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Abstract 

The phytochemical investigation of Euphorbia tirucalli L. (Euphorbiaceae) yielded four new 

compounds, including a rare cadalene-type sesquiterpene (tirucadalenone), two tirucallane 

triterpenoids, euphorol L and euphorol M, with the latter being described as an epimeric mixture, and 

a euphane triterpene, namely, euphorol N, together with 7 known compounds. Their structures and 

absolute configurations were elucidated from analysis of 1D (1H, J-modulated 13C) and 2D NMR (HSQC, 

HMBC and NOESY), high-resolution mass spectrometry (HRESIMS), optical rotation, and GIAO NMR 

shift calculation followed by CP3 analysis, along with comparison with literature reports. All these 

compounds were tested for cytotoxicity against K562, MCF-7 and/or and HepG2 tumor cell lines. Only 

tirucadalenone displayed a mild cytotoxic activity.  

Keywords: Euphorbia tirucalli L.; Euphorbiaceae; Sesquiterpene; Cadalene; Triterpenes; Tirucallane; 

Euphane. 

Graphical abstract 

Four previously undescribed terpenoids: a cadalene (1), two tirucallanes (2 and 3a/3b), and a 

euphane (4) were isolated from Euphorbia tirucalli L.  
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1. Introduction 

Euphorbia is among the largest ‘giant genera’ of flowering plants with close to 2.160 recognized 

species being renowned for their remarkably diverse growth forms, making it the third largest genus 

of angiosperms, second only to Astragalus (Fabaceae) and Psychotria (Rubiaceae) [1,2]. Euphorbia 

plants are easily distinguishable by their irritant milky latex and their specialized inflorescences 

(cyathia) [3]. The chemical diversity of Euphorbiaceae is mainly related to their isoprenoid 

constituents. In particular, diterpenoids account for the majority of the metabolites reported in this 

genus with more than 650 metabolites being recorded, falling into more than twenty core frameworks 

including casbanes, jatrophanes, daphnanes, tiglianes, and ingenanes series alongside triterpenoids 

and sesquiterpenoids [4]. As such, several Euphorbia terpenes endowed with promising 

pharmacological properties were reported during the last decade including ingenol-3-angelate that 

was approved by the FDA in 2012 and by EMA in 2013 for actinic keratosis treatment [5] while other 

phorbol and ingenane derivatives are currently under clinical investigations [6,7]. In this privileged 

taxa, Euphorbia tirucalli L. is a shrub or small tree endemic to tropical areas with pencil-like branches 

from which derives its vernacular name of pencil tree [8]. E. tirucalli L. is widely distributed in the 

Pantropical region of Madagascar, The Cape region (South Africa), East Africa, and Mainland Southeast 

Asia and is grown as garden plant in various tropical countries. Despite being widely regarded as a toxic 

plant, its various parts are highly valued for their medicinal properties in local medicine [9]. It is used 

in African folk medicine against warts, cough, sexual impotence, haemorrhoids, epilepsy and cancer 

[10,11]. In India, this plant is used for the treatment of cancer, asthma, leprosy and leucorrhoea [10]. 

The bark and the latex of this plant exhibit a variety of significant pharmacological activities such as 

antibacterial  [12,13],  antiherpetic [14], and anti-mutagenic [15]. Furthermore, E. tirucalli latex exerts 

pesticidal properties against various pests including mosquitoes [16,17], molluscs [18,19]. Exposure to 

Euphorbia tirucalli has been proposed to be a cofactor in the genesis of endemic Burkitt’s lymphoma 

as suggested by the coincidence between this condition and human exposure to this plant in the 

lymphoma belt of Africa [20]. E. tirucalli is also widely used for poison fishing in tropical Africa [21] as 

corroborated by its strong piscicidal effects towards the catfish Heteropneustes fossilis [22]. Owing to 

the high amounts of triterpenes and sterols of E. tirucalli, it was also suggested that this plant might 

be used for rubber fractionation so that it was investigated for its diesel oil properties [23].  

As a continuation of our research focused on the diversity of bioactive metabolites from 

Vietnamese medicinal plants [24], we herein report on the structure elucidation of a rare cadalene-

type sesquiterpene (1), two tirucallane-type triterpenes (2, 3a and 3b) and an euphane-derived 

triterpenoid (4), along with 7 known compounds. 
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2. Results and Discussion 

Dried whole plants of Euphorbia tirucalli were extracted with ethanol. As the crude extract 

evaporated in vacuo, a precipitate was formed, which was filtered off prior to any further 

phytochemical processing. Both filtered ethanol extract and precipitate were successively extracted 

with n-hexane, EtOAc and n-BuOH. Further purifications were performed using a combination of 

chromatographic techniques including silica gel and preparative thin-layer chromatography. Through 

this phytochemical study, four undescribed terpenoids (1–4) were isolated, elucidated through NMR 

and mass spectrometric analyses and then assessed for their cytotoxicity against tumor cell lines (Fig. 

