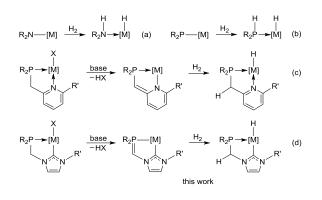
Phosphine-NHC Manganese Hydrogenation Catalyst Exhibiting a Non-Classical Metal-Ligand Cooperative H₂ Activation Mode

Ruqaya Buhaibeh,^[a] Oleg A. Filippov,^[b] Antoine Bruneau-Voisine,^[a,c] Jérémy Willot,^[a] Carine Duhayon,^[a] Dmitry A. Valyaev,^{*,[a]} Noël Lugan,^{*,[a]} Yves Canac^{*,[a]} and Jean-Baptiste Sortais^{*,[a,d]}

Abstract: Deprotonation of the Mn(I) NHC-phosphine complex fac-[MnBr(CO)₃(κ^2 P,Ĉ-Ph₂PCH₂NHC)] (**2**) under a H₂ atmosphere readily gives the hydride fac-[MnH(CO)₃($\kappa^2 P$, \hat{C} -Ph₂PCH₂NHC)] (3) via the intermediacy of the highly reactive 18-e NHC-phosphinomethanide fac-[Mn(CO)₃(κ³P,C,Ĉ-Ph₂PCHNHC)] complex (6a). DFT calculations revealed that the preferred reaction mechanism involves the unsaturated 16-e mangana-substituted phosphonium ylide complex fac-[$Mn(CO)_3(\kappa^2 P, \hat{C}-Ph_2P=CHNHC)$] (**6b**) as kev intermediate able to activate H₂ via a non-classical mode of metalligand cooperation implying a formal λ^5 -P - λ^3 -P phosphorus valence change. Complex 2 is shown to be one of the most efficient pre-catalysts for ketone hydrogenation in the Mn(I) series reported to date (TON up to 6200).


Cooperative activation of inert chemical bonds is a topical concern in modern chemistry and homogeneous catalysis. Since the discovery of Shvo-type catalysts,[1] a wide variety of transition metal complexes bearing non-innocent ligands was exploited for E-H bond activation,^[2] recently supplemented by related reactivity of frustrated Lewis pairs^[3] and main-group ambiphiles.^[4] Among all these transformations, the activation of H₂ is of utmost importance because of its essential role in catalytic [transfer] hydrogenation^[5] and hydrogen borrowing^[6] processes relevant in fine chemicals industry. While the seminal contribution of Novori and coll. involving an amide/amine interplay in the coordination sphere of transition metals (Scheme 1, (a)) still is the most ubiquitous system for heterolytic H_2 splitting,^[7] similar transformations implying phosphorous analogues remain scarce (Scheme 1, (b)).^[8] By contrast, the association of N- and P-moieties for such application was more developed (Scheme 1, (c)). In this regard, as mostly demonstrated in pincer-type series, the species resulting from deprotonation of the methylene bridge in phosphine-pyridine complexes are capable to activate H₂ across the metal and the

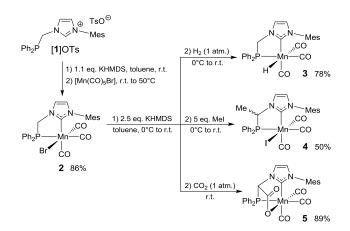
Univ Rennes, CNRS, ISCR – UMR 6226, F-35000, Rennes, France [d] Prof. Dr. J.-B. Sortais Institut Universitaire de France

1 rue Descartes, F-75231 Paris Cedex 05, France

Supporting information for this article is given via a link at the end of the document.

ligand arm though a mechanism in which the rearomatization of the pyridine moiety actually plays a key role (Scheme 1, (c)).^[9] We report herein that a non-classical metalla-substituted phosphonium ylide obtained upon C–H deprotonation of a chelating NHC-phosphine ligand in the Mn coordination sphere can easily activate H₂ (Scheme 1, (d)), thus providing the first evidence of the involvement of λ^{5} -P species in metal-ligand cooperation. Thanks to this non-classical mode of H₂ activation, the NHC-phosphine Mn(I) complex behaves as a powerful catalyst for the hydrogenation of ketones.

