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Spherical Mapping of the Second-Order Phoenix Cell for Unbounded
Direct Reflectarray Copolar Optimization

Vincent Richard1, Renaud Loison1, *, Raphael Gillard1, Herve Legay2, Maxime Romier3,
Jean-Paul Martinaud4, Daniele Bresciani2, and Fabien Delepaux2

Abstract—A general synthesis approach is proposed for reflectarrays using second order Phoenix
cells. It relies on an original spherical representation that transforms the optimization domain in a
continuous and unbounded space with reduced dimension. This makes the synthesis problem simpler
and automatically guarantees smooth variations in the optimized layout. The proposed mapping is
combined with an Artificial Neural Network (ANN) based behavioral model of the cell and integrated
in a min/max optimization process. Bi-cubic spline expansions are used to decrease the number of
variables. As an application, a contoured beam for space communication in the [3.6–4.2] GHz band is
considered. The gain improvement compared to an initial Phase Only synthesis (POS) is up to 1.62 dB
at the upper frequency. Full-wave simulation of the final array is provided as a validation.

1. INTRODUCTION

Passive ReflectArrays (RA) are promising antennas for applications requiring high gain, low profile,
and low mass [1]. Preliminary demonstrations have been published for directive beams [2], contoured
beams [3–6] or for dual-polarization [7, 8]. Most of them rely on a quite simple design process where
only the phase of the main polarization at one frequency is controlled over the radiating aperture
(Phase Only Synthesis, POS). Typically, this is done by selecting the geometry of each elementary cell
on the reflecting panel so that it provides the desired local phase. Generally, the tuning of a single
geometrical parameter is sufficient to obtain an almost 360◦ phase range and, then, a simple one-to-one
correspondence between cell geometry and local phase can be established.

However, more advanced synthesis approaches [9, 10] are needed when specifications get more
stringent, as for dual and multiple frequency RA or large bandwidth contoured beams for space
communications. In this case, RA could advantageously compete with shaped reflectors whose
fabrication is both complex and expensive. Nevertheless, their design has to address several simultaneous
goals, directly at the radiation pattern level. The cell selection process is then the result of a complex
trade-off. Naturally, stringent specifications also require more complex cells, with several independent
geometrical parameters, in order to be able to meet the different goals. This contributes further to
increased complexity. Indeed, required advanced synthesis approaches have to handle multiple goals for
the array radiation by tuning multiple degrees of freedom (DoF) at each cell. For a realistic RA made
of several thousands of cells, this really becomes a challenging task. On the other hand, it is believed
that the successful management of this task is a key point in RA design since the availability of so many
DoF may offer unique opportunity to outperform classical reflectors.
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At this stage, a deeper insight in RA design approaches is necessary to better understand the
associated challenges. As full-wave EM optimization of RA is not possible yet, design approaches
usually involve a 2-step process. The first step aims at providing a full characterization of the chosen
cell, by computing its complete reflection matrix [11] for any set of geometrical parameters. To do so,
full-wave simulations are carried out, considering a single cell in a periodic environment (local-periodicity
assumption). The resulting data is then used all along the optimization process and a very rapid access
mechanism is thus essential. Most approaches rely on lookup tables with appropriate interpolating
schemes [6]. Equivalent circuits can also be used [12]. Combined with filter synthesis techniques [13],
they have demonstrated good capabilities for FSS [14] and even RA synthesis [15], especially regarding
bandwidth optimization. Unfortunately, they are usually restricted to canonical geometries and normal
incidence. Behavioral models based on Artificial Neural Networks (ANN) are more general [16, 17].
They have been used in [18] to tune the geometry of each RA cell of a narrow band RA. Here, in
continuation to [19] and [20], we use 2 different ANN, one for magnitude and one for phase, in order
to improve the prediction accuracy of the full reflection matrix. Efficient approaches based on ordinary
kriging and support vector machines have also been proposed recently [21]. Whatever the used model,
the second step in the design approach is to select the best geometry for all cells, in order to meet
the specifications for the array radiation. Theoretically, this requires an iterative process in which all
degrees of freedom are varied and the radiation pattern of the array is re-assessed continuously. Due
to the huge number of DoF, this step is very time-consuming, even if rapid-access models are used.
Here, we propose to use model-reduction techniques based on spline as it provides an efficient way to
approximate a problem with a large number of DoF. This is classically done to optimize the complex
geometry of shaped reflectors [22] and even the geometrical evolution of cells over RA panels [23].

