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Summary
Aims: DNA methylation has been found to regulate microRNAs (miRNAs) expression, 
but the prognostic value of miRNA‐related DNA methylation aberration remained 
largely elusive in cancers including glioblastomas (GBMs). This study aimed to inves‐
tigate the clinical and biological feature of miRNA methylation in GBMs of non‐gli‐
oma‐CpG island methylator phenotype (non‐G‐CIMP).
Methods: Prognostic miRNA methylation loci were analyzed, with TCGA and Rennes 
cohort as training sets, and independent datasets of GBMs and low‐grade gliomas 
(LGGs) were obtained as validation sets. Different statistical and bioinformatic analy‐
sis and experimental validations were performed to clinically and biologically charac‐
terize the signature.
Results: We identified and validated a risk score based on methylation status of five 
miRNA‐associated CpGs which could predict survival of GBM patients in a series of 
training and validation sets. This signature was independent of age and O‐6‐methyl‐
guanine‐DNA methyltransferase (MGMT) promoter methylation status. The risk sub‐
group was associated with angiogenesis and accordingly differential responses to 
bevacizumab‐contained therapy. MiRNA target analysis and in vitro experiments fur‐
ther confirmed the accuracy of this signature.
Conclusion: The five‐CpG signature of miRNA methylation was biologically relevant 
and was of potential prognostic and predictive value for GBMs. It might be of help for 
improving individualized treatment.
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1  | INTRODUC TION

Glioblastomas (GBMs) are the most common and devastating sub‐
types of primary central nervous system tumors.1 Unfortunately, de‐
spite the multimodal treatment of surgical resection, radiotherapy, 
and chemotherapy, the reported median survivals of GBM patients 
were only 16‐19 months.1-3

Cancer‐specific DNA methylation changes play important roles 
in cancer development and progression. The best‐known epigen‐
etic abnormality in cancers is promoter‐specific CpG island (CGI) 
hypermethylation of tumor suppressor genes which consequently 
cause transcriptional silencing.4 Altered DNA methylation affected 
the expressions of not only protein‐coding genes but also noncod‐
ing RNAs (ncRNAs).5 Among those ncRNAs, microRNAs (miRNAs), 
the 20‐22 nucleotides small ncRNAs, have been demonstrated to 
have multiple roles in the pathogenesis of cancers.6 It has been re‐
ported that miRNAs could be regulated by DNA methylation and 
abnormal methylation in miRNAs was closely correlated with can‐
cer progression.6,7 However, the biological and clinical implications 
of miRNA methylation abnormality were largely unstudied in can‐
cers including GBMs. Glioma‐CpG island methylator phenotype (G‐
CIMP) represents a distinct subgroup of glioma which is featured 
by genome‐wide hypermethylated CGIs and favorable prognosis.8 
The G‐CIMP+ tumors have already been broadly studied, while the 
relevance features of non‐G‐CIMP GBMs remain largely unclear.

In this study, we analyzed miRNA methylation data of non‐G‐
CIMP GBMs from The Cancer Genome Atlas (TCGA), Gene Expression 
Omnibus (GEO), and Rennes cohort9 to reveal the relationship be‐
tween miRNA methylation and GBM survival. Bioinformatic methods 
and in vitro experiments were used to validate our results.

2  | MATERIAL S AND METHODS

2.1 | GBM datasets

Rennes cohort of 77 newly diagnosed non‐G‐CIMP GBMs with clini‐
cal and genome‐wide DNA methylation microarray data by Infinium 
HumanMethylation450k BeadChip (Illumina Inc, San Diego, CA, USA) 
was obtained from the ArrayExpress under the accession number 
“E‐MTAB‐4969.”9 All patients received standard adjuvant treatment 
of radiotherapy (RT) and concurrent temozolomide (TMZ). Public 
DNA methylation datasets of non‐G‐CIMP GBM samples were also 
downloaded from The Cancer Genome Atlas (TCGA) data portal,10 
and Gene Expression Omnibus (GEO) under the accession number 
“GSE60274.”11 (Detailed clinical data of and relative CpG information 
are listed in the Supporting Information S1) We also obtained clinical 
and DNA methylation data of LGGs from TCGA12 and GSE48462.13 
Among the heterogeneous datasets, only those with age over 
18 years old and a molecular diagnosis of non‐G‐CIMP tumors were 
included in this study. For survival analysis, patients with a follow‐up 
data >1 month were included, in order to reduce the bias caused by 
noncancer death.10 In addition, nontumor brain tissues were obtained 
from apparently healthy individuals or chronic epilepsy patients with 

pathological evidence of other neurological or psychiatric diseases in 
each dataset. The G‐CIMP status was determined by K‐means (k = 3) 
clustering on the 1503 probes reported by Noushmehr et al14 MGMT 
(O‐6‐methylguanine‐DNA methyltransferase) promoter methylation 
status was determined by a logistic regression model using two CpGs, 
that is, cg12434587 and cg12981137.15 Batch effects from different 
datasets and platforms were adjusted by a nonparametric empirical 
Bayes approach (ber package).16 Methylation level of each integrated 
CpGs was summarized as M‐value.17

2.2 | Construction and validation of a miRNA 
methylation‐based risk score model

CpG probes were filtered by removing those targeting the X and Y 
chromosomes, containing a single nucleotide polymorphism (SNP) 
within five base pairs of the targeted CpG. We then selected probes 

