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Summary 

 

How tissues from different developmental origins interact to achieve coordinated 

morphogenesis at the level of a whole organism is a fundamental question in developmental 

biology. While biochemical signalling pathways controlling morphogenesis have been 

extensively studied [1-3], morphogenesis of epithelial tissues can also be directed by 

mechanotransduction pathways physically linking two tissues [4-8]. C. elegans embryonic 

elongation requires the coordination of three tissues: muscles, the dorsal and ventral 

epidermis and the lateral epidermis. Elongation starts by cell shape changes driven by 

actomyosin contractions in the lateral epidermis [9, 10]. At mid-elongation muscles become 

connected to the apical surface of the dorsal and ventral epidermis by molecular tendons 

formed by muscle integrins, extracellular matrix and C. elegans hemidesmosomes (CeHDs). 

The mechanical signal generated by the onset of muscle contractions in the antero-posterior 

axis from mid-elongation is translated into a biochemical pathway controlling the maturation 

of CeHDs in the dorsal and ventral epidermis [11]. Consistently mutations affecting muscle 

contractions or molecular tendons lead to a mid-elongation arrest [12]. Here we found that the 

mechanical force generated by muscle contractions and relayed by molecular tendons is 

transmitted by adherens junctions to lateral epidermal cells where it establishes a newly 

identified bipolar planar polarity of the apical PAR module. The planar polarised PAR 

module is then required for actin planar organisation, thus contributing to determine the 

orientation of cell shape changes and the elongation axis of the whole embryo. This 

mechanotransduction pathway is therefore essential to coordinate the morphogenesis of three 

embryonic tissues. 
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Results and discussion 

 

At the beginning of C. elegans embryonic elongation the long axis of lateral epidermal cells is 

oriented along the dorso-ventral (D/V) axis. Actomyosin contractions in these cells 

progressively reduce cell length along the D/V axis and increase it along the antero-posterior 

(A/P) axis, inducing a 90° shift of the cell long axis from the D/V to the A/P axis. This 

process takes place in the plane of the apical membrane (Figure S1A-B). This orientation shift 

becomes obvious at the 2-fold stage and is concomitant with a progressive planar organisation 

of actin fibres along the D/V axis in the lateral epidermis. While actin is partially disorganised 

at the 1.5-fold stage (Figure S1E-E’) it becomes mostly oriented along the D/V axis from the 

2-fold stage (Figure S1F-G’) as was recently shown [13]. To identify the mechanisms 

underlying actin planar polarisation we looked for planar polarised factors in lateral epidermal 

cells. Previous studies have only identified a few which are not required for embryonic 

elongation [14-16] while canonical planar cell polarity (PCP) is mostly required in neurons 

but not during elongation [17, 18]. During Drosophila embryonic morphogenesis 

Bazooka/Par-3 becomes planar polarised in a bipolar manner [19]. Using CRISPR/Cas9 

genome edited strains to localise endogenous PAR-3::GFP, PAR-6::GFP and GFP::PKC-3 

[20], we found that they exhibit bipolar planar polarity in lateral cells during elongation, 

accumulating on junctions between lateral cells (L-L junctions) but not on junction between 

lateral and ventral or dorsal cells (L-D/V junctions) (Figure 1A-D, E-E', H-H'); a similar 

localisation was observed with a PAR-3::GFP line generated independently [21] (Figure 

S2H). We found that the PAR proteins progressively disappear from the L-D/V junctions 

between the 1.5- and the 2-fold stage (Figures 1A-D; S2A-C"), while actin becomes oriented 

along the D/V axis (Figure S1E-G’). To test the role of apical PAR module components in 

their mutual planar localisation we showed that PAR-3 is essential for PAR-6 and PKC-3 
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recruitment at L-L junctions (Figure 1E-J), while PAR-6 enables the recruitment of PAR-3 

(Figure S2D-F).  

 

Because we never observed PAR proteins recruitment on the junctions between ventral or 

dorsal cells (Figure 1B, E, H blue arrows) we hypothesized that they have a specific function 

on L-L junctions in lateral cells. Genetic tools have already been used to analyse the role of 

PAR-3 and PAR-6 in epidermal cells during early elongation; however the embryos arrested 

before the 2-fold stage [21, 22] precluding the analysis of their role in actin organisation at 

later stages. We therefore depleted PAR-3 by RNAi using conditions leading to a 2-fold arrest 

(see STAR Methods). In these embryos we observed that actin could be either disorganised or 

oriented in the A/P axis (Figure 1K-M). Most strikingly some cells were elongated in the D/V 

axis (Figure 1L) and systematically displayed A/P oriented actin (19/19 D/V elongated cells; 

Figure S3M), strongly suggesting a correlation between orientation of actin filaments and the 

cell long axis. We concluded that the PAR module is planar polarised and that PAR-3 is 

required for actin planar reorganisation in lateral epidermal cells. 

 

Despite the absence of a direct connection between muscles and the lateral epidermis (Figure 

S1C) there is a tight correlation in time between the onset of muscle contractions and the 

establishment of planar polarity from the 1.5-fold stage onwards. Moreover mutations 

affecting muscle contractions or components of molecular tendons trigger a 2-fold elongation 

arrest and were shown to induce an elongation of lateral cells in the D/V axis [23] as observed 

following PAR-3 depletion (Figure 1L). To examine the role of muscle contractions in actin 

organisation we first targeted genes expressed only in muscles (Figure S1D): unc-112/kindlin 

is essential for myosin heavy chain organisation in myofilaments and PAT-3/β-integrin 

localisation [24, 25] whereas the pat-4/ILK interacts with integrin adhesion complexes [26]. 
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Depletion of these genes disrupted the elongation axis of some cells (Figure 2C, cell V1) and 

the planar polarity of actin in lateral epidermal cells (Figure 2A-C’), suggesting that muscle 

contractions induce a mechanical signal transmitted to the lateral epidermis. We next 

investigated the function of CeHDs by depleting two genes expressed in the dorsal and ventral 

epidermis: unc-52 encodes an extracellular matrix (ECM) perlecan secreted basolaterally [27] 

and vab-10 is a spectraplakin homologue and a structural protein of CeHDs [28]. We found 

that these genes are also required for the elongation axis of some cells (Figure 2E, cell V3) 

and the planar polarity of actin in lateral epidermal cells (Figure 2D-E’). We thus concluded 

that a biomechanical signal initiated by muscle contractions is relayed by molecular tendons 

in the dorsal and ventral epidermis and is required for actin organisation in lateral epidermal 

cells. 