Scheme 1. H₂ activation by non-innocent ligands via metal-ligand cooperation.

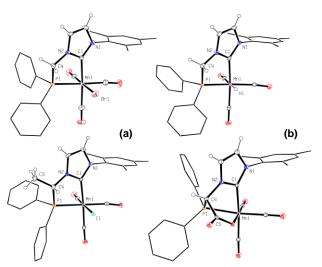

Compassing our recent investigations on the application of Mn(I) complexes supported by bidentate ligands in hydrogenation-type catalysis,^[10] we turned our attention to the use of ligand systems now associating phosphine and NHC donors. Complex **2** was readily obtained in 86% yield from the corresponding phosphine-imidazolium salt [**1**]OTs^[11] through the sequential addition of KHMDS and [Mn(CO)₅Br] (Scheme 2). According to IR and NMR spectroscopy, the air stable complex **2** forms as a single isomer (δ_{7} 71.3 ppm (s), δ_{c} 197.7 ppm (d, ²*J*_{PC} = 17.5 Hz, *C*_{N2C})), presenting a facial arrangement of the three carbonyl ligands as confirmed by an XRD study (Figure 1a).^[12]

To explore the chemical behaviour of **2** towards H₂, the latter complex was first reacted with KHMDS in toluene at 0 °C under 1 atm. of H₂. Under these conditions, **2** was rapidly converted into the corresponding Mn(I) hydride complex **3** (Scheme 2, up) isolated in 78% yield, standing up as the first example of a Mn hydride complex bearing a NHC ligand. The ¹H NMR spectrum of **3** displays a doublet at δ_{H} –7.25 ppm with a ²J_{PH} constant of 53.8 Hz agreeing with the *cis* arrangement of hydride and phosphine moieties. The ³¹P NMR signal of **3** (δ_{P} 94.2 ppm) was found shifted downfield compared to the bromide precursor **2** (δ_{P} 71.3 ppm). A similar trend was observed for the carbenic resonance in the ¹³C NMR spectrum (**3**: δ_{C} 205.4 ppm (d, ²J_{PC} = 14.3 Hz); **2**: δ_{C} 197.7 ppm (d, ²J_{PC} = 17.5 Hz)). The facial

[[]a] R. Buhaibeh, Dr. A. Bruneau-Voisine, Dr. J. Willot, Dr. C. Duhayon, Dr. D. A. Valyaev, Dr. N. Lugan, Dr. Y. Canac, Prof. Dr. J.-B. Sortais LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France 205 route de Narbonne, 31077 Toulouse Cedex 4, France E-mail: <u>dmitry.valyaev@lcc-toulouse.fr</u>, <u>noel.lugan@lcc-toulouse.fr</u>, <u>yves.canac@lcc-toulouse.fr</u>, jean-baptiste.sortais@lcc-toulouse.fr

 [[]b] Dr. O. A. Filippov,
 A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS) Russian Academy of Sciences

²⁸ Vavilov str., GSP-1, B-334, Moscow, 119991, Russia [c] Dr. A. Bruneau-Voisine,


Scheme 2. Synthesis and reactivity of NHC-phosphine Mn(I) complex 2.

arrangement of the three carbonyls co-ligands of complex **3** was univocally confirmed by an XRD study (Figure 1b). Noteworthy, performing the previous reaction under D₂ atmosphere led to complex **3**^{D2} with a full incorporation of deuterium at the hydride (Mn–D) and at the CH₂ positions (CH–D, see the S.I.).