F I G U R E  1  Schematic diagram of the probe selection workflow 
for the study
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annotated with miRNAs (n = 2448) for this study. The discovery 
phase was performed within TCGA and Rennes cohort (training sets). 
Univariate Cox regression analysis with permutation test was per‐
formed within each training set. Potential prognostic CpGs with con‐
sistent survival correlation (permutation P < 0.2) in each training set 
were subjected to multivariate Cox regression analysis within the com‐
bined training set (TCGA and Rennes collectively), and those with a 
P value < 0.05 were finally selected for risk score modeling. The risk 
score formula was constructed by integrating the M‐values of all se‐
lected CpGs which were weighted by their multivariate Cox regression 
coefficients after adjusted by patient age and MGMT promoter methyl‐
ation status.18,19 Patients were then classified into high‐risk or low‐risk 
groups with the cutoff point as the median risk score from the com‐
bined training set. The validation phase was performed in GSE60274 
and datasets of LGGs and in particular those with wide‐type IDH.

2.3 | Gene Set Enrichment Analysis (GSEA)

GSEA was performed to evaluate the functional gene expression 
profiles between the risk subgroups on reported gene sets from 

Molecular Signature Database (MSigDB), with nominal P value ≤ 0.05 
for significance.20

2.4 | MiRNA target gene prediction and 
pathway analysis

The online databases TargetScan (http://www.targetscan.org/
vert_72/. Accessed November 11, 2018), miRanda (http://www.
microrna.org/microrna/home.do. Last update: 2010‐11‐01), and 
miRDB (http://mirdb.org/. Accessed November 11, 2018) were 
used to identify the target genes of the relative miRNAs. Genes 
appeared in all three databases were included for the following 
analysis.21 GO analysis was then performed with PANTHER (ver‐
sion 14.0 Released 2018‐12‐03) based on the GO database (http://
www.geneontology.org/ Accessed January 11, 2019) for biologi‐
cal process (BP), cellular component (CC), molecular function (MF), 
and pathway enrichment of the predicted target genes.22 Fisher's 
two‐side exact test was used to classify the GO categories, and the 
Bonferroni correction for multiple test was calculated to correct 
the P values. Bonferroni‐corrected for P < 0.05 was considered to 

Variables

Training set Validation set

Rennes cohort TCGA GSE60274

Sample size 77 102 59

Clinical factors

Age

Median 60 63 52

Range 36‐75 23‐85 26‐70

Pre‐operative KPSa 

Median 80 80 NA

Range 40‐100 40‐100 NA

Gender

Male/Female 55/22 58/44 45/14

Extent of surgery

Surgery (total/partial)/
Biopsy

72 (55/17)/4 101 (NA/NA)/1 57 (NA/NA)/2

Adjuvant Treatments

RT + TMZ/RT 77/0 71/31 32/27

BVZ/non‐BVZ/UN 29/32/16 NA NA

Molecular factors

MGMT methylation status

Methylated/
Unmethylated

26/51 37/65 26/33

Gene expression subtype

P/N/C/M 18/6/24/27 20/13/37/30 8/4/17/20

TCGA methylation clusters

Clusters 2/3 29/48 35/67 23/36

KPS, Karnofsky performance score; NA, not available; RT, radiotherapy; TMZ, temozolomide; UN, 
unknown.
aKPS was available for only a small subset of patients from TCGA cohort. 

TA B L E  1  Patient characteristics of 
included patient cohorts of non‐G‐CIMP 
GBMs

http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do
http://mirdb.org/
http://www.geneontology.org/
http://www.geneontology.org/
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be significant. Enrichment analysis based on Kyoto Encyclopedia of 
Genes and Genomes (KEGG) was performed and visualized using 
ClueGO (Version 2.5.3),23,24 a Cytoscape (version 3.7.1, http://cy‐
toscape.org/) plug‐in. The main parameters for constructing the 
network were as follows: ontologies/pathways: KEGG (321 terms/
pathways with 7454 available unique genes, December 7, 2018), GO 
term/pathway selection: Min Gene = 3 & Min Percentage = 3.0%, 
Kappa Score Threshold = 0.5, Statistical Test Used = Enrichment/
Depletion (Two‐sided hypergeometric test), Correction Method 
Used = Bonferroni step down. Only pathways with P value < 0.05 
were considered to be significant.

2.5 | Cell culture and transfection

The human GBM cell lines U87MG, U251, T98G, and SHG44 were 
obtained from the cell bank of the Air Force Medical University 
(Xi'an, China) and cultured in Dulbecco's modified Eagle's medium 
(DMEM; Gibco, USA) supplemented with 10% fetal bovine serum 
(FBS; Shanghai BioSun Sci&Tech Co., Ltd., Shanghai, China) and in‐
cubated at 37°C with 5% CO2. MiR‐1284 mimic (UCU AUA CAG 
ACC CUG GCU UUU C) and mimic negative control (mimic NC; 
UUC UCC GAA CGU GUC ACG UTT) were synthesized by Sangon 
Biotech Co., Ltd. (Shanghai, China). Cells for transfection were 
planted into 60‐mm dishes at 4 × 105 cells/well. After 48 hours in‐
cubation, miR‐1284 mimic, mimic NC, or control (only treated with 
Polymer) was transfected into cells at 50 pmol/mL using Xfect RNA 
Transfection Reagent (Takara Bio, USA). The transfection efficiency 
was verified by real‐time quantitative PCR (qPCR).

