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Abstract 124 

Managing agricultural landscapes to support biodiversity and ecosystem services are key aims 125 

of a sustainable agriculture. However, how the spatial arrangement of crop fields and other 126 

habitats in landscapes impacts arthropods and their functions is poorly known. Synthesizing 127 

data from 49 studies (1,515 landscapes) across Europe, we examined effects of landscape 128 

composition (% habitats) and configuration (edge density) on arthropods in fields and their 129 

margins, pest control, pollination and yields. Configuration effects interacted with proportions 130 

of crop and non-crop habitats, and species’ dietary, dispersal and overwintering traits led to 131 

contrasting responses to landscape variables. Overall, however, in landscapes with high edge 132 

density, 70% of pollinator and 44% of natural enemy species reached highest abundances and 133 

pollination and pest control improved 1.7 and 1.4-fold, respectively. Arable-dominated 134 

landscapes with high edge densities achieved high yields. This suggests that enhancing edge 135 

density in European agroecosystems can promote functional biodiversity and yield-enhancing 136 

ecosystem services. 137 

 138 

 139 

 140 

 141 

 142 

 143 
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INTRODUCTION 146 

Worldwide, intensive agriculture threatens biodiversity and biodiversity-related ecosystem 147 

services (Foley et al. 2005). At a local field scale, monocultures and pesticides restrict many 148 

arthropods and plants to non-cropped areas (Geiger et al. 2010). Thus, the majority of 149 

organisms that provide key regulating services to agriculture, such as pollination and natural 150 

pest control, must colonize fields from non-cropped, semi-natural areas (e.g. road verges, 151 

grass margins, hedgerows, fallows), neighboring fields or in the wider landscape (Blitzer et 152 

al. 2012). Semi-natural habitats, however, are often removed to facilitate the use of modern 153 

machinery or converted to crops to increase production (Naylor & Ehrlich 1997), resulting in 154 

reduced populations of service providing organisms (Holland et al. 2016). Consequently, the 155 

sustainability of modern food production is increasingly questioned (Garnett et al. 2013). 156 

‘Ecological intensification’ has the potential to enhance the sustainability of agricultural 157 

production by increasing the benefits agriculture derives from ecosystem services (Bommarco 158 

et al. 2013). Supporting populations of ecosystem service providers is a key component of 159 

ecological intensification (Bommarco et al. 2013). However, we currently lack detailed 160 

knowledge on the landscape-scale management choices needed to achieve ecological 161 

intensification with a high degree of certainty (Kleijn et al. 2019). For example, semi-natural 162 

habitats are prerequisite for many organisms, but effects are often taxon-specific. In addition, 163 

the presence or abundance of functional groups of organisms in a landscape does not always 164 

correlate with the services they provide to crops (Tscharntke et al. 2016; Karp et al. 2018). 165 

The configuration of landscapes (size, shape and spatial arrangement of land-use patches), in 166 

addition to their composition (proportion of land-use types), is increasingly suggested as a key 167 

factor in determining biodiversity and associated ecosystem services in agricultural 168 

landscapes (Fahrig 2013). However, studies have only begun to disentangle the relative roles 169 
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of the composition vs. the configuration of habitats and fields within landscapes (Fig. 1; 170 

Fahrig 2013; Haddad et al. 2017). Landscape configuration can be measured as the density of 171 

edges between crop fields and their surroundings, including neighboring crops and non-crop 172 

areas. Complex landscapes where small and/or irregularly shaped fields and habitat patches 173 

prevail have a high density of edges. Due to increased opportunities for exchange, these 174 

landscapes are likely to support spillover of dispersal-limited populations between patches 175 

(Smith et al. 2014; Fahrig 2017). This may enhance populations’ survival in the face of 176 

disturbance and their potential to provide services in crops (Boetzl et al. 2019). Further, if 177 

landscapes with high edge density are also spatially and temporally diverse in their 178 

composition, organisms in these landscapes may benefit from landscape-scale resource 179 

complementation and supplementation (Dunning et al. 1992). In this context, areas offering 180 

refuges or complementary food resources may encompass uncropped (semi-natural) areas, but 181 

also neighboring crops with asynchronous phenology, different host species and/or variable 182 

timing and intensity of management interventions (Vasseur et al. 2013; Schellhorn et al. 183 

2015). However, previous studies have found contrasting effects of increasing configurational 184 

complexity for different taxa (Concepción et al. 2012; Plećaš et al. 2014; Duflot et al. 2015; 185 

Fahrig et al. 2015; Gámez-Virués et al. 2015; Perović et al. 2015; Martin et al. 2016; Bosem 186 