1). 

FIGURE 1 

Tirucadalenone (1) was isolated as a white amorphous solid and its molecular formula was 

established as C15H16O4 (corresponding to an index of hydrogen deficiency of 8) based on the sodiated 

ion peak at m/z 283.0968 ([M+Na]+, calcd. 283.0941). The 1H NMR data of 1 showed two ortho aromatic 

protons (H 7.42, 1H, d, J = 8.0 Hz and 7.30, 1H, d, J = 8.0 Hz), one hydroxy group (H 6.67), one olefinic 

proton (H 6.13, q, J = 1.0 Hz), four methyl groups [H 2.58, 2.08, 1.61, 1.56 (each 3H, s)]. The 13C NMR 

and HSQC spectra revealed 14 different carbon resonances comprising one ketone carbonyl group, 

four methyl groups, three sp² methine carbons, two oxygenated sp3 tertiary carbons and four sp² 

quaternary carbons. Long-range heteronuclear correlations led to define a first aromatic ring that 

comprised the two ortho-coupled aromatic protons and a first methyl group. In particular, H-9 revealed 

key HMBC cross-peaks with C-7 (δC 137.4), C-8 (δC 128.6) and C-10 (δC 138.7). The CH3-15 moiety was 

connected to C-10 as evidenced by the HMBC correlations from these protons to C-9 (δC 133.1) and C-

10. A third HMBC cross-peak of equal intensity connected these protons to what seemingly 

corresponded to C-8, which would stand for a 4J HMBC correlation. Instead, it could rather be supposed 

that this correlation might be associated to the missing quaternary carbon C-1 (δC 128.6). 

Subsequently, HMBC correlations from both CH3-13 and CH3-14 to C-12 and C-7 were diagnostic of the 

attachment of an isopropyl moiety on this latter carbon. This connectivity is also supported by the H-

8/C-12 HMBC cross peak. A second nucleus, the so-called B-ring, could be elucidated from long-range 

heteronuclear correlations originating from H-3, H3-11 and OH-5. The CH3-11 moiety could be located 

on C-4 based on the HMBC correlation from these protons to C-3, C-4 and C-5. Likewise, the C-5 

position of the hydroxy group could be deduced from its HMBC correlations to C-4, C-5 and C-6, 

consistently with the H-3/C-5 HMBC cross-peak. The structure of the remaining part of this nucleus 

could be determined based on H-3/C-1 and H3-11/C-2 HMBC cross-peaks. Most interestingly, the 

determined position of the ketone moiety is in line with the 4J HMBC coupling from H3-15 to C-2. The 
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downfield chemical shift of C-4 (δC 154.0) further backed up the defined α,β-unsaturated ketone 

moiety. Finally, owing to C-1, C-6 and C-7 being three sp² quaternary carbons and due to all the other 

carbons of the molecules being already assigned at this stage, the C-1-C-6-C-7 connectivity could be 

deduced to afford a two fused six-membered ring. The spectroscopic features described so far 

represent seven indices of hydrogen deficiency, still leaving one to be added while two oxygen atoms 

also have to be incorporated into the structure. The 13C NMR data also indicate that both C-5 and C-12 

represent oxygenated sp3 quaternary carbons. A pertinent way to meet all these requirements is to 

bridge C-5 and C-12 through a peroxy bridge, resulting in an 1,2-dioxane system. This structure is 

supported by the chemical shift value of C-12 which is typical of a peroxydated carbon [25–27] while 

the carbon resonance of C-5 is reminiscent of the value reported from cyclic peroxyhemiketal-

containing terpenoids [28]. Therefore, the structure of compound 1 was elucidated as depicted in Fig. 

1.  

FIGURE 2 

TABLE 1 

Compound 1 displays the 1,7-dimethyl-4-isopropyldecalin skeleton typical of the so-called 

cadinane sesquiterpenes lato sensu, with further sub skeletons being distinguished according to the 

stereochemistry of the ring linkage [29]. This archetypal substitution pattern is related to their 

biogenesis proceeding from either a bisabolane or a germacrane cation [30]. One or both cadinane 

rings can subsequently aromatize. Calamene-type sesquiterpenes contain one benzenoid ring while 

cadalenes incorporate the whole naphthalene bicycle [31]. Some tricyclic analogues of cadinane 

sesquiterpenes also extended the chemical diversity of this structural class, leading to introduce a 

fused five or six-membered oxygenated heterocycle [32–34] Nevertheless, the 6/6/6-fused tricyclic 

ring skeleton of tirucadalenone comprising an 1,2-dioxane core is an unprecedented structural feature. 