2.6 | RNA extraction and Real‐time 
quantitative PCR

Total RNA was extracted by TRIzol reagent (Invitrogen, USA) and 
reverse transcribed with PrimeScript RT reagent kit (Takara, Tokyo, 
Japan). PCR amplification was performed in triplicate with SYBR 
Premix Ex Taq II (Takara) using CFX96 Real‐Time PCR Detection 
System (Bio‐Rad, Hercules, CA, USA). The expression values of 
miR‐1284 were normalized to the levels of small nuclear U6. The 
primer sequences were listed as follows: (a) miR‐1284: Reverse 

transcription primer: 5′‐CTC AAC TGG TGT CGT GGA GTC GGC 
AAT TCA GTT GAG GAA AAG‐3′; (b) U6 Reverse transcription 
primer: 5′‐CGC TTC ACG AAT TTG CGT GTC AT‐3′; miR‐1284‐F: 5′‐
CGT CTA TAC AGA CCC TGG CTT TTC‐3′; miR‐1284‐R: 5′‐CTC AAC 
TGG TGT CGT GGA‐3′; U6‐F: 5′‐CTC GCT TCG GCA GCA CAT A‐3′; 
U6‐R: 5′‐CGC TTC ACG AAT TTG CGT G‐3′.

2.7 | Pyrosequencing

Pyrosequencing was performed by Pyromark Q96 ID platform and 
analyzed by PyroMark CpG software (Qiagen, Germany). The follow‐
ing primers were used: miR‐1284‐F 5′‐ATT TTT ATT GGT TAA ATT 
AAT ATT ATA GG‐3′, miR‐1284‐R biotin‐5′‐AAC TTA TTA CAT TAA 
ATA CAA ACA ACA AC‐3′, miR‐1284‐seq 5′‐TTT TTA GTT TTT AAG 
TAT ATT‐3′. The DNA methylation value for each sample was calcu‐
lated as the average methylation value of the interrogated CpGs.25

2.8 | 5‐Aza‐2′‐deoxycytidine (5‐Aza‐dC) 
demethylation treatment

U251 and U87MG cells were grown for 4 days in the presence of 
10 μmol/L 5‐Aza‐dC (Sigma‐Aldrich, St. Louis, MO, USA). Fresh 5‐
Aza‐dC was added every 24 hours.

2.9 | Cell proliferation assay

Cells with different treatments were implanted in 96‐well plates 
at 5 × 103 per well. At indicated time points, CCK‐8 kit (Yeasen, 
Shanghai, China) was assayed for cell viability measurement.

2.10 | Cell cycle and apoptosis analysis

For cell cycle analysis, cells were harvested, fixed in 70% ethanol 
on ice, and stained with propidium iodide in phosphate‐buffered 
saline containing RNase. The DNA contents were analyzed by 
flow cytometry. For cell apoptosis analysis, Annexin V‐fluores‐
cein isothiocyanate and propidium iodide double staining (Roche 
Diagnostics, Germany) was used to sort cells in early or late apop‐
totic phase.

TA B L E  2  The five prognostic CpGs associated with miRNA

Probes Chr. miRNA name miRNA region
Relation to 
CpG island

Methylation 
status in GBM

Average M‐value of 
high‐risk GBMsa 

Cox regression 
coefficients

cg05744073 17 miR‐132 Body Island Hypermethylated −4.073 −0.534

cg08244382 14 miR‐127; miR‐433 TSS1500;TSS200 Island Shore Hypermethylated 3.185 −0.446

cg20382675 3 miR‐1284 TSS200 Open sea NS 0.287 −0.263

cg24082174 3 miR‐1248 TSS1500 Island Shore NS 0.991 0.255

cg13767001 13 miR‐759 TSS1500 Open sea Hypomethylated −2.223 0.368

NS, no significance; TSS, transcription start sites.
Methylation level assessed with M‐value: low (‐Inf, −2), middle [−2, 2], and high (2, Inf).
aIncluded all high‐risk samples of three datasets. 

http://cytoscape.org/
http://cytoscape.org/
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2.11 | Wound‐healing assay

Cell motility was assessed by wound‐healing assay as described pre‐
viously.26 A scratch wound was generated by a 200 μL pipette tip 
on the confluent cell monolayers in 6‐well plates. The spread of the 
wound closure was observed after 48 hours of the scratch.

2.12 | Statistical analysis

The distributions of known molecular and clinical features with re‐
spect to the risk subgroups were tested by Fisher's exact or chi‐
square test. Survival data, for example, overall survival (OS) and 
progression‐free survival (PFS), were estimated by the Kaplan‐
Meier method and compared by log‐rank test. Univariate and mul‐
tivariate Cox regression models were performed to evaluate the 
correlation and independence of potential prognostic factors. For 
in vitro experiments, data were expressed as mean ± SEM from 
three independent experiments and analyzed by Student's t test. 
All the calculations were done within SPSS19.0 (IBM Corporation, 

New York, NY, USA) and R software (version 3.2.5; https://www.r-
project.org/), and a difference was considered significant when 
P ≤ 0.05.