We next addressed the functional relationship between muscle contractions and PAR proteins 

planar localisation. We found that unc-112, pat-4, unc-52, and vab-10 are all required for the 

bipolar planar polarised localisation of PAR-3 (Figure 2F-K). To determine whether muscle 

contractions are required for the establishment or the maintenance of planar polarity we 

quantified PAR-3 recruitment during elongation. In control embryos PAR-3 is first localised 

in a junction-like manner at the apical side of lateral cells; planar polarity is then established 

from the 1.5-fold stage and peaks between the 2- and the 3-fold stage (Figure 1D). We 

abolished muscle contractions using an unc-112(RNAi) background and found that PAR-3 

was weakly planar polarised both in control and unc-112(RNAi) embryos before the 1.5-fold 

stage while unc-112 becomes required to maintain PAR-3 localisation on L-L junctions from 

the 1.5 fold stage (Figures 2L; S2G). This observation demonstrates that the biomechanical 

signal emitted by muscle contractions is not necessary for the initial PAR-3 plasma membrane 

recruitment but is required for the establishment of its robust bipolar planar polarity. Finally 
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we established that unc-112 is also required for the planar polarity of PAR-6 and PKC-3 

(Figure 2M-R). We concluded that the planar polarised localisation of the PAR module is 

controlled by a biomechanical signal initiated by muscle contractions and relayed by 

molecular tendons. The PAR module is then needed to properly orient actin in the D/V axis in 

the lateral epidermis. In line with the absence of the PAR module at the junctions between 

ventral or dorsal cells, orientation of actin cables in these cells do not require this pathway 

(Figures 1L; 2A-E blue arrows).  

In a subsequent RNAi screen designed to find new genes required for actin and PAR-3 planar 

polarity (Table S1) we identified the small GTPase RAB-1. RAB-1 depletion by RNAi 

induces a paralysed 2-fold arrest (Figure S3A-B) and actin disorganisation (Figure 3A-C). We 

observed a frequent 90° shift in actin organisation in the A/P axis (Figure 3B-C); this 

phenotype was more frequent than in par-3(RNAi) embryos and associated with cell axis 

elongation in the D/V rather than the A/P axis (Figures 3C; S3M). To evaluate the links 

between actin organisation and cell elongation we plotted lateral cell eccentricity and actin 

organisation. We found that in control and rab-1(RNAi) embryos there is a close correlation 

between actin organisation in parallel filaments and robust cell eccentricity (Figure 3D) 

confirming a link between actin organisation and cell elongation. We also found that rab-1 

depletion triggers a loss of PAR-3, PAR-6 and PKC-3 accumulation at L-L junctions (Figures 

3E-G; S3C-H). In yeast and mammalian cells Rab1 regulates early secretion [29, 30], 

suggesting that it could be required for the secretion of molecular tendons components. We 

therefore examined the localisation of the basolateral transmembrane receptor LET-

805/myotactin and of the UNC-52/perlecan, both secreted by dorsal and ventral cells. We 

found that rab-1 depletion leads to a disruption of UNC-52 and LET-805 localisation (Figure 

3H-K). To confirm that the whole molecular tendon structure was affected we showed that 

6 

Acc
ep

ted
 m

an
us

cri
pt



rab-1 depletion also disrupts UNC-112 and PAT-3/β-integrin localisation in muscles (Figure 

S3I-L). Our results therefore suggest that RAB-1 has a function in regulating CeHDs 

formation presumably by controlling the secretion of at least some CeHDs essential 

components; however we cannot rule out a similar function in muscles where it could also be 

required for PAT-3 secretion. The simultaneous loss of several molecular tendon components 

could explain the more severe actin phenotype observed in rab-1(RNAi) (Figure 3C) 

compared to the depletion of individual components (Figure 2A-E) although we cannot 

exclude other functions for RAB-1 in the regulation of planar polarity. 

We found that UNC-112, PAT-4, UNC-52, VAB-10 and RAB-1 control the onset and the 

transduction of the biomechanical signal generated by muscles leading to planar polarity 

establishment in lateral cells. However the loss of PAR proteins and actin planar polarity 

could be explained by a global loss of epithelial polarity of lateral epidermal cells. We 

therefore examined junction integrity and apico-basal polarity using unc-112(RNAi) or rab-

1(RNAi) to abolish muscle contractions or signal transduction respectively. A combination of 

in vivo localisation, fluorescence recovery after photo-bleaching (FRAP) experiments and 

transmission electron microscopy (TEM) studies established that adherens junctions (AJs) are 

not affected (Figure 4A-C; Figure S4A-M). We observed a slight decrease of E-cadherin 

membrane accumulation in rab-1(RNAi) (Figure 4D) but not unc-112(RNAi) embryos (Figure 

S4H), consistently with a role of RAB-1 in E-cadherin secretion. To further test the integrity 

of apico-basal polarity we established that the apical transmembrane protein CHE-14 [31, 32] 

and the basolateral polarity determinant LET-413/Scribble [33] were also normally localised 

(Figure S4N-Q). Altogether these results demonstrate that muscle biomechanical signalling is 

not required to establish or maintain junction integrity and apico-basal polarity in lateral 

epidermal cells. 
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We next sought to identify the possible signal transduction mechanism between the dorsal and 

ventral epidermis and the lateral epidermis. Given the biomechanical nature of the signal we 

hypothesised that the putative transduction pathway could also be mechanical. For example 

the apical extracellular matrix (aECM) might relay the deformations observed in dorsal and 

ventral cells upon muscle contractions [11] ; however depletion of aECM components triggers 

later elongation arrest and embryo bursting [34, 35] which are not consistent with our 

observations. AJs could also relay the biomechanical signal generated by muscles between the 

dorsal or ventral epidermis and the lateral epidermis. To test this possibility we depleted 

HMP-1/α-catenin to induce a 2-fold stage arrest and block a putative cell-cell signalling based 

on the E-cadherin/catenins complex. We found that PAR-3 failed to be recruited to L-L 

junctions in hmp-1(RNAi) 2-fold arrested embryos (Figure 4E-G). We therefore propose that 

the mechanical signal is transmitted to the lateral epidermis by AJs, although we cannot 

exclude that other mechanisms could also be implicated in this latter signal transduction step. 