The para-disposition of the 5-OH group moiety to the carbonyl group at C-2 suggests that 1 might stem 

from a para quinone precursor. A variety of ortho [35,36] and para quinones [37,38] were indeed 

reported within cadalene sesquiterpenes. Accordingly, a convenient starting point to access 1 would 

be a C-12 hydroperoxide of the known cadalenequinone [39]. Even though this specific derivative of 

cadalenequinone has not been reported so far, terpenes’ hydroperoxidations are of considerable 

generality [40]. Thereafter, an intramolecular nucleophilic attack of the peroxide group onto the 

putative C-5 carbonyl group could straightforwardly afford the final peroxyhemiketal function, based 

on a reactivity widely described elsewhere [41,42], and as earlier proposed to step in the biosynthesis 

of cyclic peroxyketal metabolites [28]. The lack of optical activity hinted the racemic nature of 1, as 

further backed up by the lack of any Cotton effect in the ECD spectrum. This would be related to the 
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proposed biosynthetic scenario according to which the access to the cyclic peroxyhemiketal would 

merely be driven by chemical reactivity and most likely involve no enzyme in the process, thereby not 

awaiting any stereoselectivity to be introduced at this stage. Among the scarce number of natural 

products comprising such peroxyhemiketal or peroxyketal groups, some were reported as epimeric 

mixtures such as sinugibberosides from the soft coral Sinularia gibberosa [28] and xestins from the 

marine sponge Xestospongia [43]. The hemiketal nature of C-5 may render its configuration labile 

throughout phytochemical processing [44,45]. Cadinane-group sesquiterpenes, lato sensu, are being 

subdivided based on the nature of the ring fusion and the orientation of the isopropyl group at C-7, 

dividing them into four structural classes : cadinanes, muurolanes, bulgaranes, and amorphanes [46]. 

Regarding the specific example of tirucadalenone, the subsequent aromatization of the skeleton 

prevents ascribing it to one of these basic skeletons. This compound was detected unambiguously from 

the crude n-hexane extract, hinting that this compound should be a genuine natural product (see 

supporting information). This does not formally exclude the possibility of a peroxidation artifact, which 

may occur during extraction. 

Euphorol L (2) was isolated as a white gum with a molecular formula of C30H48O5 (7 indices of 

hydrogen deficiency) as indicated by the [M-H]- peak at m/z 487.3416 (calcd. for C30H47O5, 487.3429) 

in the HRESIMS spectrum. The 1H, J-modulated and 13C NMR data exhibited resonances for a 

disubstituted double-bond (δH 5.61 (2H), δC 137.3 and 128.7), an α,β-unsaturated ketone (δC 199.7, 

140.3 and 163.0), a secondary alcohol methine [δH 3.27, dd, (J = 11.5, 6.0) ; δC 78.1], one secondary 

methyl [δH 0.96, d (J = 6.5)] and seven tertiary methyl groups (δH 0.76, 0.91, 0.98, 1.13 and 1.27 (x3)) 

along with seven methylene carbons, three further methine carbons and five quaternary carbons 

(including an oxygenated one). Spectroscopic features described so far account for three units of 

desaturation (two olefinic moieties and one ketone), thus determining the structure to be tetracyclic. 

The structure of the fused ring moiety was entirely confirmed by HMBC experiments as displayed in 

Fig. 3. The quaternary carbon C-25 was deduced to bear a hydroperoxy group as evidenced by the 

value of its chemical shift at δC 80.0 [25–27] against ca. 70 ppm in the case of an alcohol moiety [47,48]. 

Accordingly, the signals related to the side chain were superimposable to those of known tetracyclic 

triterpenes having the Δ23, 25-hydroperoxide moiety: inoterpene C [49], floralginsenosides B and D–

F [50] and floralquinquenosides A and C [51]. The signals related to the olefinic protons resulted in a 

multiplet at δH 5.6 that could not be resolved by obtaining a spectrum of 2 in other deuterated solvents, 

precluding the straightforward assignment of the geometry of the double bond based on the 

magnitude of the vicinal coupling constant value.  Accordingly, the geometry of the side chain was 

established as E primarily based on comparison of the 13C NMR spectroscopic data of analogues with 

similar side chain [52–54] and further backed up by biosynthetic considerations since most related 
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triterpenes isolated from plants display this configuration [55]. Altogether, these data led to 

characterize the 2D structure of 2 as displayed in Fig. 1. consistently with NMR data reported elsewhere 

on related scaffolds [48,56].  