3  | RESULTS

3.1 | Identification of prognostic miRNA 
methylation loci from the training sets

The included cohorts and the workflow of probe selection were 
schematically presented in Figure 1, and patient characteristics were 
summarized in Table 1. By employing a multistep selection criterion, 
we identified a five‐CpG panel of miRNA methylation that showed 
consistent prognostic significance in both training sets (Table 2). 
Among the panel, two CpGs (eg, cg05744073 and cg08244382) were 
hypermethylated and one CpG (eg, cg13767001) was hypomethyl‐
ated in GBMs, while the other two were not differentially methyl‐
ated in GBMs (Table 2). Upon the correlation with prognosis, three 
CpGs (eg, cg05744073, cg08244382, and cg20382675) showed 

F I G U R E  2  The survival correlation of the five‐CpG signature in each dataset. A, The five‐CpG signature predicted overall survival (OS) 
in training sets. B, The signature was validated by yielding apparent OS difference in GSE60274. C, The five‐CpG signature was also able to 
predict PFS in Rennes cohort. D, The signature could not identify patients with different prognoses in IDH wide‐type LGG (grade III or II)

https://www.r-project.org/
https://www.r-project.org/
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F I G U R E  3  Molecular and clinical characteristics of the 5‐CpGs miRNA methylation signature. A, the heat maps of K‐means (k = 2) 
clustering on the 5‐CpGs methylation signature according to the M‐value from all GBM groups; each column represented a sample; for each 
sample (n = 238), subgroup correlation was indicated; P values for Fisher' exact test and chi‐square test were accordingly shown; B, GSEA 
enrichment plots for representative functional gene sets enriched in high‐risk tumors from TCGA. C, High‐risk but not low‐risk tumors 
conferred significant OS benefits when treated with bevacizumab in Rennes cohort with available second‐line therapies

TA B L E  3  Results of the miRNA methylation signature in Cox regression analysis

Variables

Univariate Cox model Multivariate Cox model 

HR 95% CI P value HR 95% CI P value

Rennes (n = 61)a 

Patient age 1.046 1.015‐1.078 0.003 1.040 1.003‐1.078 0.033

miRNA methylation 
signature

2.926 1.733‐4.942 <0.001 3.129 1.782‐5.493 <0.001

MGMT methylation status 0.438 0.236‐0.813 0.009 3.047 0.140‐0.569 <0.001

DNA methylation clusters 0.849 0.492‐1.465 0.557      

Proneural subtype 0.905 0.483‐1.695 0.754      

BVZ treatment 0.607 0.357‐1.031 0.065 0.536 0.273‐1.049 0.069

Gender 0.918 0.522‐1.614 0.767      

Extent of surgery 0.957 0.623‐1.469 0.840      

TCGA + GSE60274 + Rennes (n = 238)b 

Patient age 1.028 1.012‐1.044 0.001 1.034 1.018‐1.051 <0.001

Treatments (RT/TMZ vs RT) 0.479 0.345‐0.666 <0.001 0.438 0.314‐0.609 <0.001

DNM methylation clusters 0.995 0.732‐1.351 0.973      

miRNA methylation 
signature

2.207 1.704‐2.859 <0.001 2.368 1.838‐3.050 <0.001

MGMT methylation status 0.627 0.455‐0.863 0.004 0.589 0.427‐0.812 0.001

Gender 1.009 0.732‐1.392 0.956      

KPS, Karnofsky performance score; NA, not available; RT, radiotherapy; TMZ, temozolomide.
aRennes cohort excluded 16 patients with insufficient treatment information. 
bIncluding all patients from TCGA, Rennes cohort, and GSE60274. 
cThe significance of bold values indicate P value < 0.05. 
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negative correlation with OS, while two CpGs (eg, cg24082174 and 
cg13767001) with positive correlation (Table 2).

Accordingly, the risk score model was constructed as follows: 
risk score = (−0.534 × M‐value of cg05744073) + (−0.446 × M‐value 
of cg08244382) + (−0.263 × M‐value of cg20382675) + (0.254 × M‐
value of cg24082174) + (0.368 × M‐value of cg13767001). With 
the cutoff as the median risk score from the combined training sets 
(−0.382), patients were divided into low‐risk groups (with lower risk 
scores) and high‐risk groups (with higher risk scores). In the com‐
bined training sets, the assigned low‐risk patients (n = 89) were 
significantly associated with longer overall survival (OS) than those 
high‐risk ones (n = 90; log‐rank P < 0.0001; Figure 2A). The 5‐CpG 
signature also showed consistent prognostic value in each training 
set (Figure 2A).

3.2 | Validation of the five‐GpG miRNA methylation 
signature for prognostication

To validate the prognostic performance of the 5‐CpG miRNA meth‐
ylation signature, we applied it to the independent validation set 
of GSE60274. With the prespecified cutoff, patients were clas‐
sified into a low‐risk group (n = 28) and a high‐risk group (n = 31). 
Consistent with the training sets, low‐risk patients were associated 
with longer OS than high‐risk ones (log‐rank P = 0.013; Figure 2B). 
We also observed a significant correlation between progression‐
free survival (PFS) and the miRNA methylation‐based risk groups in 
Rennes cohort (Figure 2C).