We finally assessed the consequences of actin disorganisation on tension orientation in the 

lateral epidermis, which might explain the 90° shift observed in the elongation axis of some 

lateral cells. Using laser nano-ablation we first showed that in control 2-fold stage embryos 

where actin is oriented in the D/V axis, a cut in the A/P axis leads to a systematic relaxation 

of the actin cytoskeleton, whereas a cut along the D/V axis does not lead to relaxation (Figure 

4H-I, L). These results reveal that tension forces are oriented along the D/V axis in the lateral 

epidermis at the 2-fold stage. We then exploited a phenotype frequently observed in rab-

1(RNAi) embryos where actin is aligned along the A/P axis instead of the D/V axis. In rab-1 

depleted embryos displaying A/P oriented actin we observed a relaxation following a D/V cut 

suggesting a 90° shift of tension orientation (Figure 4K-L). Surprisingly the A/P cut led to a 
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closure (Figure 4J, L) which could be explained by pushing forces exerted by the dorsal and 

ventral cells on the lateral epidermis; such a force would not be exerted by lateral cells, 

explaining why the reciprocal experiment in control embryos did not lead to a similar closure 

(Figure 4I, L). These results, together with the correlation between the cell elongation axis 

and actin organisation (Figure 3D), strongly support the hypothesis that actin orientation is the 

primary cause of the cell elongation axis which is itself the main cause of the embryonic 

elongation axis. We therefore propose that the disorganisation of actin in lateral cells 

observed upon disruption of the mechanical signal initiated by muscles induces the arrest at 

the 2-fold stage.  

We found that muscle contractions initiate a mechanical signal transmitted to the lateral 

epidermis through dorsal and ventral molecular tendons and AJs; this signal is essential to 

promote a planar organisation of the PAR module and actin, thus regulating tension 

orientation in lateral cells. We have therefore identified a trans-tissular mechanotransduction 

signalling pathway required to coordinate morphogenesis between three tissues: muscles, the 

dorsal and ventral epidermis and the lateral epidermis during C. elegans embryonic 

morphogenesis (Figure S4R). Interestingly the mechanical signal generated by muscles is 

therefore at the origin of at least two different outcomes: maturation of CeHDs [11] and 

establishment of planar polarity in lateral cells. This pathway is very different from the 

canonical Wnt/PCP, Fat/Dachsous and Toll receptor pathways which enable cells to establish 

vectorial/unipolar planar polarity [36, 37]. However many other proteins have been found to 

be planar polarised in a bipolar manner, e.g. E-cadherin [38], myosin [19] and PAR-3 [19, 39] 

in Drosophila , or tropomodulin [14], microtubules and NOCA-1 [15, 16] and the apical PAR 

module (this study) in C. elegans. Interestingly there is a parallel between the mutual 

exclusion of PAR-3 and myosin in Drosophila [19, 40] and the apical PAR module and actin 
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in C. elegans (this study), even if myosin is not polarised in lateral cells [13]. While in 

Drosophila Rho kinase is required for PAR-3 planar polarity [41], the mechanism leading to 

the PAR module planar polarisation is not yet identified in C. elegans. For instance the often 

PAR associated CDC-42 GTPase has been proposed to play a role during early elongation but 

its function was not investigated during later elongation [42]. Future work investigating the 

pathway(s) leading to the PAR module bipolar planar polarity downstream of AJs, and how 

PAR proteins could control actin organisation in lateral cells, will be necessary to fully 

characterise this new mechanotransduction pathway. 

Tissue mechanics and force transmission have been previously shown to be involved in 

Drosophila wing morphogenesis, where the wing hinge retraction enables planar 

rearrangement from a radial to a proximal-distal-oriented polarity in the wing blade [5]; 

similarly a mechanical input has been implicated in setting up planar polarity during 

Drosophila germ-band extension [4, 8, 41]. In a different context a recent study demonstrated 

that a physical pressure exerted by proliferating dermal cells controls the patterning of the 

avian skin [43]. However in all these examples the tissue-wide tension is generated in direct 

connection with the target tissue. Our results show a more complex signal transduction 

pathway where the tension generated by muscles is relayed along two tissues, first in the 

inside to outside orientation through molecular tendons, then in the D/V axis through AJs. 

Interestingly smooth muscles lie below or inside many tissues such as the skin, the intestine, 

the respiratory organs or the reproductive tracts where they could be essential for planar 

polarity establishment in surrounding epithelial tissues throughout the animal kingdom. We 

therefore believe that this new signalling pathway implicated in force transmission through 