Finally, it is well known [24] that successive cells must not differ too much in their geometry, and
a smooth evolution has to be guaranteed all over the RA surface. This is the condition for complying
with the local-periodicity assumption. To do so, an additional goal can be added in the optimization
process to enforce some kind of similarity between neighbor cells [25]. However, this makes the process
even more complex. Moreover, it does not prevent from the abrupt variation encountered after a
complete 360◦ phase cycle has been achieved. A more relevant approach to address this issue is to use
Phoenix cell. Thanks to its rebirth property [26], this cell has the unique capability to come back to
its initial geometry after a complete 360◦ cycle has been reached, thus naturally preventing for any
abrupt variation. Unfortunately, no RA synthesis has been reported yet, that fully takes benefit of the
capabilities of the Phoenix cell. Indeed, most publications involve first order Phoenix cell [27] (i.e.,
with only one tuning parameter), whose capabilities are of course limited regarding multiple-purpose
optimization. On the other hand, higher order Phoenix [6] cell offer additional DoF but the rebirth
property is not so easy to handle since the variation domain for the geometry is now multi-dimensional.

The main contribution of this paper is to propose an original spherical mapping of the second order
Phoenix cell that intrinsically handles its rebirth mechanism, whatever the variation in the geometrical
parameters. This mapping is associated with ANN modeling for a fast characterization of the cell. It
is then integrated into an optimization process, which automatically enables to guarantee a smooth
evolution of the geometry with no need to use additional constraints. Furthermore, the mapping
transforms the initial optimization domain into an unbounded periodic space, and it also reduces its
dimension. As a result, we arrive to a quite powerful tool dedicated to the full exploitation of the second
order Phoenix cell. This is a first step before addressing the case of higher order cells with even more
capabilities.

The paper is organized as follows. Section 2 is dedicated to the presentation of the spherical
mapping of the second order Phoenix cell. Section 3 shows its efficient application in RA synthesis. A
design example focusing on co-polarization illustrates the good performance for a 83 × 71 cell RA in
section 4 with a full-wave simulation to valid the process. Section 5 concludes the paper.

2. A SPHERICAL MAPPING OF THE 2ND ORDER PHOENIX CELL

The main objective of this section is to present the new spherical mapping of the 2nd order Phoenix
cell that will be later used to facilitate the RA synthesis.
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2.1. Studied Cell: The 2nd Order Phoenix Cell

Phoenix cells are specific RA cells that have the property to provide a 360◦ phase range while their
geometry evolves in a cycling way, coming back to the initial geometry at the end of the cycle. This
so-called rebirth capability theoretically enables designing RA with smooth geometrical variations on
the reflecting panel. The concept of Phoenix cells has been proposed originally in [26] and different
possible geometries have then been studied such as [28, 29]. A new step has been passed in [27] where
two different geometries, one capacitive and the other inductive, are combined successively to form
the Phoenix cycle. The main advantage is to provide two complementary phase ranges and hence to
avoid any steep resonance, thus preventing for very dispersive behaviors [27]. Figure 1(a) shows a
representation of such a typical Phoenix cycle. Here, the capacitive part (n = 0) simply consists of a
square patch with increasing size (C1). The inductive part (n = 1) is the complementary configuration
with the patch replaced by a square aperture. Figure 1(b) gives a wrapped representation of this cycle,
clearly showing it provides an unbounded and continuous way of varying the geometry, as a direct
consequence of the rebirth property. In the following, we refer to this cycle as a first order one since
there is only one geometrical parameter (C1).

n = 0

n = 1

C 1

(a) (b) n = 0 (c) n = 1

Figure 1. 1D geometrical cycle of the 1st order Phoenix cell. (a) Unwrapped version. Wrapped version
— (b) front side and (c) back side.