In addition, we applied the GBM‐derived signature to indepen‐
dent validation cohorts of IDH wild‐type LGGs. The miRNA methyl‐
ation signature failed to yield significant OS differences between the 
risk subgroups within both grade III and II gliomas using their median 
risk scores as cutoffs, respectively, which supported the signature as 
a GBM‐specific prognostic model (Figure 2D).

3.3 | Molecular and clinical correlation of the 5‐CpG 
miRNA methylation signature

Correlation with current established molecular features showed 
that the 5‐CpG signature appeared not to be significantly cor‐
related with TCGA gene expression subtypes, DNA methylation 
clusters, and MGMT promoter methylation status (Figure 3A). Also, 
the signature seemed not to be correlated with treatments, gen‐
der, and age (Figure 3A). GSEA on gene expression data of TCGA 
samples showed that the high‐risk tumors were enriched with pro‐
oncogenic gene sets such as ErbB signaling pathway (P < 0.0001), 
MAPK signaling pathway (P = 0.029), pro‐angiogenic gene sets such 
as hypoxia (P = 0.035), and VEGF pathway (P = 0.029), which might 
biologically explain the inferior survival of those high‐risk tumors 
(Figure 3B).

3.4 | High‐risk patients appeared to be beneficial 
for bevacizumab therapy

As reported by GSEA, high‐risk tumors seemed to be featured 
by upregulation of various pro‐angiogenic gene sets (Figure 3B). 
Accordingly, we tested the potential survival benefits conferred by 
the anti‐angiogenic agent bevacizumab as combined therapy within 
each risk subgroup. In Rennes cohort with available second‐line 
therapies, we found that the addition of bevacizumab did confer 
significant OS benefits in high‐risk tumors, but was associated with 
similar OS to bevacizumab‐free therapy (Figure 3C).

3.5 | The 5‐CpG signature was an independent 
prognostic factor in non‐G‐CIMP GBMs

Within Rennes cohort with RT/TMZ, univariate Cox regression 
analysis showed that patient age, MGMT promoter methylation 

F I G U R E  4  The survival correlation of the five‐CpG signature within current GBM classification. A, The five‐CpG signature predicted 
overall survival (OS) in both MGMT promoter methylated and unmethylated patients treated with both radiotherapy (RT) and temozolomide 
(TMZ). B, It was also correlated with different OS in subgroups of ≤60 or >60 y. C, The correlation between five‐CpG signature and different 
prognoses was significant in proneural and neural subtypes and marginally significant in the classical and mesenchymal subtypes
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status, and our miRNA methylation signature were significantly 
associated with OS (Table 3). Multivariate Cox regression analysis 
further demonstrated the prognostic independence of the above‐
mentioned factors (Table 3). Multivariate Cox regression model 
within the combined cohorts of TCGA, GSE60274, and Rennes 
cohort not only confirmed the prognostic independence of our 
miRNA methylation signature but also supported its treatment in‐
dependence (Table 3).

3.6 | The prognostic value of the miRNA 
methylation signature with respect to current GBM 
classification

We also tested the prognostic interrelationship of the 5‐CpG sig‐
nature with known prognostic factors within available patients 
from the combined training and validation sets. We found that it 
could consistently predict OS within the subtypes of unmethylated 

F I G U R E  5  Target prediction results of signature associated miRNAs
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TA B L E  4  PANTHER analysis for predicted target genes

Terms Target gene Expected gene Nr Fold enrichment P value

PANTHER GO‐slim molecular function

MAP kinase activity 17 5.04 3.38 0.028

→Protein serine/threonine kinase activity 44 20.45 2.15 0.005

→Protein kinase activity 80 38.61 2.07 <0.001

→Catalytic activity, acting on a protein 170 99.8 1.7 <0.001

→Catalytic activity 396 324.05 1.22 0.012

Ubiquitin‐like protein transferase activity 45 22.2 2.03 0.017

RNA polymerase II transcription factor activity, sequence‐specific DNA binding 56 27.85 2.01 0.002