Baillod et al. 2017; Hass et al. 2018). Thus, there is currently no consensus on the importance 187 

of landscape configuration for arthropods and the services they provide in crops (Seppelt et 188 

al. 2016; Perović et al. 2018). Further, interactions between landscape composition and 189 

configuration might explain seemingly contradictory results, but have rarely been tested in 190 

part due to a lack of independent landscape gradients (but see Coudrain et al. 2014; Bosem 191 

Baillod et al. 2017). 192 

Species’ responses to environmental filters depend on sets of biological traits (‘response 193 

traits’), such as diet breadth and dispersal ability, that constrain species’ reactions to 194 
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environmental predictors (Lavorel & Garnier 2002). The resulting filtering of ecological 195 

communities determines the presence or abundance of arthropods able to provide ecosystem 196 

services (Gámez-Virués et al. 2015). Organisms with similar responses to environmental 197 

filters may share specific combinations of response traits, known as trait syndromes. 198 

Characterizing these syndromes and their responses to landscape gradients is critical to 199 

predict the consequences of land-use change for biological communities (Mouillot et al. 200 

2013) and the services they provide. However, trait-based responses of arthropods in cropland 201 

to landscape gradients have only recently been investigated (Bartomeus et al. 2018; Perović et 202 

al. 2018) and cross-taxonomic approaches in agroecosystems are lacking (but see Gámez-203 

Virués et al. 2015). For pollinators, natural enemies and pests in agricultural landscapes, a 204 

high diversity of responses due to trait variation within and between groups (‘response 205 

diversity’) is likely to underlie observed abundance patterns. In turn, this may affect our 206 

ability to manage landscapes for maximum abundance and/or effectiveness of crop ecosystem 207 

service-providers, and for minimum impacts of pests. 208 

Here, using data from 49 studies covering 1,515 European agricultural landscapes and more 209 

than 15 crops, we aim to disentangle arthropod responses to landscape gradients and their 210 

consequences for agricultural production by performing the first empirical quantitative 211 

synthesis of the effects of landscape configuration (edge density) and composition (amount of 212 

crop and semi-natural habitats) on arthropods and their services in cropland. We include 213 

observations of the abundance of pollinators, pests and pests’ natural enemies (predators and 214 

parasitoids) sampled in fields and their margins, and measures of natural pest control, 215 

pollination, and crop yields. We use landscape predictors calculated similarly for all studies 216 

from high resolution maps with standard land use-land cover classification. We test the 217 

following predictions: 218 
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1. Within functional groups of pollinators, pests and natural enemies, responses to landscape 219 

predictors differ among trait syndromes. Thus, considering key trait syndromes of arthropods 220 

should increase our ability to predict the effects of landscape variables on functional groups. 221 

On one hand, species that use specific crop or non-crop resources should benefit from 222 

increased proportions of these resources (habitats) in the landscape (Tscharntke et al. 2012). 223 

On the other hand, species with medium to low dispersal ability and diet or habitat needs 224 

outside crops should be most abundant in fields and margins of landscapes with high edge 225 

density, due to shorter travel distances and/or greater resource complementation between 226 

habitats and crops (Smith et al. 2014). 227 

2. Effects of landscape composition and configuration interact. Increasing resources in 228 

surrounding arable and semi-natural areas should support arthropods and arthropod-driven 229 

services in crops most effectively when travel distances are short (edge density high), 230 

promoting spillover between surrounding areas and crops. Further, short travel distances 231 

promoting spillover may compensate for scarce arable or semi-natural resources. 232 

Consequently, positive effects of edge density on abundance and services in crops may be 233 

strongest at low amounts of non-crop habitat (Fig. 1; Holland et al. 2016).  234 

3. Effects of landscape variables on arthropods and services are hump-shaped across Europe 235 

(Fig. 1d; Concepción et al. 2012). Indeed, resource complementation may be optimal at 236 

intermediate habitat amount, but insufficient at high amounts of crop or non-crop habitat 237 

(Tscharntke et al. 2012). Similarly, edges may facilitate spillover at low to medium density, 238 

but hinder dispersal at high edge density due to barrier effects (e.g. in the presence of hedges; 239 

Wratten et al. 2003) or high spatiotemporal heterogeneity of the agricultural mosaic (Díaz & 240 