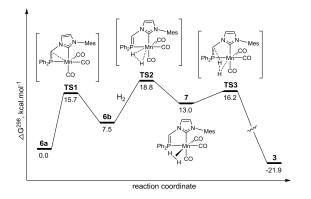
In order to further characterize the acidic site in the complex 2, *i.e.* the one that undergoes the deprotonation reaction, different trapping experiments were carried out. For this purpose, complex 2 was first treated with KHMDS followed by the addition of an excess of classical alkylating agent such as Mel.^[13] The resulting complex 4 showing methylation of the carbon atom linking the phosphine and NHC moieties was isolated as a mixture of two diastereomers (ratio 6:1) differing by the position of the methyl group with respect to the iodine atom (Scheme 2, middle). Both isomers of complex 4 (major isomer: δ_P 73.0 ppm (s); δ_C 195.9 ppm (d, ${}^{2}J_{PC}$ = 16.6 Hz, C_{N2C})) display similar spectroscopic features compared to the bromide precursor 2. An XRD analysis of 4 evidenced the presence of the anti-isomer in the solid state (Figure 1c). In a second time, the deprotonated species was exposed to CO_2 (1 atm.) affording the complex 5 in 89% yield (Scheme 2, bottom) whose solid state structure highlights the existence of a tripodal NHC-phosphine-carboxylate scaffold with a facial arrangement of the carbonyl ligands (Figure 1d).[14,15] These results clearly indicated that the deprotonation of 2 occurs at the CH₂ bridge forming a sufficiently nucleophilic carbon species to react with electrophiles such as Mel or CO₂.

Yet, after proving the involvement of a deprotonated intermediate **6** of general formulae [Mn(CO)₃(Ph₂PCHNHC)] for the formation of complexes **3-5** from **2**, arose the question of its structure. Despite its relative instability ($t_{1/2}$ of *ca*. 0.5 h at r.t., decomposition at -30 °C over 16 h), optimization of reaction parameters allowed to prepare suitable samples for complete spectroscopic characterization. The IR spectrum of **6** in toluene exhibits two v_{CO} bands at 1993 (s) and 1901 (vs) cm⁻¹ consistent with the presence of three CO ligands in a facial arrangement. The ³¹P{¹H} NMR spectrum recorded in a [D₈]toluene solution at -30 °C revealed the complete conversion of **2** ($\delta_{\rm P}$ 71.7 ppm) into **6**, the latter being characterized by a shielded chemical shift at $\delta_{\rm P}$ 51.6 ppm. The deprotonation site was finally revealed by the concomitant presence of doublets at $\delta_{\rm H}$ 3.55 (²J_{PH} = 8.6 Hz, 1H) and at $\delta_{\rm C}$ 22.7 ppm (¹J_{PC} = 18.2 Hz) in the ¹H and ¹³C{¹H} NMR

spectra respectively, consistent with the presence of a CH group in the α -position of P-atom and confirming that the deprotonation does take place at the CH₂ bridge. Noticeably, while the ¹³C{¹H} NMR spectrum displays three distinct resonances for CO ligands at standard chemical shifts, the carbenic carbon atom appears to be strongly shielded (& 178.0 ppm, d, ²J_{PC} = 14.2 Hz) by *ca.* 20-25 ppm compared to the antecedent complexes **2-5**.

(c) (d) Figure 1. Molecular geometry of complexes *fac*-2 (a), *fac*-3 (b), *fac*-4 (c), and 5 (d) (30% probability ellipsoids, aryl groups represented as a wireframe).

Despite all our efforts, single crystals of complex 6 could not be obtained. Its structure was therefore investigated by theoretical calculations. DFT study at the BP86/def2-TZVP level revealed five minima on the PES. The global minimum corresponds to the strongly distorted octahedral 18-e complex fac-[Mn(CO)₃($\kappa^{3}P,C,\hat{C}$ -Ph₂PCHNHC)] (6a, Figure 2 (left)) featuring a facially coordinated, 5-e donor, NHC-phosphinomethanide ligand.^[16,17] Calculated metrical parameters within the MnPC moiety are comparable to experimentally found in the [(κ²P,Cthose related Ph₂PCH₂)Mn(CO)₄] complex.^[16a] The other minima correspond to the four possible isomers - two fac and two mer - of square pyramidal 16-e [Mn(CO)₃($\kappa^2 P, \hat{C}$ -Ph₂P=CHNHC)] complex **6b** showing an unusual bidentate NHC-phosphonium ylide ligand


Figure 2. Structures and DFT optimized geometries of complexes 6a and *fac*-6b (BP86/def2-TZVP, toluene SMD model).