→DNA‐binding transcription factor activity 125 75 1.67 <0.001

→Transcription regulator activity 140 83.93 1.67 <0.001

DNA binding 92 56.39 1.63 0.008

→Nucleic acid binding 193 125.21 1.54 <0.001

→Binding 509 404.85 1.26 <0.001

→Organic cyclic compound binding 196 129.71 1.51 <0.001

Unclassified 738 859.06 0.86 0

PANTHER GO‐slim biological process

Regulation of transcription by RNA polymerase II 52 26.71 1.95 0.044

→Regulation of transcription, DNA‐templated 55 28.84 1.91 0.038

→regulation of biological process 390 287.8 1.36 <0.001

→Biological regulation 420 312.6 1.34 <0.001

→Regulation of metabolic process 182 106.9 1.7 <0.001

→Regulation of macromolecule metabolic process 157 91.18 1.72 <0.001

→Regulation of gene expression 114 64.47 1.77 <0.001

Transcription by RNA polymerase II 128 68.59 1.87 <0.001

→Transcription, DNA‐templated 162 93.7 1.73 <0.001

→Cellular macromolecule biosynthetic process 186 118.42 1.57 <0.001

→Metabolic process 460 364.94 1.26 <0.001

→Biosynthetic process 192 123.53 1.55 <0.001

→Macromolecule biosynthetic process 188 120.02 1.57 <0.001

→Organic substance biosynthetic process 192 123.07 1.56 <0.001

Cellular protein modification process 84 50.21 1.67 0.032

→Protein modification process 84 50.36 1.67 0.033

Unclassified 670 820.69 0.82 0

PANTHER GO‐slim cellular component

Nuclear chromatin 66 36.62 1.8 0.008

→intracellular part 398 311.92 1.28 <0.001

→cell part 540 448.19 1.2 0.001

→cell 544 450.25 1.21 <0.001

Unclassified 809 909.65 0.89 0

Extracellular space 22 56.31 0.39 <0.001

→Extracellular region part 28 62.41 0.45 0.001

→Extracellular region 35 70.2 0.5 0.002

PANTHER pathways

EGF receptor signaling pathway 29 10.15 2.86 0.001

Cadherin signaling pathway 33 11.98 2.75 <0.001

FGF signaling pathway 24 9.16 2.62 0.015

CCKR signaling map 31 13.2 2.35 0.008

PDGF signaling pathway 26 11.37 2.29 0.046

Wnt signaling pathway 52 23.73 2.19 <0.001

Unclassified 1304 1404.08 0.93 0
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or methylated MGMT tumors (Figure 4A), and the subgroups of 
≤60 or>60 years (Figure 4B). Regarding the TCGA expression sub‐
types, the signature was significantly associated with OS in the 
proneural and neural subtypes, and also yielded marginally sig‐
nificant OS difference in the classical and mesenchymal subtypes 
(Figure 4C).

3.7 | Target gene prediction of the 5‐CpG signature‐
related miRNAs

Targetscan, miRanda, and miRDB databases were used to pre‐
dict the target genes of miR‐132, miR‐127, miR‐433, miR‐1284, 
miR‐1248, and miR‐759. To ensure the specificity and sensitivity of 
our prediction, we kept the identical targets predicted in all three 
databases without setting additional criterion. Totally 1578 target 
genes left for further functional analysis (Figure 5). Among them, 

139 genes were candidate targets for two miRNAs, seven genes 
were common targets of three miRNAs, and one was target of four 
miRNAs.

3.8 | Biological characteristics of predicted 
target genes

Predicted target genes were further analyzed using PANTHER 
GO‐slim tools on MF, BP, and CC (Table 4). The most enriched MF 
terms were MAP kinase activity, ubiquitin‐like protein transferase 
activity, DNA binding, and RNA polymerase II transcription factor 
activity (Figure 6A). The most enriched BP terms were regulation 
of transcription by RNA polymerase II, transcription by RNA poly‐
merase II, and cellular protein modification process (Figure 6B). The 
most enriched CC terms were nuclear chromatin and extracellular 
space (Figure 6C). PANTHER pathway analysis showed EGF receptor 

F I G U R E  6  Bioinformatic analysis of predicted target genes. A, PANTHER GO‐Slim biological process. B, PANTHER GO‐Slim molecular 
function. C, PANTHER GO‐Slim cellular component. D, PANTHER pathway enrichment. E, KEGG pathway enrichment analysis, relative 
genes were shown as well



     |  947KANG et al.

signaling pathway, cadherin signaling pathway, FGF signaling path‐
way, CCKR signaling pathway, PDGF signaling pathway, and Wnt 
signaling pathway were the most enriched pathways (Figure 6D). 
Then, we utilized ClueGO to make a KEGG pathway enrichment 
analysis (Figure 6E, Table 5). The most enrichment terms were adhe‐
rens junction, cell cycle, TGF‐beta signaling pathway, ErbB signaling 
pathway, axon guidance, renal cell carcinoma, oocyte meiosis, and 
cellular senescence.

3.9 | MiR‐1284 suppressed glioma cell 
proliferation and migration

To further validate the functional relevance of this miRNA meth‐
ylation signature, we selected miR‐1284 for in vitro experiments. 
Pyrosequencing of cg20382675 showed that the miR‐1284‐associ‐
ated CpG was consistently associated with high DNA methylation 
status in glioma cells, that is, U87MG, U251, T98MG, and SHG44 
(Figure 7A). Accordingly, the expression levels of miR‐1284 were 

comparable in those glioma cells (Figure 7B). However, after treated 
with 5‐Aza‐dC, we found that the expressions of miR‐1284 were sig‐
nificantly decreased in U251 and U87MG, indicating a positive impact 
of DNA methylation on miRNA expression (Figure 7C). By transfer‐
ring miR‐1284 mimics into U251, we established a miR‐1284‐overex‐
pressed U251 model, which was validated by qPCR (Figure 7D). CCK‐8 
analysis showed that over‐expression of miR‐1284 reduced cell viabil‐
ity of U251 (Figure 7E). Flow cytometry analysis showed that over‐
expression of miR‐1284 was also associated with lower frequency of 
tumor cells in S and G2 phase (Figure 7F), and higher frequency of 
apoptotic cells (Figure 7G). Finally, wound‐healing assay showed that 
migration was inhibited by over‐expression of miR‐1284 (Figure 7H).