several tissues could be conserved in other organisms. 
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Figure 1: The PAR module is planar polarised in the lateral epidermis and is required 
for actin planar polarity. A-J Observation of C. elegans embryos expressing endogenous 
PAR proteins in the epidermis at the level of the apical membrane during elongation. Orange 
arrowheads indicate L-L junctions; blue arrowheads indicate junctions between ventral cells; 
white arrowheads indicate absence of PAR proteins localisation at L-L junctions A-D 
Endogenous PAR-3::GFP accumulates at L-L junctions (orange arrowheads) during 
elongation but is not visible at junctions between ventral cells (blue arrowheads); the signal 
on L-D/V junctions (green arrowheads) is weak at the 1.5-fold stage and decreases during 
elongation. DLG-1 (purple) is a junction marker. Quantifications (A"-C") were made by 
measuring the membrane/cytoplasm ratio (“mb/cyto ratio”) between PAR-3 staining at L-L or 
L-D/V junction for each stage (n=10 embryos 1,5-fold, 79 L-L / 137 L-D/V; n=10 embryos 2-
fold, 80 L-L / 113 L-D/V; n=10 embryos 3-fold, 68 L-L / 113 L-D/V). The L-L / L-D/V ratio 
is shown in D. E-J PAR-3 is required for the recruitment of endogenous PAR-6::GFP (E-G) 
and GFP::PKC-3 (H-J) at L-L junctions. G and J correspond to quantifications of PAR-6 and 
PKC-3 recruitment, respectively, made by measuring the membrane/cytoplasm ratio 
(“mb/cyto ratio”) at L-L junctions. G: n=22 control embryos, 66 L-L; n=22 par-3(RNAi) 
embryos, 66 L-L; J: n=30 control embryos, 90 L-L; n=23 par-3(RNAi) embryos, 69 L-L. K-
M par-3 depletion leads to actin misorientation (white arrowhead in L: n=15 embryos, 67 
cells, compared to orange arrowheads in control, K: n=11 embryos, 34 cells) as confirmed by 
the associated quantification in M. The yellow box shows two cells (V2 and V3) (white 
arrowheads) where actin is oriented in the A/P axis leading to a cell elongation in the D/V 
axis; this phenotype was observed in 9/21 embryos (0/23 in control embryos). Actin cables in 
ventral and dorsal cells (blue arrowheads) are not affected. Quantification of actin orientation: 
vertical axis: D/V orientation; horizontal axis: A/P orientation. See also Figures S1 and S2. 
All embryos are imaged at the 2-fold stage except in A and C; anterior is to the left. Scale 
bars: 5 µm. 
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Figure 2: Muscles and molecular tendons are required for lateral epidermis planar 
polarity. A-E Actin organisation in lateral epidermal cells at the 2-fold stage; actin is 
disorganised upon unc-112 (B; n=17 embryos, 61 cells), pat-4 (C; n=19 embryos, 72 cells), 
unc-52 (D; n=19 embryos, 61 cells) or vab-10 (E; n=17 embryos, 39 cells) depletion. Orange 
arrowheads indicate proper actin polarisation in control cells (n=11 embryos, 34 cells) while 
white arrowheads indicate cells where actin is strongly disorganised; blue arrowheads indicate 
normal actin cable organisation in ventral and dorsal cells; V1 and V3 indicate cells which are 
elongated in the D/V axis. A’-E’: Quantification of actin orientation; vertical axis: D/V 
orientation; horizontal axis: A/P orientation. F-J’ Depletion of unc-112, pat-4, unc-52 or vab-
10 by RNAi leads to an absence of endogenous PAR-3::GFP at L-L junctions as depicted by 
white arrowheads compared to orange arrowheads in control. This absence of PAR-3 
localisation at the plasma membrane has been quantified in K (n=20 control embryos, 112 L-
L; n=29 unc-112(RNAi) embryos, 188 L-L; n=19 pat-4(RNAi) embryos, 132 L-L; n=21 unc-
52(RNAi) embryos, 106 L-L; n=13 vab-10(RNAi) embryos, 82 L-L. L Quantification of PAR-
3::GFP accumulation at L-L junctions in control and unc-112 depleted embryos at early 
stages (left, n=21 control embryos, 25 unc-112(RNAi) embryos) and stages above the 1.5-fold 
stage (right, n=29 control embryos, 29 embryos unc-112(RNAi)); 3 L-L junctions are 
quantified for each embryo; see also Figure S2G which shows the same results as individual 
embryos with respect to the index elongation. M-R The depletion of unc-112 also affects the 
localisation of endogenous PAR-6::GFP and GFP::PKC-3. In O: n=24 control embryos, 72 L-
L; n=21 unc-112(RNAi) embryos, 63 L-L. In R, n=25 control embryos, 75 L-L; n=25 unc-
112(RNAi) embryos, 75 L-L. See also Figure S2. All embryos were imaged and quantified at 
the 2-fold stage except in L; anterior is to the left. Scale bars: 5 µm. 
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Figure 3: RAB-1 is required for planar polarity in the lateral epidermis through 
molecular tendon components localisation. A-C rab-1 depletion leads to actin 
disorganisation in lateral epidermal cells at the 2-fold stage (n= 16 control embryos, 54 cells, 
orange arrowheads; n=16 rab-1(RNAi) embryos, 69 cells, white arrowheads where actin is 
mostly oriented in the A/P axis). Note that a high proportion of cells display an A/P 
orientation of actin (C). D Actin standard deviation and cell elongation (eccentricity) were 
plotted for control and rab-1(RNAi) embryos; each dot represents one cell (original data as in 
C); a Spearman test reveals a positive correlation (p<1.10-5) between the two parameters for 
both control and rab-1(RNAi) embryos. E-G Endogenous PAR-3::GFP localisation at L-L 
junctions observed in control embryos (orange arrowheads, n=26 embryos, 78 junctions) is 
lost under rab-1 depletion (white arrowheads, n=12 embryos, 61 junctions). G corresponds to 
quantifications of PAR-3 accumulation at L-L junctions made by measuring the 
membrane/cytoplasm ratio (“mb/cyto ratio”). H-K rab-1 depletion disrupts the localisation of 
endogenous UNC-52 as revealed by immunostaining (H-I; n=20 control embryos, n=15 rab-
1(RNAi) embryos) and of endogenous LET-805::GFP using a CRISPR line (J-K; n=30 
control embryos, n=24 rab-1(RNAi) embryos). White arrowheads indicate areas of interrupted 
staining; DLG-1 is a junction marker. See also Figure S3 and Table S1. All embryos are 
imaged at the 2-fold stage; anterior is to the left. Scale bars: 5 µm. 
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Figure 4: AJ function in signal transduction and role of actin planar polarity in tension 
orientation. A-D E-cadherin (in green) remains apical upon rab-1 depletion (B, n=29 
embryos) as in control embryos (A, n=18). Small insets correspond to Z-section represented 
by a white line in the associated picture: E-cadherin is localised above the junction marker 
DLG-1 (in purple). The quantification shows that the ratio of E-cadherin between L-D/V and 
L-L junctions remains intact under rab-1 depletion (C). However, there is a slight decrease in 
E-cadherin overall accumulation at plasma membrane under rab-1 depletion (D). E-G 
Endogenous PAR-3::GFP localisation at L-L junctions observed in control embryos (orange 
arrowheads, n=26 embryos, 78 junctions) is lost upon hmp-1 depletion (white arrowheads, 
n=37 embryos, 111 junctions). G corresponds to quantifications of PAR-3 recruitment made 
by measuring the membrane/cytoplasm ratio (“mb/cyto ratio”) at L-L junctions. H-L Laser 
nano-ablation experiments of the actin cytoskeleton in the lateral epidermis in control (H-I, 
actin oriented in the D/V axis) and rab-1-depleted (J-K, actin oriented in the A/P axis) 
embryos. Cuts were performed along the A/P axis (H, J in purple) or along the D/V axis (I, K 
in blue). These experiments have been quantified by measuring the relative expansion of the 
cut area over time; a value of 1 thus indicates an opening of the cut zone while 0 indicates no 
opening and -1 corresponds to closing (L; see STAR Methods for details). See also Figure S4. 
All embryos are imaged at the 2-fold stage; anterior is to the left. Scale bars: 5 µm. 
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STAR Methods 
 
CONTACT FOR REAGENT AND RESOURCE SHARING 
 
Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the Lead Contact, Grégoire Michaux (gmichaux@univ-rennes1.fr). 
 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
C. elegans and C. briggsae strains were used in this study. All analysed animals were 
hermaphrodites and at the embryonic stage at the time of observations. Figure legends 
indicate the precise embryonic stage for each experiment. 
- Health/immune status : not applicable 
- Subjects were never involved in previous procedures 
- All embryos were drug and test naïve  
- The genotypes of the strains used in this study are detailed in the Key Ressource Table. 
- Species/strain of experimental models: all embryos were derived from the C. elegans N2 
Bristol isolate. The C. briggsae strain is derived from AF16 Indian isolate. 
- Husbandry conditions: C. elegans and C. briggsae strains were maintained and crossed on 
NGM plates seeded with E. coli OP50 at 20°C. 
 