(see the SI for details). The most thermodynamically stable isomer of NHC-ylide complexes fac-6b, yet being destabilized by +7.5 kcal.mol⁻¹ relative to **6a**, is depicted in Figure 2 (right). The calculated P–C bond length in *fac*-**6b** (1.741 Å) is consistent with an ylidic P–C bond, in agreement with experimental values found in a related iron-substituted phosphonium ylide complex (1.766(11) Å)^[18] and in other metal complexes bearing more conventional NHC-ylide ligands (1.750(7)-1.794(8) Å).^[19] According to ETS-NOCV study, the P–Mn bond in *fac*-**6b** is significantly stronger than that in complexes **2-3** featuring a conventional phosphine-metal dative bond (see the SI for details).

Very significantly, the relatively constrained coordination of the NHC-phosphinomethanide ligand in **6a** results in a strong distortion of yaw angle $\theta^{[20]}$ for the NHC ligation (**6a**: θ 29.5° vs. **2-4**, **6b**: 6.2-7.2°). Considering that the shielding of the ¹³C NMR chemical shift of carbenic carbon atoms in metal complexes increases as the value of $\theta^{[21]}$ the signal recorded at $\delta_{\rm C}$ 178.0 ppm for **6** in solution (*vide supra*) appears to be totally consistent with the most stable structure **6a**. In addition, computed ¹³C NMR chemical shift for the carbenic atom in complex **6a** ($\delta_{\rm C}$ 181.5 ppm) matches well with the experimental value ($\delta_{\rm C}$ 178.0 ppm), a value significantly different from that computed for complex *fac*-**6b** ($\delta_{\rm C}$ 215.1 ppm) (see Table S5 for details), thus the deprotonation product of **2** was be assigned to complex **6a**.

The mechanism of H₂ activation by **6a** was then investigated by DFT calculations. Among the different activation pathways considered, the process showing the lowest energy profile is depicted in Scheme 3 (see the SI for alternative mechanisms). Complex **6a** is first converted into the 16-e NHC-ylide species *fac*-**6b** with an energy barrier of 15.7 kcal.mol⁻¹ (**TS1**) which then coordinate H₂ to form the dihydrogen complex **7** *via* a **TS2** of 11.3 kcal.mol⁻¹.^[22] Finally, complex **7** undergoes a facile heterolytic cleavage of the H–H bond through the low-lying transition state **TS3** with an energy barrier of only 3.2 kcal.mol⁻¹ affording finally the experimentally observed-Mn(I) hydride **3**.

Having established that complex **2** could effectively activate H₂ in basic conditions, we next focused our attention on the hydrogenation of ketones as benchmark reaction.^[10a,23] Gratifyingly, at 60 °C, in toluene, in the presence of 1.0 mol% of **2** and 2.0 mol% of KHMDS, acetophenone was fully reduced to 1-phenylethanol (see Table S1 for optimization details). Notably,

Scheme 3. The preferred mechanism of H₂ activation with **6** (BP86/def2-TZVP, toluene SMD model, Gibbs energies are given in kcal.mol⁻¹ and referred to **6a**.

in toluene or *t*-AmOH the loading of **2** could be decreased to 0.1 mol% at 60 °C or even to 0.05 mol% at 100 °C keeping a full conversion. A maximum TON of 6200 was achieved with 0.01 mol% in *t*-AmOH, showing that this catalyst is competitive with the best Mn-based systems for this reaction reported to date^[23b-c] No reaction took place in the presence of the sole hydride complex **3**, while catalytic activity could be restored in the presence of base, showing its critical role in the catalytic cycle.^[10,23,24]