4  | DISCUSSIONS

This study investigated genome‐wide DNA methylation microar‐
ray data of miRNA‐associated CpGs to explore the clinical value of 

TA B L E  5  KEGG pathway enrichment analysis of predicted target genes

GOID GOTerm
Term 
P valuea 

Group 
P valuea  Nr genes Associated genes found

KEGG:04520 Adherens junction <0.001 <0.001 21 ACP1, ACTN4, BAIAP2, CREBBP, CTNND1, EP300, INSR, 
MAPK1, MAPK3, MET, NLK, SMAD4, SNAI1, SNAI2, 
SORBS1, SRC, SSX2IP, TGFBR1, VCL, WASL, YES1

KEGG:04110 Cell cycle <0.001 <0.001 29 CCND2, CDC14A, CDC16, CDC27, CDC6, CDK2, 
CDKN2B, CDKN2D, CHEK2, CREBBP, CUL1, E2F3, 
E2F5, EP300, GADD45A, MAD2L1, MCM5, RAD21, 
RB1, SKP1, SMAD4, SMC1B, SMC3, STAG1, TTK, WEE1, 
YWHAB, YWHAG, YWHAQ

KEGG:04350 TGF‐beta signaling 
pathway

0.001 <0.001 21 ACVR1, ACVR1C, BMPR1B, CDKN2B, CREBBP, CUL1, 
E2F5, EP300, GDF5, ID2, ID4, MAPK1, MAPK3, NODAL, 
PPP2R1B, RPS6KB1, SKP1, SMAD4, SMAD5, SMAD7, 
TGFBR1

KEGG:04012 ErbB signaling 
pathway

0.004 <0.001 20 CAMK2G, ERBB4, EREG, GRB2, HBEGF, KRAS, MAP2K1, 
MAP2K4, MAPK1, MAPK10, MAPK3, NCK2, PAK2, 
PAK4, PAK6, PIK3R1, PRKCB, RPS6KB1, SHC3, SRC

KEGG:04360 Axon guidance 0.005 <0.001 32 ABLIM1, ABLIM3, ARHGEF12, BMPR1B, CAMK2G, 
EPHA5, EPHA7, GNAI1, KRAS, MAPK1, MAPK3, MET, 
NCK2, NFATC2, NRP1, NTNG1, PAK2, PAK4, PAK6, 
PIK3R1, PTCH1, ROCK2, RYK, SEMA3C, SEMA4A, 
SEMA4G, SLIT3, SRC, SRGAP1, SRGAP2, SSH2, UNC5B

KEGG:05211 Renal cell carcinoma 0.009 <0.001 17 CREBBP, EP300, EPAS1, ETS1, GRB2, HIF1A, KRAS, 
MAP2K1, MAPK1, MAPK3, MET, PAK2, PAK4, PAK6, 
PIK3R1, RAP1A, SLC2A1

KEGG:04114 Oocyte meiosis 0.011 <0.001 25 ADCY7, AURKA, CAMK2G, CDC16, CDC27, CDK2, 
CPEB2, CPEB4, CUL1, FBXW11, MAD2L1, MAP2K1, 
MAPK1, MAPK3, PPP1CB, PPP2R1B, PPP2R5C, 
RPS6KA3, SKP1, SMC1B, SMC3, SPDYE1, YWHAB, 
YWHAG, YWHAQ

KEGG:04218 Cellular senescence 0.048 <0.001 28 CCND2, CDK2, CDKN2B, CHEK2, E2F3, E2F5, ETS1, 
FBXW11, FOXO3, GADD45A, HIPK1, HIPK3, KRAS, 
LIN52, LIN9, MAP2K1, MAP2K6, MAPK1, MAPK3, NBN, 
NFATC2, PIK3R1, PPP1CB, RASSF5, RB1, RRAS2, 
TGFBR1, TSC1

aCorrected with Bonferroni step down. 
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miRNA methylation in non‐G‐CIMP GBMs. We identified a 5‐CpG 
signature of miRNA methylation which could predict survival of 
non‐G‐CIMP GBM patients. This signature showed consistent and 
robust prognostic values within each subgroup of different ages, mo‐
lecular subtypes, and treatments and was validated in independent 
patient cohort. Notably, different risk groups distinguished by this 
signature showed different bevacizumab therapy outcomes. These 
findings suggest that methylation status of this 5‐CpG relative miR‐
NAs is closely correlated with GBM malignancies, especially with 
tumor angiogenesis, and this 5‐CpG methylation signature has good 
potential to be an indiction for bevacizumab therapy in non‐G‐CIMP 
GBMs.

As GBMs are characterized by high heterogeneity and massive 
vessels, anti‐VEGF therapy was expected to improve the outcome 
of GBM patients.27 Bevacizumab, a humanized monoclonal antibody 
against VEGF, has been the most promising anti‐angiogenic agents 
for treating GBMs and was approved for recurrent GBM treatment.28 
However, in newly diagnosed GBM patients, recent randomized tri‐
als failed to yield clear survival benefits when applied bevacizumab 
plus Stupp regimen,29 implying that proper indicators are needed for 
bevacizumab treatment. In this study, the miRNA methylation‐based 
risk subgroups were associated with differential enrichments of pro‐
angiogenic gene sets (eg, hypoxia or VEGF pathways), suggesting the 
possibility of differential responses to bevacizumab within the risk 