In this paper, we use the second order of this Phoenix cell by introducing a second geometrical
parameter, C2. To do so, the square patch (or aperture) is replaced by a square ring, as shown in
Figure 2. The additional DoF provides more flexibility to control the reflection properties of the cell.
On the other hand, it also makes trickier the management of the rebirth capabilities since this one has
now to be described in a multi-dimensional space. Indeed, in order to fully benefit from the possibilities
offered by the second order Phoenix cell, the representation shown in Figure 1 has to be generalized.
This is the objective of the next section.

2.2. Spherical Representation of the 2nd Order Phoenix Cell

The basic rules defining this generalized representation are straightforwardly derived from those observed
in Figure 1. Firstly, the representation must include all possible configurations of the cell, whatever
its type (n) and its geometrical parameters (C1 and C2). Secondly, it must preserve unicity, in the
sense that any configuration of the cell is only represented once. Thirdly, it must guarantee a smooth
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C1

C2

1

1

C1
C2

(a) (b)

Figure 2. Two different types of cells. (a) Capacitive (n = 0). (b) Inductive (n = 1).

evolution of the cell geometry all over the representation. Finally, it must not be bounded, i.e., any cell
in the representation has to be surrounded by neighbors with slightly-perturbed geometries and none
of them should be a stopping boundary.

As seen in Figures 3(a) and (b), a quite natural way to define such a scheme is to use a spherical
representation, similar to a world map with a 360◦ periodicity for θ and φ. For the ease of understanding,
Figure 3(c) also gives a planisphere version of this representation. The North and South Poles correspond
to non-metallized and fully-metallized cells respectively. The 0◦ and 180◦ meridians match the capacitive
(n = 0) and inductive (n = 1) parts of first order cycle (Figure 1). They are characterized by C2 = 0.
All other cells in the spherical representation are second order cells (C2 �= 0) also defining continuous
cycles in any direction. More precisely, one parallel in the sphere is characterized by cells that all have
the same metal rate. This parameter represents the percentage of metal along the length l of the cell.
It continuously varies from 0% at the North Pole to 100% at the South Pole.

This representation scheme defines a bijective correspondence between the angular position (θ, φ),
in degrees, on the sphere and the cell configuration (C1, C2, n):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(C1, C2, n) =

⎧⎪⎪⎨
⎪⎪⎩

180
(

1 − C2 − C1 + l

l

)
if n = 0

180(C2 − C1 + l)
l

if n = 1

φ(C1, C2, n) =

⎧⎪⎨
⎪⎩

180C2

C2 − C1 + l
if n = 0

180C2

C2 − C1 + l
+ 180 if n = 1

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1(θ, φ, n) =
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⎪⎪⎩

ω(θ) + (l − ω(θ))
φ

180
if n = 0

l − ω(θ) + ω(θ)
(φ − 180)

180
if n = 1

C2(θ, φ, n) =

⎧⎪⎨
⎪⎩

(l − ω(θ))
φ

180
if n = 0

ω(θ)
(φ − 180)

180
if n = 1

ω(θ) =
lθ

180

(2)

In these equations, l is the fixed periodicity in the array.
As it will be seen in following sections, this representation proves to be particularly convenient in

the RA synthesis process. Indeed, it provides a very powerful tool to deal with the tricky selection of
adjacent cells when designing a RA panel. By moving over the sphere, variations in the cell configuration
can be achieved with only two tuning parameters (θ and φ) in a continuous and periodic domain.
Practically, this means the synthesis process can be advantageously carried out by optimizing θ and φ
instead of dealing with true geometrical parameters. The interest is threefold. Firstly, the number of
DoF per cell is reduced from 3 (i.e., C1, C2, n) to 2 (i.e., θ and φ). Secondly, the structure of the new
optimization domain naturally prevents for any abrupt transition in the succession of cells on the panel.
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(a) (b)

(c)

Figure 3. Spherical representation with three overviews. (a) Front side view (θ = 90◦, φ = 0◦). (b)
Top view (θ = 0◦ whatever φ). (c) Planisphere view.