Concepción 2016). Due to interactions (prediction 2), decreases in abundance or services at 241 

extreme values of habitat amount may be lifted under conditions of high edge density, and 242 

vice versa (shaded grey areas in Fig. 1d). 243 
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To date, interactive and non-linear effects of landscape variables on arthropods have rarely 244 

been explored, and to our knowledge never in the context of trait-based responses to 245 

landscape gradients. We test these predictions for a broad range of taxa and three production-246 

related ecosystem services. We show that the diversity of responses to landscape variables is 247 

high among pollinators, enemies and pests, and effects of landscape composition and 248 

configuration depend on each other. But overall, high landscape edge density benefitted a 249 

large proportion of service-providing arthropods. It was also positive for service provision 250 

and harmful for pests, indicating a landscape-scale solution for ecological intensification that 251 

does not require setting-aside large amounts of arable land and comes with strong benefits for 252 

arthropod functional diversity. 253 

 254 

MATERIAL AND METHODS 255 

Data collection and collation 256 

Data holders were approached through networks of researchers with the aim of collecting raw 257 

data from a representative sample of studies performed in European crops. After initial 258 

collection, data were screened for missing countries or crops systems, and requests were 259 

targeted at researchers having published in these areas. Of 77 proposed studies, 58 provided 260 

data with sufficient site replication and high resolution land-use maps (Table S1, Appendices 261 

S1, S2 in Supporting Information). Requested data were arthropod abundance per unit area 262 

and time (species richness when available) and measures of pollination, pest control and 263 

yields, sampled along gradients of landscape composition and configuration in ≥8 sites. Sites 264 

included annual and perennial crop fields, managed grasslands, field margins and orchards. 265 

Farms were conventional, low-input conventional or organic. Data were collated and 266 

standardized as described in Appendix S1. After preliminary analyses, we excluded organic 267 
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sites because few studies compared conventional and organic farms in similar landscapes. 268 

This led to a total of 49 studies and 1,637 site replicates from 1,515 distinct landscapes 269 

(circular map sectors; Appendix S1, Fig. S1), some sites having been sampled in multiple 270 

studies. 271 

Landscape variables 272 

We used land-use maps provided by data holders to calculate landscape variables for all 273 

studies. First, we standardized map classification to five land-use classes (arable, forest, semi-274 

natural habitat, urban and water). Semi-natural habitat included hedges, grassy margins, 275 

unmanaged grasslands, shrubs, fallows (Appendix S1). We then calculated variables in six 276 

circular sectors of 0.1 to 3 km radius around sites (Appendix S1, Fig. S1). Several indices can 277 

be used to describe landscape composition, including % arable land and % semi-natural 278 

habitat (SNH) (e.g. Chaplin-Kramer et al. 2011). To test the importance of these land-use 279 

classes, we selected % SNH and % arable land as measures of landscape composition and 280 

used them in parallel sets of models to avoid collinearity (see Statistical analyses).  281 

Similarly, several measures of landscape configuration exist. Among them, the density of 282 

edges available for exchange between landscape patches theoretically underpins mechanisms 283 

of spillover and resource complementarity for biodiversity and services (see Introduction), 284 

and has been frequently used in other studies (e.g. Holzschuh et al. 2010; Concepción et al. 285 

2012). We thus measured landscape configuration as the total length of edges per area of each 286 

landscape sector (edge density ED, in km/ha) between crop fields and their surroundings. 287 

Hereby, we consider the combined effects of crop / crop (between fields) and crop / non-crop 288 

edges (Fig. 1). Both interfaces may enhance arthropod movements in and out of fields 289 

(Schellhorn et al. 2015). At radii up to 0.5 km, ED is negatively related to mean field size and 290 

positively to the density of edges per area of arable land (Fig. S2). Importantly, ED reflects 291 
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the grain of whole landscapes including non-crop elements and crops. Thus landscapes with 292 

high ED have comparatively small fields and non-crop patches. A decrease in ED is related to 293 

an increase in size of both field and/or non-crop patches, and reflects a lower total density of 294 

edges available for exchange in the whole landscape. 295 

Functional groups and arthropod traits 296 

We classified above-ground arthropods into functional groups of pollinators, pests and natural 297 

enemies of pests (Appendix S1, Table S2). Organisms that are predators or herbivores as 298 

larvae, but pollinators as adults were classified according to the life stage sampled. 299 

Arthropods that could not be classified into these groups (Appendix S1) were included in 300 

analyses of total arthropod abundance, as they contribute to overall farmland biodiversity, but 301 

not in separate analyses of pollinators, pests and natural enemies (see Statistical analyses). 302 

Six categorical traits associated with dispersal mode, overwintering behavior and diet were 303 

hypothesized to influence the response of arthropods to landscape variables, as they relate to 304 

the need and/or ability to move or disperse between habitat types to access food, hosts, 305 

nesting or overwintering resources (Table 1). We defined traits for all arthropod species or 306 

families according to the availability of information on separate taxa and to dataset resolution 307 