F I G U R E  7  Characteristics of miR‐1284 in GBM cell lines. A, Methylation level of miR‐1284 in glioma cell lines (U251, U87MG, T98G, 
and SHG44). B, Relative expression of miR‐1284 compared with U6 in glioma cell lines. No difference was found between each cell line. 
C, Expression of miR‐1284 by qRT‐PCR in U251 and U87MG cells treated with 5‐Aza‐2‐deoxycytidine (AZA). D, Expression of miR‐1284 
transfected with mimic and mimic NC for 48 h (P < 0.001). E, CCK‐8 assay testing cell viability from 1 to 5 d. F, Flow cytometry detecting 
cell cycle of U251 and PI values in different groups (G) Flow cytometry testing cell apoptosis after transfection. H, Representative results of 
wound‐healing assay and the percentage of healing area determined using the ImageJ. *P < 0.05, **P < 0.01, ***P < 0.001
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subgroups. Accordingly, distinct survival benefits were observed in 
Rennes cohort with the use of bevacizumab at progression: High‐risk 
patients seemed to benefit more from the bevacizumab‐contained 
therapy. These results suggest that the 5‐CpG signature is of poten‐
tial use to optimize bevacizumab therapy by identifying appropriate 
patient candidates.

For biological features of this 5‐CpG signature, target genes of 
relative miRNAs were analyzed with bioinformatic methods. Results 
showed these miRNAs regulated a great many genes and might coop‐
erate with each other to regulate specific genes. The profound char‐
acteristics of the target genes were analyzed based on GO database 
and KEGG database. From the results of GO analysis of BF of these 
target genes, we can infer that these miRNAs might greatly partici‐
pate in biological regulation, especially regulation of transcription by 
RNA polymerase II, also in metabolic processes such as macromole‐
cule biosynthetic process and cellular protein modification process. 
For MF, these miRNAs might affect ubiquitin‐like protein transferase 
activity, RNA polymerase II transferase activity, DNA‐binding pro‐
cess, and catalytic activity especially in MAP kinase activity. For CC 
results, these miRNAs might regulate synthesization of nuclear chro‐
matin and extracellular space components. Pathway enrichment anal‐
ysis implied these miRNAs were correlated with differentiation, cell 
motility, immunology, cell proliferation, and migration. Of note, the 
pathway enrichment analysis showed target genes were enriched in 
pathways of renal cell carcinoma (KEGG:05211), TGF‐beta signaling 
pathway (KEGG:04350), and ErbB signaling pathway (KEGG:04012). 
The renal cell carcinoma pathway includes HIF‐α pathway and 
strongly correlates with VEGF and PDGF production. This is consis‐
tent with the above GSEA results on gene expression data of TCGA 
and reminds the effects of these signature relative miRNAs.

To further explore the biological relevance of the 5‐CpG sig‐
nature, we selected one miRNA (miR‐1284) for functional experi‐
ments. MiR‐1284 has been reported to have tumor‐inhibiting roles 
in lung, gastric and ovarian cancers,30-32 but its roles in GBMs were 
still unknown. The in vitro experiments confirmed the anti‐tumor 
role of miR‐1284 as inhibiting glioma cell proliferation and migra‐
tion and inducing glioma cell apoptosis. Interestingly, when treated 
with demethylation agent, the expression of miR‐1284 was signifi‐
cantly decreased, which indicated a positive correlation between its 
DNA methylation and expression. These results supported the bio‐
logical implications of the 5‐CpG signature that higher methylation 
status of miR‐1284 was positively correlated with patient survival. 
In general, hypermethylation of promoter inhibits transcription pro‐
cesses and decreases miRNA expression. However, there have been 
emerging evidences reporting that DNA methylation could facilitate 
the expression in some situations despite not knowing the exact 
mechanisms.33,34

Among the other panel‐associated miRNAs, some have been 
reported to be implicated in glioma biology. MiR‐132 was upregu‐
lated in GBMs and was a potential indicator of poor prognosis.35,36 
MiR‐127 and miR‐433 are both derived from an overlapping gene 
locus and colocalized within a cancer‐associated genomic region.37 
MiR‐127 was reported to promote GBM cell migration and invasion 

by targeting tumor‐suppresser gene SEPT7.38 MiR‐433 was reported 
to be commonly dysregulated in GBMs and suppressed glioma cell 
proliferation, migration, invasion, and enhanced sensitivity to TMZ 
therapy.39,40 Regarding miR‐759 and miR‐1248, no biological or clini‐
cal evidences have been reported in cancers so far.

Our study has several limitations. First, as a retrospective 
study, the identification and validation of the signature were 
based on open source databases which had already been uploaded 
before. The follow‐up information of these researches could not 
be considered in our study. Also, clinical information such as 
drug data and recurrent therapy of some cases was not detailed 
enough, which made it hard to make more subtle analysis. Second, 
bias caused by the differences among these selected trial plat‐
forms should be considered even with compensatory statistical 
measure. More proof should be collected before conducting fur‐
ther trials. Third, we only performed in vitro study on one miRNA, 
more in vitro and in vivo studies are needed, especially those on 
GBM angiogenesis.

In conclusion, by analyzing genome‐wide DNA methylation mi‐
croarray data of miRNAs‐associated CpGs, we presented the initial 
report on the prognostic relevance of aberrant DNA methylation in 
miRNA regions in GBMs. The identification of the biologically and 
clinically relevant miRNA methylation signature may represent a 
promising approach for optimizing prognostication of GBMs, and be 
of potential value for improving individualized treatment and anti‐
angiogenic therapy in particular.
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