FIGURE 3 

The large coupling constants of H-3 [δH 3.27, dd, (J = 11.0, 6.0)] indicated its axial α-position, 

thus deducing the equatorial β-position of 3-OH moiety [57–59]. The stereochemistry of the tetracyclic 

nucleus and the orientation of the side chain could be further inferred from the key NOE correlations 

emphasized in Fig. 4. These configurations were consistent with either a euphane or a tirucallane 

triterpene that only differ by the configuration of C-20 [60]. NMR spectral data of tetracyclic 

triterpenes indicate that carbon resonances are too similar between euphane (20R) and tirucallane 

(20S) triterpenoids to afford a clear-cut discrimination between these structural classes on this sole 

basis, which led to several erroneous structural reports [61]. A reliable spectroscopic approach to 

differentiate between these structural classes is the nuclear Overhauser effect of H-21 with H-16α,β 

in euphanes and with H-12α in tirucallanes [62–64,47,48,65]. Compound 2 revealed the key NOESY 

correlation H-21/H-12α determining it as a tirucallane triterpenoid, as further suggested by the NOESY 

cross-peak between H3-18 and both H-20 and H3-21 (Fig. 4).  

FIGURE 4 

At last, the negative optical rotation of 2 (-92.3) was a further clue indicating that 2 pertained 

to the tirucallane triterpenes rather than to the euphane series [66,67]. Thus, the structure of 2, 

namely euphorol L, was determined as indicated in Fig. 1. Both 1H and 13C NMR chemical shift values 

of 2 were consistent with those reported from the identical tetracyclic scaffold of tirucalla-8,24-diene-

3β,11β-diol-7-one [56]. 

Euphorol M (3) was isolated as an optically active white amorphous solid, the molecular 

formula of which was established as C30H52O3 based on its negative-ion mode HRESIMS data (m/z 

459.3803, calcd for C30H52O3-H, 459.3844). As for compound 2, a 3β-hydroxy-Δ8 tetracyclic scaffold 

could be assigned based on 1 and 2D NMR spectral data. Some slight differences could nevertheless 

be observed between the fused ring structures of 2 and 3. These could be related to the reduction of 

the C-7 ketone group to give rise to a further diastereotopic methylene signal, also being in line with 

the upfield shift of the vicinal carbon C-6 (δC 19.1) and of the olefinic carbons C-8 and C-9 (δC 133.7 and 

134.2, respectively). The relative configuration of 3 was determined to be similar to that of 2 from both 

1H NMR chemical shift values and NOESY correlations. At first, the large magnitude of the vicinal 

coupling constant of H-3 established the equatorial position of the 3β-hydroxy group. Subsequently, 

the significant NOE correlations: H-3/H-5, H-3/H3-28, H3-18/H-20, H3-18-H-22, H3-29/H3-19 and H3-
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30/H-17 defined a similar stereochemistry of the tetracyclic triterpene core. The NOE correlations from 

the diastereotopic methylenic protons at C-11 (H3-18/H-11α and H3-19/H-11ß) revealed the antifacial 

orientations of the methyl groups CH3-18 and CH3-19, ruling out the possibility of a lanostane 

triterpene. As to the side chain, NMR data revealed that the double bond was reduced and that a 

hydroxy substituent was introduced on C-24. At last, the chemical shift of C-25 (δC 73.3) indicates that 

its hydroperoxy substituent was replaced by an alcohol group. Compound 3 exhibited NOE correlations 

between H3-18 and both H-20 and H3-21 as well as between H-12 and H3-21 that are possible only in 

case of (S)-configuration at C-20, leading to assign 3 a tirucallol skeleton as well, as further backed up 

by the negative optical rotation of 3 (-121.0). Having determined the planar structure of 3, a detailed 

inspection of the 1H and 13C NMR data revealed noticeable shifts in C-24 chemical shift value (δH 3.35 

and 3.29; δH 79.8 and 78.9) leading to the surmise that 3 might indeed represent a mixture of C-24 

epimers. Doubling of carbon resonances of adjacent carbons is in line with this inference. For further 

verification, Smith and Goodman’s CP3 parameter method was undertaken to demonstrate the 

epimeric relationship of 3a and 3b and individually assign NMR data. This strategy has been extensively 

applied in structural validation and revision in cases when the NMR data of a pair of diastereomers are 

available [68,69]. Taking into account both 1H and 13C NMR spectroscopic data for CP3 probability 

analysis led to assign the configuration of C-24 as S for the major form 3a (see supporting information) 

since the CP3 parameter results in respective values of 0.46 and -0.37 for the correct and incorrect 

assignments. Jointly with Bayes’ theorem, this leads to define a quantifiable confidence of 67.9%. 