We then enlarged the synthetic scope of this catalytic transformation (Table 1) and found that a large variety of aryl(alkyl)ketones could be readily reduced (entries 1-18), including sterically hindered representatives (entries 2-4, 7) inaccessible using our previous Mn catalyst based on a chelating phosphine-aminopyridine ligand.^[10c] Interestingly, the reaction is tolerant to aryl groups substituted with halogen atoms (F, Cl, Br, I) and CF₃ moiety (entries 9-14). Aliphatic 2-decanone was hydrogenated in the efficient manner albeit at 100 °C (entry 19). The heterocyclic substrates bearing potentially coordinating groups can also be reduced (entries 20-22) but with lower efficiency. Table 1. Scope of hydrogenation of ketones catalyzed by Mn complex 2^[a].

Entry	Substrate	Cat. (%)	Method	Conv. ^[b]
1 2 3	$ \begin{array}{c} O \\ R = Me \\ R \\ R = i Pr \\ R = t Bu \end{array} $	0.1 0.5 0.5 ^[c]	A A A	>98 (91) >98 (89) 90 (85)
4 5 7 8 9 10 11 12 13 14	R = 2-Me R = 3-Me R = 4-Me R = 2,4,6-Me ₃ R = 4-OMe R = 4-F R = 4-Cl R = 2-Br R = 4-Br R = 4-Br R = 4-I R = 4-CF ₃	$\begin{array}{c} 0.5^{[c]}\\ 0.2^{[c]}\\ 0.1\\ 0.5^{[c]}\\ 0.5^{[c]}\\ 0.1\\ 0.5^{[c]}\\ 0.2^{[c]}\\ 0.2^{[c]}\\ 0.5^{[c]}\\ 0.5^{[c]}\\ \end{array}$	A A A B A A B A A B A A	>98 (93) >98 (97) >98 (93) >98 (72) >98 (93) >98 (98) >98 (97) >98 (83) 94 (81) >98 (99) 94 (79) >98 (92)
15		0.2 ^[d]	В	90 (65)
16		0.2 ^[d]	Α	66 (52)
17	Ph Ph	0.2 ^[d]	в	78 (71)
18		0.5 ^[d]	Α	50 (37)
19	0 	0.5 ^[c]	Α	>98 (98)
20	O N	1.0 ^[f]	Α	75
21	O N	1.0 ^[f]	В	40
22	⟨S S	1.0 ^[f]	В	10

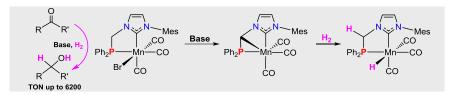
[a] Typical procedure: an autoclave was charged with pre-catalyst 2 (0.1 mol%), ketone (2.0 mmol), base (1.0 mol%; A: *t*-BuOK, B: KHMDS), solvent (2 mL, A: *t*-AmOH, B: toluene), in this order and then rapidly pressurized with H₂ (50 bar) and heated under stirring at 60 °C for 20h; [b] conversion determined by ¹H NMR, isolated yield in parenthesis; [c] 2% of base, 100 °C; [d] 2% of base; [e] 5% of KOH; [f] 5% of base, 100 °C, 72h

In conclusion, we have shown that a Mn(I) complex of a easily accessible bidentate phosphine-NHC ligand can be selectively deprotonated at the carbon position located between the two donor moieties to afford an original 18-e NHC-phosphinomethanide complex. The latter can serve as a reservoir for an unconventional 16-e NHC-phosphonium ylide complex able to activate H₂ through a metal-ligand cooperation mode based on the formal interplay between λ^5 - and λ^3 -P species. Homogeneous catalysis can take advantage of this new mode of H₂ activation, as demonstrated by the development of one of the most efficient Mn-based catalytic systems for hydrogenation of ketones. Taking into account the ubiquitous presence of the 'R₂PCH₂' motif in transition metal complexes, an awareness of its potential as a non-innocent ligand could now open new perspectives in homogeneous catalysis.