(Appendix S1, Table S2; 36 out of 58 datasets provided species-level identification). We used 308 

hierarchical cluster regression to identify parsimonious combinations of shared traits for 309 

organisms with shared responses to landscape filters (Appendix S1; Kleyer et al. 2012). These 310 

combinations are defined as trait syndromes characterizing different responses of species 311 

groups to the environment (see Introduction). As trait syndromes may vary according to the 312 

functional group (Lavorel & Garnier 2002), we identified them separately for pollinators, 313 

natural enemies and pests (Figs. S3, S4). Trait syndromes are defined parsimoniously based 314 
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on one or a few trait combinations. However, all traits contribute to whole syndrome 315 

definition and are described in Figs. S3, S4. 316 

Statistical analyses 317 

We calculated arthropod abundance in each site at three nested levels of community structure 318 

(all arthropods; pollinators, enemies and pests; trait syndromes within functional groups; 319 

Appendix S1). Pest control, pollination and yields were available from a subset of studies 320 

(Table S3). For this subset, we calculated an ecosystem service index representing the amount 321 

of service provided (Appendix S1). We analyzed effects of landscape predictors on arthropod 322 

abundance and services using linear mixed effects models in R package lme4 v.1.1-15 (Bates 323 

et al. 2015). We focused on abundance because it has been found to drive ecosystem service 324 

provision (Winfree et al. 2015). However, abundance and species richness were positively 325 

related across groups (estimates of linear mixed models relating richness to abundance using 326 

ln(x+1)-transformed data, with random intercept for study and year: 0.4±0.01, p<0.001 for all 327 

arthropods, pollinators and enemies). We ln(x+1)-transformed abundance and services to 328 

meet assumptions of normality and homoscedasticity. Predictors were % SNH and % arable 329 

land as measures of landscape composition, and edge density as measure of configuration. We 330 

expected changes at low values of predictors to have more impact than at high values, thus we 331 

ln(x+1)-transformed the predictors. This transformation improved model fits (R2, see below) 332 

and was maintained for all analyses. 333 

To account for collinearity of composition variables (Fig. S2), we performed two sets of 334 

models including either % SNH or % arable. Correlations between edge density and 335 

composition variables were low within and across studies (Fig. S2; mean within-study 336 

Spearman rho 0.05, SD 0.2, mean variance inflation factor of models with all arthropods 2.7, 337 

SD 1.8), but some studies showed high correlation in specific years and scales (Table S4). We 338 
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thus ran analyses including and excluding these studies. As no differences were found in 339 

overall results, we present analyses including all studies (Appendix S1). 340 

Full models took into account hypotheses of a) interactions between landscape variables, and 341 

b) non-linearity by including quadratic model terms (Appendix S1). To reflect the ranges 342 

covered by European landscape gradients, we did not standardize landscape predictors within 343 

studies. In this way we were able to capture non-linear effects across full gradients, i.e. that 344 

responses to landscape change within studies may differ across full European gradients in 345 

landscape composition and configuration (Van de Pol & Wright 2009). For comparison, we 346 

evaluate effects using i) landscape variables mean-centered within studies and ii) standardized 347 

response variables in Appendix S3. 348 

We accounted for the data’s hierarchical structure by including random effects for study and 349 

year, sampling method and block (Appendix S1), and scaled predictors across studies by 350 

mean-centering and dividing them by two standard deviations (R package arm v.1.9-3, 351 

Gelman & Su 2016). We ran separate models at successive scales of 0.1, 0.25, 0.5, 1, 2 and 3 352 

km radius around fields. Results at all scales (estimates and boot-strapped 95% confidence 353 

intervals [CI] of full models) are presented Figs. S5-7. Figs. 2-4 illustrate results at 1 km 354 

radius. We calculated R2 of the models as the variance explained by fixed (marginal R2, R2m), 355 

and by fixed and random terms (conditional R2, R2c), respectively (Nakagawa & Schielzeth 356 

2013). Successive spatial scales are inherently correlated, and results at one scale are likely to 357 

be reflected at other scales (Martin et al. 2016). In results, we focus interpretation on effects 358 

that were significant (CI do not overlap zero) at more than one scale, as these indicate 359 

robustness across scales and have the broadest implications for landscape management 360 

(Pascual-Hortal & Saura 2007). 361 
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Few studies sampled all taxa and services in the same sites. To avoid lack of common support 362 

for contrasts (e.g. a functional group sampled only in a portion of the overall gradient; 363 

Hainmueller et al. 2018), we performed separate models for each functional group and 364 

service. Replicate numbers for all responses and sites are provided in Tables S5, S6. Residual 365 

normality and homoscedasticity were validated graphically. We verified the absence of 366 

residual spatial autocorrelation using spline correlograms across studies (Zuur et al. 2009). 367 

Statistical analyses were performed in R Statistical Software v. 3.4.1 (R Core Team 2017). 368 