Thirdly, unconstrained optimization is possible since the new optimization parameters are not bounded
as they evolve periodically. Note that the reduction in the number of DoF per cell does not mean the
solution space itself is shrunk. It is just organized in a more convenient and compact way that enforces
smoothness and continuity over the RA panel. As such, it can be seen as some kind of preconditioning
for the optimization process.

2.3. Spherical Mapping of the Main Characteristics

Before going into the details of the synthesis process, we show here that the spherical mapping first
offers a very complete and synthetic way to observe the performance of the cell. A cell is classically
characterized by its reflection matrix:

R =
[

RTE-TE RTE-TM

RTM-TE RTM-TM

]
(3)
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A rapid-access model is of course required to compute this matrix, whatever the geometry of the
cell, the direction of the illuminating wave and the frequency. In this work, we use the ANN model we
developed in [19] and [20] to predict both the phase and magnitude for all matrix coefficients. A fast
assessment with high accuracy (typically 1.6◦ RMS error for the phase parameters) was demonstrated
compared to full-wave simulation. Combined with the proposed spherical mapping, it enables an
overview of the overall performance attainable by the chosen cell. Moreover, as the representation
domain naturally guarantees smooth variations in the geometry, it directly shows whether this translates
into smooth variations in the matrix coefficients themselves.

As an example, Figure 4 presents the mapping of the RTE-TE phase calculated using the ANN
model over the sphere for all possible cell configurations. The studied cell is printed on a Honeycomb
substrate with thickness h = 20 mm, dielectric constant ε = 1.03 and loss tangent tan δ = 0.003. The
periodicity is l = 25.6 mm (λ/3 at 3.9 GHz). The mapping is carried out at normal incidence and for 3
different frequencies. In order to better see the transition in the phase when moving from a capacitive
cell to an inductive one (or conversely), the φ angle in the planisphere mapping is varied from 0◦ to
385◦. In other words, the [360◦, 385◦] interval on the right of the plot is a repetition of the [0◦, 25◦]
interval on the left.

The first output from this plot is that any phase value from −180◦ to 180◦ can be reached by the cell.
Moreover, most of them can be obtained with several different geometries, which provides additional
flexibility in the synthesis process. Globally, the plot also shows the phase variations are quite regular.
However, one can detect a slight discontinuity (less than 15◦) when moving from a capacitive to an
inductive cell (at φ = 180◦) and a more significant one (up to 50◦) when passing the converse transition
(at φ = 360◦). An optimal trajectory on the sphere would be a closed path passing through all possible
phase values while minimizing the discontinuities when n is changed. A closer examination of the plot
shows it is achieved by choosing the equator (dotted line in Figure 4(b)). This results from the fact that
the discontinuity at the first transition (φ = 180◦) gets higher when approaching the South Pole while
that at the second transition (φ = 360◦) becomes larger close to the North pole. The RTE-TE phase
evolution (at f = 3.9 GHz) along this equatorial cycle is presented in Figure 5. As we will see later on,
this trajectory will play an important role when choosing the initial conditions for the synthesis process.

Finally, the modification of the plot versus frequency is an indicator about dispersion, described in
Eq. (4) in ◦/GHz. A more direct information is given by Figure 6 that plots phase dispersion over the
bandwidth. It confirms each phase value can be obtained with various possible dispersion levels. The
minimum value, 0◦/GHz, is obtained close to the South Pole where the fully-metallized cell is equivalent
to a PEC boundary. The maximum value (absolute value), 340◦/GHz, is obtained in the back area,
where a resonant phenomenon associated with large and narrow slot-rings is encountered.