Acknowledgements

We thank the CNRS and the IUF (France) for general support of this project. R. B. is grateful to the Embassy of Yemen in Paris for a PhD fellowship. Computational studies were performed using HPC resources from CALMIP (Grant no. P18038).

Keywords: Metal-ligand cooperation • Phosphonium ylides • N-heterocyclic carbenes • Manganese • DFT calculations


- a) B. L. Conley, M. K. Pennington-Boggio, E. Boz, T. J. Williams, *Chem. Rev.* 2010, *110*, 2294; b) A. Quintard, J. Rodriguez, *Angew. Chem. Int. Ed.* 2014, *53*, 4044; *Angew. Chem.* 2014, *126*, 4124.
- [2] J. R. Khusnutdinova, D. Milstein, Angew. Chem. Int. Ed. 2015, 54, 12236; Angew. Chem. 2015, 127, 12406.
- [3] D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400; Angew. Chem. 2015, 127, 6498.
- [4] a) E. von Grotthuss, M. Diefenbach, M. Bolte, H.-W. Lerner, M. C. Holthausen, M. Wagner, *Angew. Chem. Int. Ed.* 2016, *55*, 14067; *Angew. Chem.* 2016, *128*, 14273; b) J. W. Taylor, A. McSkimming, C. F. Guzman, W. H. Harman, *J. Am. Chem. Soc.* 2017, *139*, 11032.
- [5] a) Handbook of Homogeneous Hydrogenation (Eds. J. G. de Vries, C. J. Elsevier), Wiley-VCH, Weinheim, 2007; b) D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621; c) C. Gunanathan, D. Milstein, Chem. Rev. 2014, 114, 12024.
- [6] a) A. Corma, J. Navas, M. J. Sabater, *Chem. Rev.* 2018, *118*, 1410; b) T. Irrgang, R. Kempe, *Chem. Rev.* 2018, DOI: 10.1021/acs.chemrev.8b00306.
- a) T. Ikariya, A. J. Blacker, *Acc. Chem. Res.* 2007, *40*, 1300; b) R.
 Noyori, T. Ohkuma, *Angew. Chem. Int. Ed.* 2001, *40*, 40; *Angew. Chem.* 2001, *113*, 40.
- [8] a) A. M. Poitras, S. E. Knight, M. W. Bezpalko, B. M. Foxman, C. M. Thomas, *Angew. Chem. Int. Ed.* 2018, *57*, 1497; *Angew. Chem.* 2018, *130*, 1513; b) M. Xu, A. R. Jupp, Z.-W. Qu, D. W. Stephan, *Angew. Chem. Int. Ed.* 2018, *57*, 11050; *Angew. Chem.* 2018, *130*, 11216; c) A. T. Normand, C. G. Daniliuc, B. Wibbeling, G. Kehr, P. Le Gendre, G. Erker, *J. Am. Chem. Soc.* 2015, *137*, 10796; d) E. J. Derrah, D. A. Pantazis, R. McDonald, L. Rosenberg, *Organometallics* 2007, *26*, 1473; e) M. D. Fryzuk, K. Bhangu, *J. Am. Chem. Soc.* 1988, *110*, 961; f) N. Lugan, G. Lavigne, J.-J. Bonnet, R. Réau, D. Neibecker, I. Tkatchenko, *J. Am. Chem. Soc.* 1988, *110*, 5369.
- a) C. Gunanathan, D. Milstein, Acc. Chem. Res. 2011, 44, 588; b) L. Alig,
 M. Fritz, S. Schneider, Chem. Rev. 2018 10.1021/acs.chemrev.8b00555
- a) A. Bruneau-Voisine, D. Wang, T. Roisnel, C. Darcel, J.-B. Sortais, *Catal. Commun.* 2017, *92*, 1; b) A. Bruneau-Voisine, D. Wang, V. Dorcet, T. Roisnel, C. Darcel, J.-B. Sortais, *Org. Lett.* 2017, *19*, 3656; b) D. Wang, A. Bruneau-Voisine, J.-B. Sortais, *Catal. Commun.* 2018, *105*, 31; c) D. Wei, A. Bruneau-Voisine, T. Chauvin, V. Dorcet, T.