 369 

RESULTS 370 

Abundance of arthropods and functional groups 371 

We synthesized effects of landscape predictors on the abundance of 132 arthropod families, 372 

encompassing over 494,120 individuals and 1,711 identified species or morphospecies. Of 373 

these individuals, 50%, 10% and 37% were classified as natural enemies, pollinators and 374 

pests, respectively (44%, 33% and 1% of species; Table S2). Effects of % SNH on arthropod 375 

abundance were convex at high edge density (Figs. 2, S5). Effects of edge density depended 376 

on % SNH, and led to a 2-fold increase at high (>20%) and 1.6-fold increase at low (<2%) 377 

SNH. However, in landscapes with low edge density, increasing % SNH had no effect on 378 

arthropod abundance.  379 

Pollinators, natural enemies and pests showed distinct patterns when considered separately 380 

(Fig. 2). Pollinators showed a similar convex effect of % SNH and a negative effect of % 381 

arable land (Fig. S5), but effects were scarce on all natural enemies or all pests. The 382 

conditional R2 of these models was high (mean maximal R2c across scales 0.80, SD 0.06), but 383 

the variance explained by landscape predictors was low (mean maximal R2m across scales 384 
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0.04, SD 0.03). However, breaking up these groups into trait syndromes led to further 385 

differentiation and a clearer picture.  386 

Trait syndromes of enemies, pollinators and pests 387 

Trait syndromes obtained by cluster regression varied between enemies, pollinators and pests, 388 

with the most clusters identified among natural enemies (Figs. S3-4). Though scarce overall, 389 

effects of landscape predictors on enemies were significant across scales and highly 390 

contrasted between trait syndromes (Fig. 3a, S6). Three main patterns emerged: 1) Enemies 391 

overwintering outside crops, including flight and ground-dispersers (327 species, 44% of 392 

enemies), benefited from high edge density. This was especially true in landscapes with <10% 393 

SNH for flyers, and <60% arable land for ground-dispersers (Fig. 3a, S6). These groups 394 

increased with increasing % SNH and decreasing % arable land, but effects depended on edge 395 

density: they occurred at low (flight) or high edge density (ground-dispersers). 2) In contrast, 396 

enemies able to overwinter in crops were most abundant in landscapes with few edges (Fig. 397 

3a, S6). Among these, ground-dispersers benefited from high % arable land, but flyers 398 

benefited from high % SNH. 3) Effects of landscape predictors on wind-dispersers, mainly 399 

ballooning spiders and parasitoid wasps (flight/wind), were scarce. 400 

Different responses also emerged among pollinators. Similarly to all arthropods, non-401 

agricultural specialist pollinators increased with high edge density at high or low % SNH 402 

(Fig. 3b, S6; 393 species, 70% of pollinators). In contrast, agricultural specialists (e.g. 403 

aphidophagous syrphids) were most abundant in landscapes with few edges and high % arable 404 

land.  405 

Pests able to overwinter in crops showed few effects of landscape variables across scales. But 406 

pests considered to leave crops over winter were six times less abundant in landscapes with 407 

high edge density (0.2-0.4 km/ha), regardless of their composition (Fig 3c, S6). Due to an 408 
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increase beyond this range at intermediate % SNH, 0.2-0.4 km/ha of edges represented an 409 

area of minimum pest density along the observed gradients.   410 

Marginal R2 of models including trait syndromes averaged 0.11, SD 0.07 (mean maximal R2m 411 

across scales). Thereby, landscape predictors had significantly higher explanatory power 412 

when applied to trait syndromes within functional groups, than to whole groups of natural 413 

enemies, pollinators and pests (Wilcoxon rank sum test, W=1289, p<0.001). 414 

Pest control, pollination and yields 415 

Pest control, pollination and yields are given for a subset of studies (Tables S3, S6; Figs. 4, 416 

S7). Pest control by natural enemies was highest in landscapes with low % arable land 417 

(<40%) and high edge density, where it increased 1.4-fold compared to landscapes with low 418 

edge density. It was lowest in coarse-grained landscapes (low edge density) with either low or 419 

high % arable land (Fig. 4a). Pollination increased with edge density: it was 1.7 times higher 420 

in fine-grained compared to coarse-grained landscapes regardless of % SNH or % arable land. 421 

Low pollination was observed in landscapes with >70% arable land and at edge densities <0.1 422 

km/ha (Fig. 4b right panel). Yields showed a variable pattern (Fig. 4c, S7). They were highest 423 

in landscapes with 10-20% SNH at high edge density (Fig. 4c left panel). Lowest yields were 424 

achieved in landscapes with <40% arable land and high edge density (Fig. 4c right panel). In a 425 

range of landscapes including a large range of edge density and % arable land, intermediate to 426 

high yields were maintained. The variance explained by landscape predictors in models of 427 

pest control, pollination and yields averaged 0.14, SD 0.08 (mean maximal R2m across scales; 428 

mean maximal R2c 0.60, SD 0. 09). 429 

Additional analyses show that effects occurred mainly across full gradients instead of within 430 

standardized landscape ranges and were robust to standardization of response variables 431 