ΔΦTE-TE

Δf
=

Φfmax − Φfmin

fmax − fmin
(4)

3. OPTIMIZATION ALGORITHM

3.1. Goal and Used Cost Function ε

In the context of space antennas, the goal of the RA optimization process can be to reach an objective
radiated field Eobj associated with a defined coverage on Earth. This field is specified at Nsta station
distributed over the Earth and at Nfreq frequencies f in a given band. To this aim, a min/max
optimization process is used [30]. For example, in the case of a co-polar optimization, the cost function
is defined as the maximum of the difference between the co-polar components of the objective field and
the field Erad radiated by the RA under optimization:

ε = max
f

{
max

k

{∣∣∣Eobj
co (k, f)

∣∣∣ − ∣∣∣Erad
co (k, f)

∣∣∣}}
(5)

with k = 1, . . . , Nsta. In the optimization process, Erad is calculated using geometrical optics where the
reflection on each cell is obtained from its full scattering matrix (ANN model) with the real incidence
angle and far-field illumination from primary horn. The modeled radiation pattern of this horn is
derived from measurements.
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(a) 3.6 GHz

(b) 3.9 GHz

(c) 4.2 GHz

Figure 4. RTE-TE phase (degrees) on the spherical representation and at different frequencies.

3.2. Optimization DoF and Initial Condition

As already mentioned, we propose to optimize the RA panel directly on the θ and φ parameters instead
of the true geometrical ones (C1, C2, n). For a RA constituted of Nx and Ny cells along x and y axes
respectively, the array is entirely defined by θij and φij for i ∈ [1, Nx] and j ∈ [1, Ny]. The initial
number of DoF is thus given by:

NDoFinit = 2NxNy (6)

Classically, the optimizer starts from an initial condition defined by θ0
ij and φ0

ij . To derive this
one, the equator cycle discussed in Section 2.3 is used. It provides a one-to-one correspondence between
cell geometry and local phase while minimizing the phase discontinuities along the cycle. The initial
layout is built by only satisfying the required co-polarization phase over the panel (accounting for local
field incidence) and at the central frequency with classical Phase Only Synthesis techniques [31, 32].
However, there is no reason for it to work properly for other frequencies and for the cross-polarization.
Accordingly, the RA panel performance must be optimized.



116 Richard et al.

Figure 5. RTE-TE phase evolution along the equatorial cycle at the central frequency 3.9 GHz.

Figure 6. Dispersion over the bandwidth of the RTE-TE phase (degrees/GHz) on the spherical
representation and at the central frequency 3.9 GHz.

To vary θij and φij from the initial layout within the optimization process, Δθij and Δφij are
introduced: {

θij = θ0
ij + Δθij

φij = φ0
ij + Δφij

(7)

Δθij and Δφij are the new NDoFinit
parameters to be optimized. For space applications, NDoFinit

can be
huge reaching up to several thousands. For computation time and convergence reasons, the complexity
is reduced by expanding the unknowns on approximation functions so that the required information is
compressed without sacrificing accuracy:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δθij =
NSx∑
l=1

cx
l Sx

l (xi)
NSy∑
m=1

cy
mSy

m(yj)

Δφij =
NSx∑
l=1

dx
l Sx

l (xi)
NSy∑
m=1

dy
mSy

m(yj)

(8)
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In this equation, Sx
l and Sy

m are bi-cubic spline basis functions [33] along x and y respectively,
NSx and NSy are the numbers of these functions, xi and yj are the center coordinates of the (i, j)
cell and c

x/y
l/m and d

x/y
l/m are the spline expansion coefficients. This approach is largely inspired by the

techniques used to optimize shaped reflectors for space applications [22] and has also been used for
RA [23]. The main issue consists in choosing the appropriate number of expansion functions so that the
approximation is precise enough. Furthermore, the choice of the resolution also enables controlling the
smoothness of geometrical variations over the panel. In practise, it may be increased gradually until
a sufficient accuracy is reached, as it is classically done when designing shaped reflectors. Finally, the
number of optimization DoF NDoF is compressed to:

NDoF = 2NSxNSy (9)

Strictly speaking, this is not really a reduction in the number of available DoF but a compressed
representation of them.