METHOD DETAILS 
 
Overview 
All experiments were replicated at least three times except for the par-6 depletion wich was 
replicated two times. No strategy was used for randomization or stratification; no blinding 
was used, and sample-size were not estimated. No data were excluded during quantifications. 
 
Plasmid construction and strains 
The C. briggsae version of rab-1 (called Cbr-rab-1) was amplified from the ANA020 strain 
[45] by PCR with the Phusion Master Mix then cloned in the Gateway pDONR p221 with the 
Gateway BP Clonase Enzyme Mix. The construct was injected at 5 ng/μL together with the 
rol-6(su1006) marker at 100 ng/μL in the C. elegans N2 strain.  
 
RNAi 
Embryonic RNAi was performed by feeding using the Ahringer-Source BioScience library 
[46-48]; RNAi was induced in young adults and the phenotypes observed in the next 
generation (F1). L4440 corresponds to the standard control RNAi feeding strain. For some 
genes (e.g. par-3, par-6) the duration of the RNAi treatment was adapted (<24 h) to observe 
elongation phenotypes while avoiding earlier developmental phenotypes usually associated 
with these genes; rab-1(RNAi) was induced for about 20 h to avoid the sterility triggered in 
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the parental generation. All embryos observed and used for quantifications were 7-10 h old, 
corresponding to 1.5- to 3-fold embryos in a WT strain; as a control we checked that there 
was not expression of the myo-2p::GFP transgene which is expressed from the 3-fold stage 
and present in the FL311 strain used to localize ABD::GFP. RNAi efficiency was checked by 
observing the induction of a developmental arrest whenever such a phenotype was expected 
based on previous reports. To test the specificity of the rab-1(RNAi) we scored the embryonic 
lethality observed following Cel-rab-1(RNAi) in an N2 strain and in a strain expressing Cbr-
rab-1 as presented in Figure S3A-B. 
 
Immunostaining 
Fixation of embryos was performed using the freeze-crack methanol protocol [49]. Briefly, 
embryos were squeezed for 2 min before being frozen in liquid nitrogen, fixed in methanol for 
20 min and washed in PBS. After a blocking step in PBS-Tween 0.2% supplemented with 1% 
BSA for 20 min, embryos were incubated with the primary antibody at 4°C overnight then 
with the secondary antibody at 1 h at 37°C in a wet chamber. Embryos were finally mounted 
in 10 µL Mowiol. We used the anti-UNC-52 MH2 (1/50) monoclonal antibody from DSHB 
(University of Iowa, USA). Alexa Fluor 488 antibody (ThermoFisher) was used as secondary 
antibody. All antibodies were diluted in PBS-Tween 0.2%. 
 
Electron microscopy 
To prepare samples for electron microscopy experiments embryos were fixed by high 
pressure freezing followed by freeze substitution, flat embedding to allow antero-posterior 
orientation and sectioning [48]. Control (n=3) and rab-1(RNAi) (n=4) embryos were 
observed. Each embryo was sectioned every 5-7μm to ensure that different cells were 
observed in different 5-7μm segments; 3 segments were examined for each embryo. The 
pictures in Figure S4L-M are representative of all the sections observed. Observations were 
performed on a Jeol JEM1400 equipped with a Gatan Orius SC1000 camera. 
 
Confocal microscopy 
Confocal observations were performed on 1.5-, 2-, and 3-fold stage embryos. From the 1.5-
fold stage embryos start moving due to muscle contractions; from the 1.8-fold stage they 
move too rapidly for imaging and these movements completely prevent obtaining movies of 
the progressive planar polarization of the PAR module and of actin. To image these embryos, 
we added bacteria to the mounting medium M9. This treatment results in progressive hypoxia 
leading to muscle inactivity and immobilisation. Embryos were then imaged using Leica 
(Wetzlar, Germany) SPE, SP5 or SP8 confocals equipped with 63X/1.4 HCX PL APO 
objectives (LAS AF software). The SP5 and SP8 confocals are equipped with hybrid detectors 
which were used to image the low signals generated by the genome-edited strains expressing 
PAR-3::GFP, PAR-6::GFP and GFP::PKC-3 at the endogenous level. They were also used to 
image ABD::GFP at the highest possible resolution with a low background. All images were 
examined using ImageJ 1.43 or Fiji 1.0 and assembled using the Inkscape software. No image 
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manipulation was performed except adjusting contrast and brightness in an homogenous way 
throughout the picture. 
 
FRAP experiments 
FRAP experiments were performed on 1.5-fold stage embryos just before the onset of muscle 
contractions. We used an inverted Nikon Ti-E microscope equipped with a Spinning-disk 
CSU-X1 and a single-point scanning head to allow laser microirradiation. Embryos were 
imaged with a 63X/1.4 PLAN APO objective and fluorescence was collected with an sCMOS 
ORCA Flash 4.0 camera. The FRAP was performed on a whole junction with 100% laser 
power, 50 iterations and a line thickness of 2, in the iLAS software in Metamorph. Post-FRAP 
images were acquired every 10 seconds. 
 
Laser nano-ablations 
Laser nano-ablation experiments were performed on 2-fold stage embryos. Because at that 
stage embryos move too rapidly for imaging we prevented movements by adding bacteria to 
the mounting medium M9. This treatment results in progressive hypoxia leading to muscle 
inactivity and immobilization. To perform ablations, we selected embryos which had just 
stopped moving and used an inverted Leica SP5 microscope equipped with a Pulsed laser Mai 
Tai HP Ti. Embryos were imaged with a 63X/1.4 HCX PL APO objective. Laser nano-
ablations were performed at 800 nm with a single iteration. Images were acquired every 1.27 
seconds. 
 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Overview 
The percentage of embryos displaying a phenotype was obtained either by direct observation 
or after quantification. All quantifications were performed on images acquired in independent 
experiments (no embryo was measured repeatedly). Gaussian distribution and similar 
variances were tested before performing statistical analysis. 
 