Compound 3 was therefore determined to be a mixture of diastereoisomers with the major form (24S) 

and the minor form (24R) in a 6:4 ratio. Although the determined side chain is fairly common among 

various triterpene series such as lanostanes [70] or cycloartanes [71], it is herein first being reported 

on a tirucallane scaffold. 

Euphorol N (4), isolated as a white amorphous solid, was determined as C30H52O3 from the 

HRESIMS deprotonated molecular peak at m/z 459.3809 (calcd for C30H52O3-H, 459.3844), making it an 

isomer of 3. The comparison of NMR data indeed supported that these two metabolites were very 

closely related to each other, with a common planar structure and identical configurations, except for 

the side chain moiety. The key NOE cross-peak between H3-18/H-11α, H319/H-11ß, and H3-21/H-16α 

defined a euphane-type triterpene [63,72]. 

The 1H NMR chemical shift of CH3-21 (0.85, d, 5.5 Hz), along with the positive optical rotation 

of 3 (+ 17.0) further confirmed that this metabolite pertained to the euphane rather than the 

tirucallane series [73–75]. Such euphane derivatives were formerly reported to occur within Clusia 

columnaris but were isolated as a mixture of C-24 epimers [76]. The structure elucidation of this 

compound by Compagnone et al. can be regarded as dubious since it was determined based on the 
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sole basis of chemical shift values which usually do not afford a clear-cut distinction between euphane 

and tirucallane series, as aforementioned. Thus, neither the diagnostic optical rotation value nor the 

key NOESY correlations to reliably discriminate between these two structural series were discussed, 

making the structural assignment rather uncertain. Likewise, the co-isolation of euphol from Clusia 

columnaris is not a relevant argument since both euphane and tirucallane series can arise from the 

same enzymatic system [60], making these structural series often associated within a single plant, as 

reported here. The few NMR chemical shift values discrepancies between the currently reported 

structure and those appearing in Compagnone et al. may indicate that this euphane is herein first 

described due to a former misidentification and reported as a single molecule with fully assigned 

spectroscopic data. The chemical shifts of 4 were in excellent agreement with those of 3a, thus 

determining a (24S) stereochemistry for this former compound as well. Altogether, these spectroscopic 

data determined 4 as shown in Fig. 1. 
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Seven known compounds were also isolated from the ethanol extract of E. tirucalli and 

identified as the triterpenes euphorol D [59], euphol [77], and lupanone [78], the sterol ergosterol 

peroxide [79], the terpene alcohol vomifoliol [80], the coumarin scopoletin [81] and the anthraquinone 

aloe-emodin [82]. The structures of these compounds were determined based on the thorough 

analysis of their 1D and 2D NMR spectra, mass spectrometry data, alpha D values and GIAO NMR shift 

calculations with subsequent CP3 probabilities; as well as on comparisons with literature data.  

In this study, compounds 1-4 were evaluated for their cytotoxicity against K562 (chronic 

myelogenous leukemia), MCF-7 (breast cancer) and/or HepG2 (liver hepatocellular carcinoma) cell 

lines. Compound 1 exerted a mild activity against both K562 and HepG2 cell lines with respective IC50 

values of 22 (± 1.4) and 89 (± 1.2) µg/mL (i. e. respective values of 84.6 (± 5.4) and 342 (± 4.6) µM). 

Other compounds failed to reveal any cytotoxicity on HepG2 and MCF-7 cell lines. 

3. Conclusions 

The present study reports the isolation and identification of four new terpenic compounds 

with cadalene, tirucallane and euphane skeletons from whole plant extracts of Euphorbia tirucalli. As 

far as can be ascertained, the 6/6/6-fused tricyclic ring of the cadalene sesquiterpene tirucadalenone 

(1) incorporating a 1,2-dioxane ring is unprecedented in nature. The complexity of the studied extract 

might stem from this phytochemical investigation being conducted on whole plants rather than 

specific organs. 

4.  Experimental section 

4.1 General experimental procedures 

Optical rotations were measured on a Jasco DIP-370 digital polarimeter at 293 K. Electronic 

circular dichroism were recorded using a Jasco J-815 ECD spectrometer. UV spectra were obtained 

using a Perkin Elmer Lambda 25 UV-Vis spectrometer. The IR spectra were acquired using a Shimadzu 

FTIR-8200 infrared spectrophotometer. NMR spectra were measured on a Bruker Avance III (500 MHz 

for 1H NMR and 125 MHz for 13C NMR) spectrometer with TMS as internal standard. Proton chemical 

shifts were referenced to the solvent residual signal of CD3COCD3 at δH 2.05 or of CDCl3 at δH 7.18. The 

13C–NMR spectra were referenced to the central peak of CD3COCD3 at δC 29.4 or of CDCl3 at δC 77.8. 

