC-DYF-7(sfGFP-ZP) sfGFP inserted at position 1 (Supp. Fig. S3A) as in pMH285, for expression in Drosophila S2 cells (Fig. 3C 

Figure S2. ApiGreen and BasoRed

(A) Schematics of the wild-type SAX-7S protein and the ApiGreen and BasoRed constructs that were derived from it. These constructs were based on our observation that full-length SAX-7S localizes to basolateral surfaces, while a construct truncated after the transmembrane segment (TM) is localized to apical surfaces. ApiGreen was created by replacing the SAX-7S cytoplasmic tail with superfolderGFP (pMH510, pMH524, pMH525, Supp. Table S3). BasoRed was created by inserting mApple near the carboxyl-terminus of SAX-7S, before the PDZ-binding motif (PB) (pCY184, pMH522, pMH523, Supp. Table S3). (B) Expression of apical marker ApiGreen and basolateral marker BasoRed in gut, a well-studied model epithelium. The lumen (apical) surface of the gut exhibits localization of ApiGreen and exclusion of BasoRed. A detailed characterization of the sequence motifs responsible for these trafficking patterns, and a survey of how they behave in different cell types at different times across development will be published elsewhere.

Figure S3. Localization of DYF-7 in vivo

(A) SuperfolderGFP coding sequence was inserted into the DYF-7 cDNA at positions 1, 2, or 3 as indicated (pMH285, pCW12, and pCW11, respectively; Table S1). These constructs were introduced