Fluorescence intensity measurements 
Quantifications were performed using ImageJ 1.43 or Fiji 1.0 along lines (length 5-10 μm, 
width 0.3 μm) over the membrane and cytoplasmic parts of at least three cells for each 
embryo. The membrane quantification was normalised to the cytoplasmic background; a ratio 
of 1 therefore indicates no specific membrane localisation. In Figure 4D and Figure S4H we 
measured intensity along the membranes and plotted these numbers directly, without 
normalisation to the cytoplasm. 
 
Actin orientation in lateral epidermal cells 
Actin orientation was measured in Matlab using custom-routines [50]. Briefly local directors 
representing actin alignment were determined as follows for each cell: a cell was properly 
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oriented and broken in small overlapping windows of 2.6*2.6 μm and the 2D FFT of each 
filtered window was calculated, giving a range of angles whose values are given compared to 
the dorso-ventral axis. Each count is the dominant angle for a particular 2.6 µm square 
analysis window, and each count is plotted. Representative cell with actin local directors are 
shown in Figure S1. The data are shown on plots as a percentage of counts in a given angle 
class / all counts and there is one class for every 6° angle (30 classes to cover 180°) for all the 
plots. 
 
FRAP quantifications 
Quantifications were made manually in Image J by measuring the mean intensity of the 
bleached junction after background subtraction. 
 
Actin organisation and cell elongation axis 
We exploited a Matlab script written by Gomez et al [51]. We used it to recognise and analyse 
the cytoskeleton organisation in 8-bit images of embryonic lateral cells. Inputs files are two 
subfolders that contain an image of a cell border, an image of the embryo and the other 
contains the cytoskeleton projection inside a given cell. The script recognises the cytoskeleton 
and the cell borders using the generated mask. The script fits the cell as an ellipse and 
calculate the eccentricity and the standard deviation SD. SD measures actin alignment with 
respect to the major axis of the ellipse. The eccentricity calculated using Matlab is defined as 
the ratio of the distance between the foci of the ellipse and its major axis length. If the 
eccentricity is 0, the ellipse is a circle and if it is equal to 1 the ellipse is equivalent to a 
segment. To do so, the signal of each pixel is extracted using the cell mask and the gradient of 
the signal is calculated using a Sobel filter (5x5). The magnitude M depends on the signal 
gradient along x and y and is used to quantify the direction of its pixel and its changes. We 
plotted the eccentricity of each cell (elongation axis) as a function of the standard deviation of 
the actin signal in the same cell in order to obtain the correlation between the cell elongation 
axis and actin orientation 
 
Laser nano-ablation quantifications 
For quantifications, the cut zone was manually tracked over time in ImageJ and the relative 
expansion was calculated as follows: (l15 – l0)/l0 where l is the small axis of the cut zone; 0 
and 15 correspond to the first picture after the cut and the picture after 15 seconds, 
respectively. A value of 1 thus indicates an opening due to relaxation, while 0 indicates no 
relaxation and -1 corresponds to a closing by contraction and/or compression; compression 
could be passive, possibly due to pushing forces exerted by the dorsal and ventral epidermis 
and contraction could be due to actin dynamics within lateral cells. 
 