(Appendix S3), as well as to the analytical method chosen (Appendix S4). 432 
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 433 

DISCUSSION 434 

This synthesis shows that the response of arthropod abundance and services to landscape 435 

predictors is non-linear across Europe and depends on interactions between landscape 436 

composition and configuration, and on the response traits of arthropods. Overall, arthropods 437 

were most abundant in landscapes that combine high edge density with high proportions of 438 

semi-natural habitat. Functional groups of pollinators, enemies and pests did not strongly 439 

reflect this pattern. Rather, trait syndromes within groups showed contrasting trends. 440 

Pollinators that do not feed on pests or crops as larvae (non-pest butterflies, non-441 

aphidophagous syrphids, bees), and flying and ground-dwelling enemies considered to 442 

overwinter mainly outside crops, benefited from high edge density at low or high habitat 443 

amount and may require a high density of ecotones as exchange interfaces in order to 444 

spillover between and into crops (Concepción et al. 2012; Tscharntke et al. 2012; Hass et al. 445 

2018). For organisms with limited dispersal ability, this requirement is likely due to the need 446 

to recolonize crops in spring. However, the same driver affected strong aerial dispersers such 447 

as wasps and butterflies, for which it may be more related to a high sensitivity to disturbance 448 

within fields, and/or to the need for resource complementation through a high diversity of 449 

available plants and prey (Sutter et al. 2017) or nesting sites. Such diverse resources can be 450 

found in neighboring semi-natural habitats (e.g. nest sites; Holland et al. 2016), but also in 451 

adjoining crops (pollen and nectar from crops and weeds, host plants or prey for herbivores 452 

and predators). Indeed, a high number of separate field units is the first requirement to support 453 

a high diversity of arable crops at organism-relevant scales. Landscapes with high vs. low 454 

edge density may also differ in their crop composition and/or diversity, with associated 455 

impacts on the arthropod community. 456 
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In contrast, ground-dispersing enemies with generalist overwintering needs, and pollinators 457 

whose larvae feed on crops or pests, were most abundant in landscapes with few edges and 458 

high % arable land. These groups benefit from agricultural resources and were able to 459 

maintain populations in coarse-grained landscapes with high % arable land that other 460 

organisms avoided. They thus represent important insurance organisms contributing to 461 

arthropod response diversity (Cariveau et al. 2013), and may continue to provide services in 462 

coarse-grained landscapes with little non-crop habitat (Rader et al. 2016; but see Stavert et al. 463 

2017). However, abundances were too low for these trends to be reflected in overall patterns. 464 

In addition, pests also benefited from landscapes with low edge density. The services 465 

provided by agriculture-resilient enemies and pollinators are thus likely insufficient to balance 466 

the bottom-up effects of high crop resource availability on pests in such low complexity 467 

landscapes (Walker & Jones 2003). 468 

Pests overwintering outside crops were least abundant, and pollination and pest control were 469 

highest, in landscapes with high edge density, particularly within the range of 0.2-0.4 km/ha. 470 

In agreement with Rusch et al. (2016), pest control was also highest at low % arable land. But 471 

for pests and pollination, edge density effects occurred largely independently of landscape 472 

composition. Based on trait syndrome patterns, pest control and pollination appear to have 473 

been largely driven by organisms without strong links to agricultural resources, which 474 

benefitted from high edge density to spillover and provide services in crops (ground- and to a 475 

lesser extent flight-dispersing enemies overwintering outside crops for pest control; non-476 

agricultural specialists for pollination). Due to positive impacts on services and many service 477 

providers and negative impacts on pests, edge density thus appeared a more consistent driver 478 

for functional biodiversity and service provision than the presence of semi-natural habitat 479 

alone (Concepción et al. 2012). High diversity of arthropod service providers in such 480 

landscapes, confirmed by a positive correlation between abundance and species richness, may 481 
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further imply functional redundancy. As a result, services supported by these landscapes may 482 

be more resilient to environmental change (Oliver et al. 2015, Martin et al. in press). 483 

Landscapes with high edge density did not have lower yields/area than coarse-grained 484 

landscapes, in a large portion of composition gradients with varying % SNH and arable land. 485 

Though only available from a subset of the data (Table S6), this result indicates that high edge 486 

density and its benefits can be combined with maintaining crop yields, within the range of 487 

edge density observed here. Accordingly, productive landscapes with edge density between 488 

0.2 and 0.4 km/ha may be ideally suited to implement ecological intensification. Cascading 489 

(positive) effects on yields of higher service provision and less pests in landscapes with high 490 

edge density were not, however, apparent from the available data. Reduced pollination and 491 

pest control at low edge density may have been compensated by external inputs in productive 492 

landscapes. In addition, other factors combine to impact yields (Gagic et al. 2017) and may 493 

mask the impact of biodiversity-driven services in the absence of careful standardization 494 