The HR–ESI–MS were recorded on a HR–ESI–MS Bruker microTOF Q-II. TLC analyses were carried out 

on precoated silica gel 60 F254 (Merck) and spots were visualized by spraying with 30% H2SO4 solution 

followed by heating. Gravity column chromatography was performed with Silica gel 60 (0.040–0.063 

mm, Himedia).  Samples were analysed using an Agilent LC-MS system comprising an Agilent 1260 

Infinity HPLC hyphenated with an Agilent 6530 Q-TOF-MS fitted with an ESI source operating in 
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positive-ion mode. A Sunfire analytical C18 column (150 x 2.1mm; i.d. 3.5 µm, Waters) was used, with 

a flow rate of 250 µL/min. HPLC analyses were performed by elution gradient using the following 

parameters: A (0.1% formic acid in water) and B (acetonitrile); T, 0-2 min 5% B; 2-20 min, 100% B linear; 

20-30 min, 100 % B; 30-31 min, 5% B linear. ESI conditions were set with the capillary temperature at 

320°C, source voltage at 3.5 kV, and a sheath gas flow rate of 10 L/min.  

 

4.2 Plant material 

  

Whole plants of Euphorbia tirucalli L. (Euphorbiaceae) were collected from Hong Son village, 

Ham Thuan Bac, in Binh Thuan province (11.129754o N, 108.143550O E) in July 2014 (wet season). The 

botanical sample was identified by Dr. Pham Van Ngot, Department of Botany, Faculty of Biology, Ho 

Chi Minh University of Pedagogy. A voucher specimen (No UP002) is deposited in the herbarium of the 

Department of Organic Chemistry, University of Science, Ho Chi Minh City. 

 

4.3 Extraction and isolation 

The clean, air-dried and ground material (3.5 kg) was extracted by maceration with EtOH (10 L 

x 2) at 70°C. A precipitate occurred as the crude extract was being evaporated under reduced pressure, 

which was filtered off to be further processed separately, affording 250.4 g of precipitate P. The filtered 

solution was evaporated to dryness to yield 290.3 g of crude ethanol extract. The dry residue of this 

latter extract was subsequently dissolved using solvents of increasing polarities: n-hexane (H, 94.2 g), 

EtOAc (EA, 61.8 g) and n-BuOH (B, 27.0 g). Extract H (94.2 g) was applied to silica gel CC using a n-

hexane/EtOAc/Acetone gradient system (12:1:1 to 5:1:1; v/v/v) to afford three fractions. Among these, 

fraction H2 (15.7 g) was fractionated by Sephadex LH-20 CC using MeOH to yield three subfractions 

(H2.1-H2.3). Sub-fraction H2.1 (4.1 g) was applied to normal phase silica gel CC and eluted isocratically 

with the solvent system n-hexane/EtOAc/EtOH/Acetic acid (9:2:1:0.2; v/v/v/v) to give eight 

subfractions H2.1.1-H2.1.8. Fraction H.2.1.1 (1.8 g) was subjected to silica gel CC using n-

hexane/EtOAc/acetone (12:1:1; v/v/v) to isolate 7 (21 mg) and 12 (25 mg). Fraction H.2.1.2 (388 mg) 

was submitted to reverse phase C18 silica gel CC, using MeOH/Acetone/H2O (2:1:1; v/v/v) as mobile 

phase to purify compound 1 (3 mg). Fraction H2.1.3 (489.0 mg) was further chromatographed by 

reverse phase C18 silica gel CC and isocratically eluted with a MeOH/Acetone/H2O (1:3:1; v/v/v) solvent 

system to obtain three subfractions H2.1.3.1-H2.1.3.3.  Isocratic elution of H2.1.3.1 (121 mg) on silica 

gel CC by the solvent system n-hexane/chloroform/EtOAc/Acetone (100:40:24:10) afforded 

compounds 2 (2.7 mg), 3 (3.1 mg) and 4 (3.4 mg). Likewise, fraction H2.1.3.3 was fractionated using 

the same solvent system to yield 6 (2.1 mg), 8 (3.2 mg) and 11 (2.1 mg). Fraction H2.3 (3.7 g) was 
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fractionated by normal phase silica gel CC using n-hexane/EtOAc/Acetone (7:1:1; v/v/v) as mobile 

phase to obtain three fractions H2.3.1-H2.3.3. Subfraction H2.3.1 (241 mg) was further purified using 

the same chromatographic procedure to afford 9 (11 mg) and 10 (8 mg). 