Statistical analysis 
To determine whether the data met assumptions of the statistical approaches used we first 
analysed the data distribution and the variances. Parametric T-tests were used when samples 
had a Gaussian distribution and similar variances. Other cases were treated using non-
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parametric Wilcoxon tests. Actin distribution was treated using a X2 test. A Spearman 
correlation test was used to determine the correlation between actin standard deviation and 
cell eccentricity. Significance is indicated as follows: * p<0.05, ** p<0.01, *** p<0.001. 
Quantification results are shown as box plots: centre line: median; box: first and third 
quartiles; whiskers: 10th and 90th percentiles. In all Figure legends, n refers to the number of 
different embryos analysed for a particular experiment. These legends also clearly indicate the 
number of junctions/cells analysed for each experiment. 
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Figure S1: Embryo anatomy; actin planar polarisation – related to Figure 1. A-D 
Schematic representation of C. elegans anatomy and junctional organisation during 
morphogenesis. A The epidermis is divided into three parts: the ventral and the dorsal 
epidermis (pink) which share the same developmental program, and two rows of ten cells, one 
on each side of the embryo, the lateral epidermis (purple). B Lateral view of C. elegans 
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embryos during elongation showing the apical membrane of epidermal cells in the plane of 
the figure; note that all pictures will display the same orientation in all figures except for TEM 
pictures. The elongation of the embryo reflects the elongation of the cells from the lateral 
epidermis. These cells exhibit a planar polarity: junctions between lateral cells (L-L junctions, 
purple) shrink during elongation while the junctions between dorsal or ventral cells and lateral 
cells (L-D/V junctions, orange) elongate in the axis of embryonic elongation. C The embryo 
can be assimilated to a tube surrounded by the epidermis. Muscles lay beneath the basolateral 
membrane of the dorsal and ventral epidermis, linked to the apical side by molecular tendons 
(C-D); muscles contract in the A/P axis (white double arrows) and in the lateral epidermis 
actomyosin contractions are organised in the D/V axis (yellow double arrows). D Molecular 
tendons link the muscles to the dorsal and ventral epidermis through the extracellular matrix 
(ECM) and the whole dorso-ventral epidermis thickness to the apical surface and the apical 
ECM. CeHDs are mainly composed by apical transmembrane receptors (MUA-3, MUP-4), 
intermediate filaments, linker proteins (VAB-19, VAB-10) and a basolateral receptor (LET-
805). The basal ECM (UNC-52) is in turn linked to muscles through the action of integrins 
which require PAT-4 and UNC-112 for their proper localisation. E-G Actin orients along the 
dorso-ventral axis during elongation, from the 1.5-fold stage, where it exhibits a partial 
orientation along the D/V axis (n=19 embryos, 51 cells) to the 2-fold (n=18 embryos, 57 
cells) and the 3-fold stages (n=15 embryos, 48 cells) where actin is strongly oriented along the 
D/V axis (orange arrowheads); pictures in the second row are enlarged individual cells (green 
arrowheads) of the embryo above, with the A/P axis aligned along an horizontal line, showing 
individual actin local directors as calculated. E’-G’ Actin orientation in epidermal cells has 
been quantified for each cell as described [S1]. Graphs represent the distribution of angles 
compared to the D/V axis: vertical axis: D/V orientation; horizontal axis: A/P orientation. In 
all panels, anterior is to the left. Scale bars: 5 µm. 
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Figure S2: PAR planar polarity in the lateral epidermis – related to Figure 1. A-C” 
Endogenous PAR-6::GFP accumulates at the L-L junctions (orange arrowheads) during 
elongation in control embryos as revealed by the associated quantifications made on L-L and 
L-D/V junctions (ratio of membrane/cytoplasm localisation; n=10 1.5-fold stage embryos 74 
L-L, 121 L-D/V; n=10 2-fold stage embryos, 78 L-L, 120 L-D/V; n=10 3-fold stage embryos, 
71 L-L, 106 L-D/V). D-F The depletion of par-6 by RNAi prevents PAR-3 recruitment at L-L 
junctions (white arrowheads), compared to control embryos where PAR-3 accumulates at L-L 
junctions (orange arrowheads); n=15 control embryos; n=8/11 par-6(RNAi) embryos. G 
Quantification of PAR-3::GFP on L-L junctions in control and unc-112 depleted embryos 
during elongation; the index is based on the elongation of each embryo between 1.2- and 2-
fold stage (n=50 control embryos, 150 L-L; n=54 unc-112(RNAi) embryos, 162 L-L); see also 
Figure 2L which shows the same results split in two groups, before and after 1.5-fold stage. H 
Representative images of PAR-3::GFP localisation at 2-fold and 3-fold stages obtained with 
another strain [S2]; PAR-3 was planar polarised in all observed embryos (n>10). All embryos 
are imaged at the 2-fold stage except in A-A', C-C' and H; anterior is to the left except in C-
C’. Scale bars: 5 µm. 
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Figure S3: rab-1 depletion induces a 2-fold arrest and loss of PAR-6 and PKC-3 – 
related to Figure 3. A-B The depletion of rab-1 by RNAi induces a very robust 2-fold arrest. 
The expression of an RNAi-resistant version of rab-1 from C. briggsae almost fully rescues 
the lethality induced by rab-1 depletion by RNAi and the deletion allele rab-1(ok3750) 
phenocopies rab-1(RNAi). C-H The depletion of rab-1 affects the localisation of endogenous 
PAR-6::GFP and GFP::PKC-3; orange arrowheads show normal staining, white arrowheads 
indicate absence of staining. In E: n=21 control embryos, 149 junctions; n=25 rab-1(RNAi) 
embryos,186 junctions. In H : n=20 control embryos, 128 junctions; n=23 rab-1(RNAi) 
embryos, 144 junctions. I-L rab-1 depletion disrupts the localisation of PAT-3 ::GFP 
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(n=26/27 unaffected control embryos; n=16/21 affected rab-1(RNAi) embryos) and UNC-
112 ::GFP (n=33/36 unaffected control embryos; n=42/49 affected rab-1(RNAi) embryos). 
Orange arrowheads show normal staining, white arrowheads indicate areas of interrupted 
staining. M Number and percentage of embryos and cells displaying cells with a D/V 
elongation axis instead of the normal A/P elongation axis observed in control embryos at the 
2-fold stage. rab-1(RNAi) embryos display a more penetrant phenotype compare to par-
3(RNAi) embryos. * All cells elongated in the D/V axis display a strict A/P organisation of 
actin. All embryos are imaged at the 2-fold stage. Scale bars: 5 µm. 
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Figure S4. Junction integrity and apico-basal polarity are not affected upon CeHDs 
depletion – related to Figure 4. A-B E-cad (green) remains apical in rab-1(ok3750) mutant 
embryos (B, n=28) as in control embryos (A, n=18). Small insets correspond to Z-section 

 35 

Acc
ep

ted
man

us
cri

pt



represented by a white line in the associated picture: E-cad is localised above the junction 
marker DLG-1 (purple). C-D VAB-9, another component of AJs [S3], also remains apical 
above DLG-1 upon rab-1 depletion (n=13 embryos) as in control (n=14 embryos). E-H E-cad 
localisation is not affected upon unc-112 depletion: the weak planar polarity (G) and the 
signal intensity at the L-L and L-D/V junctions (H) are conserved. I-K FRAP experiments 
performed in 1.5-fold stage embryos show that E-cad dynamics is not affected in the absence 
of RAB-1 (n=7 junctions for control, n=8 for RNAi embryos), as depicted on the recovery 
curves (J; error bars indicate standard deviation) and the percentages of mobile and immobile 
fractions (K). L-M Transmission electron microscopy (TEM) reveals that the electron-dense 
region corresponding to the junctions (orange arrowhead) is still properly localised upon rab-
1 depletion in these cross-sections of lateral cells; however Golgi cisternae (white arrowhead) 
were systematically curled in rab-1(RNAi) embryos (n≥3 embryos for each condition). N-Q 
Apico-basal polarity is not affected upon rab-1 depletion. CHE-14 remains apical (N-O; n=16 
and n=20, respectively), while LET-413 remains lateral (P-Q; n=18 and n=29, respectively); 
orange arrowheads indicate proper localisation, apical for CHE-14 or at the lateral membrane 
for LET-413. All embryos are imaged at the 2-fold stage including for the TEM pictures, 
except in I (1.5-fold) Ap: apical; Bl: basolateral. Scale bars: 5 µm, except for small insets: 2 
µm, and for L-M: 0.5 µm. R Working model. Before the 1.5-fold stage actin is disorganised 
and actomyosin contractions in lateral cells drive elongation; the PAR module starts to be 
recruited in an unpolarised manner. From the 1.5-fold stage muscle contractions promote the 
assembly and the stabilisation of CeHDs [S4] to enable force transmission between muscles 
and the dorsal and ventral epidermis through molecular tendons during morphogenesis. This 
force is then relayed by adherens junctions from the dorsal and ventral epidermis to the lateral 
epidermis. This leads to bipolar PAR planar polarity and ultimately actin orientation along the 
dorso-ventral axis, a prerequisite to properly control cell shape changes and therefore 
elongation along the antero-posterior axis. 
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Gene list Sequence Short description 