(Pywell et al. 2015). Intermediate to low yields in landscapes with high % arable, low % SNH 495 

and low edge density may underpin the risks of ongoing conventional intensification resulting 496 

in yield stagnation or reduction despite high agricultural inputs (Ray et al. 2012). 497 

Non-linear and interacting effects of landscape predictors denote the importance of variation 498 

in the ranges occupied by European landscape gradients between studies. In combination with 499 

trait-based response syndromes, these results explain several inconsistencies highlighted in 500 

previous work (Kennedy et al. 2013; Veres et al. 2013; Díaz & Concepción 2016; Holzschuh 501 

et al. 2016; Rader et al. 2016; Tscharntke et al. 2016; Karp et al. 2018). By covering a wide 502 

range of landscapes and responses, this study helps resolve why responses to landscape 503 

configuration and composition of arthropod functional groups differ along landscape 504 

gradients. In particular, we show that landscape effects and the potential effectiveness of 505 

landscape management measures vary according to the ranges of landscape variables captured 506 
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in each study region, in agreement with theory underlying non-linear responses of organisms 507 

to landscape gradients (Concepción et al. 2012). Increasing edge density was most effective 508 

for arthropods in landscapes with low (<5%) or high (>20%) % SNH. In landscapes with 509 

intermediate % SNH, small increases in SNH may dilute populations, evening out the benefits 510 

of many edges, before reaching sufficient levels to contribute positively to spillover into 511 

fields. In these landscapes, extensive practices such as low-input farming may be the most 512 

effective way to enhance arthropod diversity and services in crops (Jonsson et al. 2015). 513 

Contrary to our hypotheses (Fig. 1), few effects were hump-shaped within the range of tested 514 

gradients, thus maxima may not be reached within the measured European gradients. 515 

We applied a trait-based framework for agroecosystem communities using response traits that 516 

have not been considered in previous work on pollinators (Williams et al. 2010; De Palma et 517 

al. 2015; Carrié et al. 2017) or grassland arthropods (Gámez-Virués et al. 2015), but were 518 

important determinants of species’ responses to landscape structure. We found that syndromes 519 

combining several response traits effectively disentangled pollinator, pest and enemy 520 

responses compared to single-trait approaches. Considering such traits with strong 521 

mechanistic underpinnings (Bartomeus et al. 2018) will increase our ability to derive 522 

predictions of the effects of environmental change on communities. Clarification is needed, 523 

however, on which trait syndromes correlate with strong impacts on service provision in 524 

crops. For instance, non-bees may complement bees for provision of pollination services 525 

(Rader et al. 2016), but the separate contribution of non-bee pollinators in intensive 526 

landscapes is unknown, and according to our results, may be considerably lower. In addition, 527 

relative contributions to pest control of natural enemies with different landscape responses, 528 

and the importance of high enemy diversity for pest control in real-world landscapes, have yet 529 

to be elucidated. 530 

Conclusion 531 
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In this synthesis across Europe, we show that within European gradients, a high edge density 532 

is beneficial for a wide range of arthropods and the services they provide, and can be 533 

combined with high yields in productive landscapes with over 50% arable land. In addition to 534 

managing semi-natural habitat amounts, increasing the edge density of these landscapes is a 535 

promising pathway to combine the maintenance of arthropod biodiversity and services with 536 

continued and sustainable agricultural production. While the strength of these effects for 537 

arthropods depends on habitat amount, fine-grained landscapes provided benefits such as less 538 

pests and more pollination, which were largely independent of their composition. We further 539 

demonstrate a high response diversity of arthropod service providers leading to differing 540 

impacts of landscape change within groups of natural enemies, pests and pollinators. We thus 541 

call for consideration of mechanism-relevant response traits to catalyze modelling and 542 

prediction of the consequences of land-use change on arthropods and ecosystem services in 543 

crops. 544 
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Table 1. Functional response traits included in cluster analyses. Details on classification of 772 

traits for all organisms are provided in Appendix S1, Table S2. The full database of traits for 773 

all species is published at doi:10.5061/dryad.6tj407n. 774 

Trait name Trait level Abbreviation Description 

Diet breadth specialist (specialist) Diet restricted to no more than two 

families of host plants or prey* 

 generalist (generalist) Generalist diet including a broad range 

of families 

Agricultural 

specialism 

yes (agsp) Diet specialists for which hosts or prey 

are agricultural (crops or pests) 

 no (non agsp) Diet generalists or diet specialists for 

which hosts or prey are not agricultural 

Diet life history same diet (same diet) Organisms have a similar diet across 

their life cycle 

 different diet (diff. diet) Organisms switch diets between life 

stages (e.g. carnivore larva to 

nectarivore adult) 