3.3. Optimization Algorithm

Based on the min/max algorithm, the objective is to minimize the cost function (Eq. (5)) by modifying
the spline coefficients. To achieve this, an off-the-shelf conventional iterative gradient descent is used.
In order to get the best orientation in the DoF space, the following gradient vector G is calculated
numerically at each iteration:

G =

[
∂ε

∂cx
1

. . .
∂ε

∂cx
NSx

∂ε

∂cy
1

. . .
∂ε

∂cy
NSy

∂ε

∂dx
1

. . .
∂ε

∂dx
NSx

∂ε

∂dy
1

. . .
∂ε

∂dy
NSy

]
(10)

Figure 7 summarizes the algorithm.

Initialization 

Initial layout 

Initial spline coefficients 

Modify the optimization variables 

Update the layout 

Calculate the far field on stations 

Derive the cost function C

Calculate the Gradient vector 

OK Final layout 
n

y

{θ0
ij , φ0

ij }

Figure 7. General optimization algorithm.
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4. APPLICATION TO A C-BAND MISSION

4.1. Mission Specifications

To illustrate the algorithm performances, we consider a C-band space telecommunication mission. The
coverage zones are shown in Figure 8 and the co-polarization (co-polar) gain and cross-polarization
discrimination (XPD) requirements are summarized in Table 1. The purpose of the mission is to
provide service to Europe, North Africa and Middle East (FC1 zone) while minimizing illumination in
South America (FC2 zone). The antenna operates in left-handed circular polarization in the limited
transmission C-band [3.6, 4.2] GHz.

Table 1. Coverage requirements.

Zone
Co-polar Co-polar

XPDminGainmin Gainmax

[dB] [dB] [dB]
FC1 24.2 X 28.0
FC2 X 10.0 X

Figure 8. Coverage zones of the telecommunication mission. FC1: co-polar directivity. FC2: co-polar
isolation.

4.2. Antenna and Optimization Parameters

This work concerns only the layout design, and the antenna system parameters such as the feeding
antenna type and position and the RA dimensions are fixed and given in Figure 9.

The RA panel is 28λ along x and 24λ along y at the central frequency f = 3.9 GHz. The array
periodicity is λ/3 along x and y resulting in Nx = 83 and Ny = 71 RA cells, the initial number of
optimization DoF is thus NDoFinit

= 11786.
In order to drastically compress the information and insure smooth geometrical variations around

the initial condition, the numbers of spline coefficients NSx and NSy are both chosen to 20. The final
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Figure 9. Fixed antenna architecture.

number of optimization DoF is then NDoF = 800. Nsta is set to 300 station points with a uniform
distribution in the zone of interest.

In this paper, the developed mapping is restricted to the 2nd order cell. Such a cell intrinsically
offers no simple means of controlling cross-polar because it has a square symmetric geometry. Then
in this example, we decided to focus only on co-polarization and try to optimize it on a quite large
bandwidth (16%). Consequently, no goal was given for the cross.

Introducing new geometrical parameters, XPD could be optimized as it is done in [34] by converting
square Phoenix cells into rectangular ones or by the use of parallelogram or trapezoid shaped elements
as in [31]. Cross-polarization could also theoretically be optimized at the array level with symmetrical
cells [35]. Once again, this was not possible here as all available DoF were already necessary to address
the co-polar specifications (for both the illuminated and isolated zones) over the bandwidth.

4.3. Initial Layout

The required co-polarization phase distribution on the RA at the central frequency f = 3.9 GHz is
presented in Figure 10. Using the equator cycle and its one-to-one correspondence between cell geometry
and reflected co-polar phase, the initial layout is easily designed. As shown in Figure 11, this layout
presents smooth geometrical variations. This property tends to respect the expected local periodicity
for the cells.

The simulated radiation patterns of the initial layout are presented in Figure 12(a), and the achieved
performances are synthesized in Table 2. As expected, the performances respect the specifications only
at the central frequency f = 3.9 GHz and for the radiated co-polar.