4.4 Spectroscopic data 

4.4.1. Tirucadalenone (1) 

Light-yellow amorphous solid; [α]20
D 0 (c 0.1, MeCN); UV (CHCl3) λmax (log ε) 229 (3.30), 276 

(2.86), 308 (2.48) nm; IR (KBr) vmax 3400, 1655, 1604, 1519, 828, 777 cm−1; HRESIMS m/z 283.0968 

[M+Na]+ (calcd for C15H16O4 + Na, 283.0941). For 1H and 13C NMR (acetone-d6) spectroscopic data, see 

Table 1. 

4.4.2. Euphorol L (2) 

White gum; [α]20
D -92.3 (c 0.1, MeOH); UV (CHCl3) λmax (log ε) 246 (4.03), 277 (3.46) nm; IR (KBr) 

vmax 3368, 2974, 2863, 1645, 1456, 1379, 1037, 622 cm−1; HRESIMS m/z 487.3416 [M-H]- (calcd for 

C30H47O5, 487.34290). For 1H and 13C NMR (acetone-d6) spectroscopic data, see Table 2. 

4.4.3. Euphorol M (3)  

White amorphous solid; [α]20
D -121 (c 0.1, MeOH); UV (CHCl3) λmax (log ε) 228 (3.55) nm; vmax 

3438, 2940, 1645, 1070, 1060, 1030 cm−1; HRESIMS m/z 459.3803 [M-H]- (calcd for C30H51O3, 459.3844). 

For 1H and 13C NMR (chloroform-d1) spectroscopic data, see Table 2. 

4.4.4. Euphorol N (4)  

White amorphous solid; [α]20
D +17 (c 0.1, MeOH); UV (CHCl3) λmax (log ε) 227 (3.63) nm; vmax 

3438, 2940, 1645, 1070, 1060, 1030 cm−1; HRESIMS m/z 459.3809 [M-H]- (calcd for C30H51O3, 459.3844). 

For 1H and 13C NMR (chloroform-d1) spectroscopic data, see Table 2.  

4.5 Biological assays 

Cytotoxic activities of the formerly unreported metabolites against the HepG2 (liver 

hepatocellular carcinoma) and K562 (chronic myelogenous leukemia) tumor cell lines. These two cell 

lines were cultured in RPMI 1640 medium or in DMEM medium, respectively, supplemented with 10% 

fetal bovine serum (FBS), 100 IU/mL penicillin, 100 μg/mL streptomycin and maintained at 37 °C and 

5% CO2 with 95% humidity. Viable cells were counted and inoculated in 96-well plate with density of 

104 cells/100 μL/well for HepG2 and 105 cells/100 μL/well for K562. After 24 hours, the cells were 

treated with the compounds and doxorubicin (positive control) diluted in culture media at 100, 50, 25, 

12.5, 6.25, 3.125 and 0 µg/mL concentration containing 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0% 

dimethyl sulfoxide (DMSO), respectively. DMSO in culture media was used as negative control. In 

addition, culture medium without cells was used as blank. All experiments were done in triplicate. The 

plates were incubated in 5% CO2, 95% humidity at 37 °C for 72 h. 10 µL of 3-(4,5-dimethylthiazol-2-yl)-
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2,5-diphenyltetrazolium bromide (MTT, 5 mg/ml stock solution) was added into each well and 

incubated in 37 °C in 5% CO2 for 3.5 hours. 70 µL of Detergent Reagent (10% SDS) was added into each 

well and the plate was maintained in 37 °C for 16 h. The optical density of each well was read by using 

a scanning multiwall spectrophotometer (Sunrise) at wavelength of 595 nm. Cell survival was 

measured as the percentage absorbance compared to the negative control (DMSO-treated cells). 
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Fig. 1. Structures of compounds 1–4. 
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Fig. 2. Key HMBC correlations of compound 1. 
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Fig. 3. Key HMBC correlations of compounds 2–4.  
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Fig. 4. Main NOESY correlations of compound 2. Key correlations indicating the pertaining to 

the tirucallane series are indicated as green arrows. 
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Table 1 

 1H (500 MHz) and 13C (125 MHz) NMR data for 1 (acetone-d6). 

Position δc δH mult.(J in Hz) 

1 128.6  
2 186.8  
3 131.5 6.13, q (1.0) 
4 154.0  
5 94.1  
6 137.8  
7 137.4  
8 128.6 7.42, d (8.0) 

9 133.1 7.30, d (8.0) 
10 138.7  
11 16.1 2.08, s 
12 80.9  
13 28.8 1.56, s 
14 25.0 1.61, s 
15 21.6 2.58, s 
5-OH  6.67, br s 
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Table 2 

 

1H (500 MHz) and 13C (125 MHz) NMR data for 2-4. 