Roisnel, D. A. Valyaev, N. Lugan, J.-B. Sortais, *Adv. Synth. Catal.* **2018**, 360, 676; d) D. Wei, A. Bruneau-Voisine, D. A. Valyaev, N. Lugan, J.-B. Sortais, *Chem. Commun.* **2018**, *54*, 4302.

- [11] M. J. Bitzer, A. Pöthig, C. Jandl, F. E. Kühn, W. Baratta, *Dalton Trans.* 2015, 44, 11686.
- [12] CCDC 1891858-1891861 contain full crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre at <u>www.ccdc.cam.ac.uk/data_request/cif</u>.
- For methylation of dearomatized PNP complex, see: J. I. van der Vlugt,
 E. A. Pidko, D. Vogt, M. Lutz, A. L. Spek, *Inorg. Chem.* 2009, 48, 7513.
- [14] a) C. A. Huff, J. W. Kampf, M. S. Sanford, Organometallics 2012, 31, 4643; b) M. Vogt, M. Gargir, M. A. Iron, Y. Diskin-Posner, Y. Ben-David, D. Milstein, Chem. Eur. J. 2012, 18, 9194; c) M. Vogt, A. Nerush, M. A. Iron, G. Leitus, Y. Diskin-Posner, L. J. W. Shimon, Y. Ben-David, D. Milstein, J. Am. Chem. Soc. 2013, 135, 17004; d) C. A. Huff, M. S. Sanford, ACS Catal. 2013, 3, 2412; e) G. A. Filonenko, M. P. Conley, C. Copéret, M. Lutz, E. J. M. Hensen, E. A. Pidko, ACS Catal. 2013, 3, 2522; f) G. A. Filonenko, D. Smykowski, B. M. Szyja, G. Li, J. Szczygieł, E. J. M. Hensen, E. A. Pidko, ACS Catal. 2015, 5, 1145; g) A. J. Kosanovich, C. H. Komatsu, N. Bhuvanesh, L. M. Pérez, O. V. Ozerov, Chem. Eur. J. 2018, 24, 13754.
- [15] Related adducts of dearomatized pincer complexes with nitriles: a) G. A. Filonenko, E. Cosimi, L. Lefort, M. P. Conley, C. Copéret, M. Lutz, E. J. M. Hensen, E. A. Pidko, ACS Catal. 2014, 4, 2667; b) S. Perdriau, D. S. Zijlstra, H. J. Heeres, J. G. de Vries, E. Otten, Angew. Chem. Int Ed. 2015, 54, 4236, Angew. Chem. 2015, 127, 4310; c) L. E. Eijsink, S. C. P. Perdriau, J. G. de Vries, E. Otten, Dalton Trans. 2016, 45, 16033; d) A. Nerush, M. Vogt, U. Gellrich, G. Leitus, Y. Ben-David, D. Milstein, J. Am. Chem. Soc. 2016, 138, 6985.
- Similar Mn(I) complexes [(κ²*P*,*C*-R₂P–C(H)R')Mn(CO)₄]: a) E. Lindner,
 K. A. Starz, H.-J. Eberle, W. Hiller, *Chem. Ber.* **1983**, *116*, 1209; b) G.
 D. Vaughn, K. A. Krein, J. A. Gladysz, *Organometallics* **1986**, *5*, 936; c)
 E. Lindner, E. Ossig, M. Darmuth, *J. Organomet. Chem.* **1989**, *379*, 107.
- [17] Related complexes with chelating methanide ligands: a) M. Devillard, C. Alvarez Lamsfus, V. Vreeken, L. Maron, J. I. van der Vlugt, *Dalton Trans.* 2016, 45, 10989; b) T. Simler, G. Frison, P. Braunstein, A. A. Danopoulos, *Dalton Trans.* 2016, 45, 2800; c) S. Chakraborty, U. Gellrich, Y. Diskin-Posner, G. Leitus, L. Avram, D. Milstein, *Angew. Chem. Int Ed.* 2017, 56, 4229; *Angew. Chem.* 2017, 129, 4293; M. Devillard, A. Ehlers, M. A. Siegler, J. I. van der Vlugt, *Chem. Eur. J.* 2019 DOI: 10.1002/chem.201805504.