4.4. Optimization Run

Figure 13 presents the evolution of the cost function with iterations. Clearly, the optimization converges
since the cost function decreases with the iteration number and tends to zero. The optimization was
carried out using a workstation with a 2.5-GHz dual-core AMD Opteron processor with 128 GB RAM.
The computation time is around 12 hours. Note that the simulation time for one cell is 4 µs using ANN.
It would be around 1 min for full-wave simulation, which is definitely intractable within an optimization
process. The total computation time could be reduced further by improving the present min/max
routine and the radiation pattern calculation (to be done several times at each iteration in order to



120 Richard et al.

Figure 10. Ideal RTE-TE phase (degrees)
requirement at 3.9 GHz.

Figure 11. Initial layout for the C-band mission.

(a1) 3.6 GHz (a2) 3.9 GHz (a3) 4.2 GHz

(b1) 3.6 GHz (b2) 3.9 GHz (b3) 4.2 GHz

Figure 12. Simulated radiation pattern in co-polarization gain [dBi] for left polarization at different
frequencies. (a) Initial RA. (b) Optimized RA.

calculate gradients given by Eq. (10)). Such improvements were not addressed in this study, whose
main scope was the spherical mapping.

Figure 12(b) presents the radiation patterns of the optimized RA. Compared to the initial RA ones,
we clearly observe the benefits of the optimization process at the lateral frequencies. Table 3 confirms
this observation since the co-polar gain specifications are now reached at 3.6 GHz and 3.9 GHz. Only
a small 0.06 dBi residual error is noted at 4.2 GHz. Note that the gain improvement compared to an
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Table 2. Initial RA performances.

Frequency
Zone

Co-polar Co-polar
XPDminGainmin Gainmax

GHz [dB] [dB] [dB]

3.6
FC1 23.03 X 21.6
FC2 X 9.52 X

3.9
FC1 24.36 X 22.47
FC2 X 6.7 X

4.2
FC1 22.7 X 21.95
FC2 X 7.84 X

Table 3. Optimized RA performances.

Frequency
Zone

Co-polar Co-polar
XPDminGainmin Gainmax

GHz [dB] [dB] [dB]

3.6
FC1 24.65 X 22.52
FC2 X 7.62 X

3.9
FC1 24.28 X 22.09
FC2 X 6.46 X

4.2
FC1 24.14 X 20.25
FC2 X 7.43 X
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Figure 13. Convergence of the cost function.

initial POS is up to 1.62 dB. Concerning the XPD, the specifications are obviously not reached since it
has not been considered in the cost function. However, the XPD has not been too much affected by the
co-polar optimization process.
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4.5. Validation by Full-Wave Simulation

For validation purpose, a full-wave simulation of the whole antenna system is proposed in this section.
A homemade solver based on integral equations in frequency domain is used [36]. Figure 14 shows the
comparison between the full-wave solver results and the one obtained with array theory under local
periodicity assumption.

It must be highlighted that the agreement is very good. This definitely shows that the reached
geometrical continuity over the panel is a key point to comply with the local periodicity assumption.
Thanks to that, conventional array theory can be used with confidence in the optimizing process.

Figure 14. Comparison of radiation patterns obtained with full-wave solver (blue curves) and
homemade analytical tool (red curves) at 3.9 GHz.

5. CONCLUSION

This paper describes an original spherical mapping for the 2nd order Phoenix cell. It appears as an
essential tool to fully benefit from this versatile but complex cell. It first provides a convenient way
to visualize its overall properties. Moreover, it leads to an optimization domain that directly inherits
its continuous and cyclic evolution. This makes it fully suitable with spline that leads to a compressed
formulation of the problem to be optimized. In this paper, the mapping is combined with ANN
modeling and encapsulated in a min/max optimization process, thus resulting in a general optimization
package. It is successfully applied to optimize a contoured beam coverage for space communication on
a 16% frequency bandwidth. The gain at the upper frequency is improved by 1.62 dB compared to the
initial POS. The excellent agreement with full-wave simulation confirms that the proposed methodology
automatically generates a regular RA layout that naturally complies with the implicit local-periodicity
assumption.

Further work is now needed to extend the mapping to higher order or asymmetrical cells, which
will offer additional DoF, especially for the management of the cross-polarization.
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