agef-1 Y6B3A.1 Putative ARF guanine nucleotide exchange factor orthologous to human 
ARFGEF1 and ARFGEF2 

apa-2 T20B5.1 Ortholog of the alpha subunit of adaptor protein complex 2 
apm-2 R160.1 Ortholog of the mu2 subunit of adaptor protein complex 2 
aps-1 F29G9.3 Ortholog of the sigma subunit of adaptor protein complex 1 
arf-1.2 B0336.2 ADP-ribosylation factor homolog 
atn-1 W04D2.1 Alpha-actinin homolog 
cdh-4 F25F2.2 Fat-like cadherin homolog 
ced-5 C02F4.1 Homolog of the human protein DOCK180 
chc-1 T20G5.1 C. elegans clathrin heavy chain ortholog 

cogc-3 Y71F9AM.4 Ortholog of mammalian COG-3/Sec34, a subunit of lobe A of the conserved 
oligomeric Golgi complex (COGC) 

cogc-4 Y51H7C.6 Ortholog of mammalian COG-4, a subunit of lobe A of the conserved 
oligomeric Golgi complex (COGC) 

copb-1 Y25C1A.5 Beta subunit of the coatomer (COPI) complex 
copb-2 F38E11.5 Beta' (beta-prime) subunit of the coatomer (COPI) complex 
/ T14G10.5 Gamma subunit of the coatomer (COPI) complex 
copz-1 F59E10.3 Zeta subunit of the coatomer (COPI) complex 
cul-1 D2045.6 Cullin, orthologous to Cdc53/Cul1 in S. cerevisiae and CUL-1 in humans 
dnc-1 ZK593.5 C. elegans ortholog of the dynactin complex subunit p150/GLUED/DCTN1 
fln-1 Y66H1B.2 Filamin ortholog 

gbf-1 C24H11.7 Ortholog of human GBF1 (golgi brefeldin A resistant guanine nucleotide 
exchange factor 1) 

/ F33G12.5 Ortholog of human GOLGA6A (golgin A6 family member A) 
golg-4 F59A2.6 Ortholog of human ppl (periplakin) and EVPL (envoplakin) 

hum-2 F36D4.3 Class V unconventional myosin similar to human MYO5A, MYO5B and 
MYO5C 

hum-5 T02C12.1 Ortholog of human MYO1D (myosin ID) and MYO1G (myosin IG) 

magi-1 K01A6.2 
Multi PDZ-domain containing tight junction-associated protein: MAGIs are 
members of vertebrate membrane associated guanylate-kinase (MAGUK) 
family 

mdt-9 Y62E10A.11 Ortholog of human RABIF (RAB interacting factor) 
mec-7 ZK154.3 Beta-tubulin 
nmy-2 F20G4.3  Non-muscle myosin II 

ocrl-1 C16C2.3 Inositol-1,4,5-triphosphate 5-phosphatase homolog that is homologous to 
human OCRL 

rab-1 C39F7.4 Ortholog of the small Ras-like GTPase Rab1 

rab-2 F53F10.4 Small GTPase homologous to the Rab GTPases that function in endocytosis, 
membrane fusion, and vesicular trafficking events 

rab-35 Y47D3A.25 Small, monomeric Rab GTPase that is most closely related to the human and 
Drosophila Rab35 GTPases 

rab-5 F26H9.6  Rab5 GTPase ortholog 

rab-6.1 F59B2.7 Small, monomeric Rab GTPase that is most closely related to the Drosophila 
and mammalian Rab6 GTPases 

rabn-5 F01F1.4 Ortholog of Rabaptin-5, a Rab5 effector protein 

rabx-5 Y39A1A.5 Protein containing a zinc-finger domain and a Vps9 domain that is the C. 
elegans ortholog of the Rabex-5 Rab5 guanine-nucleotide exchange factor 

rack-1 K04D7.1 Seven-WD repeat-containing protein that is the C. elegans ortholog of 
vertebrate Receptor for Activated C Kinase 

ran-1 K01G5.4 Ran GTPase ortholog 

sar-1 ZK180.4 Ortholog of human SAR1A (secretion associated Ras related GTPase 1A) and 
SAR1B (secretion associated Ras related GTPase 1B) 

sec-23 Y113G7A.3 Component of COPII (coat protein complex II)-coated vesicles orthologous to 
Saccharomyces cerevisiae Sec23p 

sec-24.1 F12F6.6 Encodes one of two C. elegans Sec24 homologs 

sec-31 T01G1.3 Ortholog of human SEC31A (SEC31 A, COPII coat complex component) 
and SEC31B (SEC31 B, COPII coat complex component) 

sma-1 R31.1 Beta-H spectrin 
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spc-1 K10B3.10 Alpha spectrin ortholog 
sql-1 Y111B2A.4  Ortholog of human TRIP11 (thyroid hormone receptor interactor 11) 
syx-5 F55A11.2 Ortholog of human STX5 (syntaxin 5) 
/ T04C9.1 Orthologous to the human gene GRAF PROTEIN 
tba-1 F26E4.8 One of nine C. elegans alpha-tubulins 
tba-2 C47B2.3 One of nine C. elegans alpha-tubulins 
tba-4 F44F4.11 One of nine C. elegans alpha-tubulins 
tba-9 F40F4.5 One of nine C. elegans alpha-tubulins 
tbb-2 C36E8.5 Homolog of mammalian beta-tubulin (TUBB) 
tbcd-1 F16D3.4 Putative beta-tubulin folding cofactor D 
tln-1 Y71G12B.11 Ortholog of human TLN2 (talin 2) and TLN1 (talin 1) 
unc-70 K11C4.3 Two isoforms of a beta-spectrin ortholog 

uso-1 K09B11.9 Ortholog of the Uso1/p115 vesicle tethering protein that in yeast has been 
shown to function in endoplasmic reticulum-to-Golgi transport 

vps-35 F59G1.3 Ortholog of human Vps35 (VPS35, retromer complex component) 
 
Table S1: List of candidate genes targeted in the screen for PAR-3 localisation and actin 
organisation – related to Figure 3. These genes were selected based on their role in 
membrane traffic, cytoskeleton regulation or developmental phenotype. Except for rab-1, 
none of these depletions induced actin disorganisation or PAR-3 loss at L-L junctions at the 
2-fold stage. 
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