- [18] Y. Nakajima, F. Ozawa, Organometallics 2012, 31, 2009.
- [19] a) Y. Canac, C. Lepetit, M. Abdalilah, C. Duhayon, R. Chauvin, *J. Am. Chem.* Soc. **2008**, *130*, 8406; b) I. Benaissa, R. Taakili, N. Lugan, Y. Canac, *Dalton Trans.* **2017**, *46*, 12293; c) C. Barthes, C. Bijani, N. Lugan, Y. Canac, Y. Organometallics **2018**, *37*, 673; d) R. Taakili, C. Lepetit, C. Duhayon, D. A. Valyaev, N. Lugan, Y. Canac, *Dalton. Trans.* **2019**, *48*, 1709.
- [20] C. H. Leung, C. D. Incarvito, R. H. Crabtree, Organometallics 2006, 25, 6099.
- [21] G. Sipos, A. Ou, B. W. Skelton, L. Falivene, L. Cavallo, R. Dorta, *Chem. Eur. J.* 2016, 22, 6939.
- [22] Other n²-H₂ Mn(I) complexes evidenced by DFT calculations: a) C. Liu, R. van Putten, P. O. Kulyaev, G. A. Filonenko, E. A. Pidko, *J. Catal.* **2018**, 363, 136; b) R. van Putten, E. A. Uslamin, M. Garbe, C. Liu, A. Gonzalez-de-Castro, M. Lutz, K. Junge, E. J. M. Hensen, M. Beller, L. Lefort, E. A. Pidko, *Angew. Chem. Int. Ed.* **2017**, *56*, 7531; *Angew. Chem.* **2017**, *129*, 7639; c) E. B. Hulley, M. L. Helm, R. M. Bullock, *Chem. Sci.* **2014**, *5*, 4729.
- [23] a) S. Elangovan, C. Topf, S. Fischer, H. Jiao, A. Spannenberg, W. Baumann, R. Ludwig, K. Junge, M. Beller, *J. Am. Chem. Soc.* 2016, *136*, 8809; b) F. Kallmeier, T. Irrgang, T. Dietel, R. Kempe, *Angew. Chem. Int. Ed.* 2016, *55*, 11806; *Angew. Chem.* 2016, *128*, 11984; c) M. B. Widegren, G. J. Harkness, A. M. Z. Slawin, D. B. Cordes, M. L. Clarke, *Angew. Chem. Int. Ed.* 2017, *56*, 5825; *Angew. Chem.* 2017, *129*, 5919; d) S. Weber, B. Stöger, K. Kirchner, *Org. Lett.* 2018, 20, 7212.
- [24]—P. A. Dub, J. C. Gordon, ACS Catal. 2017, 7, 6635.

Entry for the Table of Contents

COMMUNICATION

A NHC-phosphine manganese complex in the presence of base is transformed into a NHC-phosphinomethanide derivative capable to easily activate dihydrogen *via* a non-classical metal-ligand cooperative mode. This process is relevant for catalysis providing one of the most efficient Mn-based systems for ketone hydrogenation.

R. Buhaibeh, O. A. Filippov, A. Bruneau-Voisine, J. Willot, C. Duhayon, D. A. Valyaev, * N. Lugan, * Y. Canac* and J.-B. Sortais*

Page No. – Page No.

Phosphine-NHC Manganese Hydrogenation Catalyst Exhibiting a Non-Classical Metal-Ligand Cooperative H₂ Activation Mode