Overwintering 

habitat 

crop (crop) Organisms may overwinter in or 

outside crops 

 non crop (non crop) Organisms overwinter mainly outside 

crops 

Dispersal ground (gd) Dispersal by moving on the ground 

(wingless or undeveloped wings) 

 flight (flight) Dispersal by active flight (organisms 

with developed wings) 
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 flight / wind (fl/wind) Active flyers known to disperse on 

wind currents 

 wind (wind) Dispersal by wind or electrostatic 

currents (ballooning spiders) 

Stratum ground / 

vegetation 

(ground/veg) Forages by walking or web-building on 

the ground or in vegetation 

 aerial (aerial) Forages by flying between target hosts 

* Diet restricted to one larval ‘microhabitat’ for hoverflies; see Appendix S1. 775 
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 784 

Fig. 1. Conceptual representation of the distinction between landscape composition and 785 

configuration and their possible effects. Four theoretical farming landscapes are viewed from 786 

above (left panel). a) Landscape composition (increasing habitat amount): an increase in 787 

the proportion of seminatural habitat (SNH) is reflected, in the absence of forest, by a 788 

decrease in the proportion of cultivated area as arable land is taken out of production. b) 789 

Landscape configuration (increasing edge density): for the same total amount of crop and 790 

non-crop habitat, decreasing patch sizes and complex shapes lead to an increase in the length 791 

per area of edges (ecotones) among crop fields and between crop and non-crop habitat. c) 792 

Simultaneous increase vs. interactions: habitat amount and landscape edge density may 793 

increase simultaneously, making it difficult to disentangle the contribution of each to 794 

biodiversity and ecosystem services. However, these variables are not intrinsically correlated. 795 

In addition, interactions may take place that lead to different effects of edge density according 796 

to the relative proportion of crop and non-crop habitats in a landscape. d) Non-linear effects: 797 

we hypothesize that effects of landscape composition and configuration on abundance and 798 

services are unimodal, with different mechanisms operating at each end of the gradients. For 799 
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instance, low resource complementarity due to high amounts of semi-natural habitat, but little 800 

cropland may decrease arthropod abundance and/or ecosystem services if organisms benefit 801 

from both resource types (e.g. pollinators that benefit from flowering crops or enemies that 802 

feed on pest prey, but require resources from semi-natural habitats for reproduction). 803 

However, the shape of curve tail ends (grey area) should depend on the state of other 804 

variables. For instance, constraints on resource complementation when habitat amount is high 805 

should be lifted when edge density increases, facilitating spillover. 806 
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 814 

Fig. 2. Heatmaps of the effects of seminatural habitat amount (SNH; composition variable) 815 

and landscape edge density (ED in km/ha; configuration variable) on the abundance of 816 

arthropods (top left) and on functional groups of pollinators, natural enemies, and pests. The 817 

heatmaps can be read like a topographic map, with yellow peaks and blue valleys, and steeper 818 

slopes where line density is high. Yellow indicates areas of highest abundance, blue areas of 819 

lowest abundance (see ln(x+1)-transformed abundance scale at the right of each panel). 820 

Estimates and 95% confidence intervals (CI) of effects are shown for all radii in Fig. S4. 821 

Results at 1 km radius are shown here. Results are not interpreted (marked ‘n.s.’ and faded) if 822 

significant effects were obtained at less than two out of six tested radii. Only the area 823 

covering the range of both variables for each response is plotted. Note a log-scale of predictor 824 

variables.  825 
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 826 

Fig. 3. Heatmaps of the effects of landscape composition (% SNH, left columns; % arable 827 

land, right columns) and landscape configuration (edge density in km/ha) on the abundance of 828 

functional response groups of a) natural enemies, b) pollinators, and c) pests. Functional 829 

groups were separated into trait syndromes based on cluster regression of six categorical traits 830 

(see abbreviations in Table 1; Figs. S2-3). Estimates and 95% CI are shown at all radii in Fig. 831 

S5; results are shown here at the 1 km radius. See further graph details in the legend of Fig. 2.  832 
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 833 

 834 

Fig. 4. Heatmaps of the effects of landscape composition (% SNH, left columns; % arable 835 

land, right columns) and landscape configuration (edge density in km/ha) on a) pest control, 836 

b) pollination and c) crop yield in weight per unit area. Response variables represent an 837 

ecosystem service index accounting for differences in methods within and between studies 838 

(see Appendix S1). See Table S3 for detailed units and measurements per study. Blue: lowest 839 

service provision; yellow: highest service provision. Estimates and 95% CI are shown at all 840 

radii in Fig. S6; results are shown here at the 1 km radius. See further graph details in the 841 

legend of Fig. 2. 842 