 

N                             2a               3ab 3bb 4b 

δH mult. (J in Hz) δC        δH mult. (J in Hz)       δC δH mult. (J in Hz) δC δH mult. (J in Hz) δC 

1α 1.66, m 34.2 1.20, m 35.4 1.20, m 35.4 1.19, m 35.4 

1β 2.54, m  1.77, m  1.77, m  1.75, m  

2 1.72, m 28.4 1.61-1.69, m 27.8 1.61-1.69, m 27.8 1.62-1.68, m 27.8 

 1.68, m      1.62-1.68, m  

3α 3.27, dd (11.5, 4.5) 78.1 3.23, dd (11.5, 4.5) 79.2 3.23, dd (11.5, 4.5) 79.2 3.23, dd (12.0, 4.5) 79.2 

4  39.8  39.1  39.1  39.1 

5 1.72, m 50.2 1.11, m 51.1 1.11, m 51.1 1.11, m 51.1 

6α 2.38-2.41, m 36.4 1.67, m 19.1 1.67, m 19.1 1.66, m 19.1 

6β 2.38-2.41, m  1.41, m  1.41, m  1.40, m  

7α  199.7 1.93, m 28.1 1.93, m 28.1 1.91, m 28.1 

7β   2.08, m  2.08, m  2.08, m  

8  140.3  133.7  133.7  133.6 

9  163.0  134.2  134.2  134.2 

10  40.5  37.6  37.6  37.4 

11α 4.70 t (6.0) 67.9 1.94, m  21.6 1.94, m 21.6 1.94, m  21.7 

11β   2.06, m  2.06, m   2.05, m  

12α 1.86, m 43.2 1.62 m/1.75, m 30.9 1.62, m/1.75, m 30.9 1.62, m/1.72, m 31.1 

12β 2.33, m  1.62 m/1.75, m  1.62, m/1.75, m  1.62, m/1.72, m  

13  46.9  44.3  44.3  44.3 
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14  48.8  50.3  50.3  50.1 

15α 2.08, m 32.9 1.19, m 30.0 1.19, m 30.0 1.19, m 29.9 

15β 1.42, m  1.50, m  1.50, m  1.51, m  

16α   2.05, m 28.3 2.05, m 28.3 2.05, m 28.3 1.35, m 28.3 

16β 1.35, m  1.35, m  1.35, m  1.89, m  

17 1.58, m  49.7 1.42, m 50.6 1.49, m 50.4 1.51, m 50.0 

18 0.76, s 16.5 0.76, s 15.6 0.77, s 15.6 0.77, s 15.7 

19 1.27, s 19.8 0.95, s 20.3 0.95, s 20.3 0.95, s 20.3 

20 1.48, s 37.5 1.39-1.41, m 36.5 1.39-1.41, m 37.0 1.49, m 35.9 

21 0.96, d (6.5) 19.1 0.91, d (6.5) 19.0 0.92, d (6.5) 18.7 0.85, d (5.5) 19.0 

22 2.20, m 40.1 1.48, m 33.2 1.75, m  33.7 1.67, m 32.3 

 1.80, m  1.25, m  1.01, m  1.29, m  

23 5.61, mc 128.7 1.56, m/1.37, m 28.6 1.56, m/1.37, m 28.8 1.61, m/1.37, m 28.3 

24 5.61, mc 137.3 3.35, dd (7.0, 6.5) 78.9 3.29, d (9.5) 79.8 3.35, dd (9.0,  3.5) 78.9 

25  80.0d  73.3  73.4  73.4 

26 1.27, s 25.6 1.16, s 26.7 1.16, s 26.7 1.16, s 26.7 

27 1.27, s 25.1 1.22, s 23.3 1.22, s 23.4 1.22, s 23.4 

28 0.91, s 15.8 1.00, s 28.2 1.00, s 28.2 1.00, s 28.2 

29 0.98, s 28.1 0.80, s 15.7 0.80, s 15.7 0.80, s 15.8 

30 1.13, s 25.0 0.87, s 24.5 0.87, s 24.5 0.88, s 24.6 

All spectra were recorded a in acetone-d6; b
 in chloroform-d1; c Overlapped; d Inverse detection by HMBC. 
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Fig. 1. Structures of compounds 1–4. 

Fig. 2. Key HMBC correlations of compound 1. 

Fig. 3. Key HMBC correlations of compounds 2–4.  

Fig. 4. Main NOESY correlations of compound 2. Key correlations indicating the pertaining to the 

tirucallane series are indicated as green arrows. 
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