

Matrix metalloproteinase-dependent regulation of extracellular matrix shapes the structure of sexually differentiating mouse gonads

Rafal P. Piprek, Malgorzata Kloc, Jacek Z. Kubiak

▶ To cite this version:

Rafal P. Piprek, Malgorzata Kloc, Jacek Z. Kubiak. Matrix metalloproteinase-dependent regulation of extracellular matrix shapes the structure of sexually differentiating mouse gonads. Differentiation, 2019, 106, pp.23-34. 10.1016/j.diff.2019.01.006. hal-02118548

HAL Id: hal-02118548 https://univ-rennes.hal.science/hal-02118548v1

Submitted on 8 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 2 3	Matrix metalloproteinase-dependent regulation of extracellular matrix shapes the structure of sexually differentiating mouse gonads
4 5 6 7	Rafal P. Piprek ^{1*} , Malgorzata Kloc ^{2,3,4} , Jacek Z. Kubiak ^{5,6}
8	¹ Department of Comparative Anatomy, Institute of Zoology and Biomedical Research,
9	Jagiellonian University, Krakow, Poland
10	² The Houston Methodist Research Institute, Houston, TX, USA
11	³ Department of Surgery, The Houston Methodist Hospital, Houston TX, USA
12	⁴ University of Texas, MD Anderson Cancer Center, Houston TX, USA
13	⁵ Univ Rennes, CNRS, Institute of Genetics and Development of Rennes, UMR 6290, Cell
14	Cycle Group, Faculty of Medicine, F-35000 Rennes, France
15	⁶ Laboratory of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and
16	Epidemiology (WIHE), Warsaw, Poland
17	
18	
19	
20	Corresponding author:
21	Rafal P. Piprek
22	Department of Comparative Anatomy
23	Institute of Zoology and Biomedical Research
24	Jagiellonian University
25	Gronostajowa 9
26	30-387 Krakow, Poland
27	Phone: +48126645059
28	e-mail: rafal.piprek@uj.edu.pl
29	
30	
31	
32 33	
33 34	

Abstract	t
----------	---

35

38

40

41

42

43

44

45

47

48

49

50

51

52

53

54

36 The extracellular matrix (ECM) proteins play an important role in the establishment of 37 the sex-dependent structure of developing gonads. The matrix metalloproteinases (MMPs) are the major players in the regulation of ECM. Our hypothesis was that the MMPs-dependent 39 regulation of EMC is crucial for the establishment of the correct, either testis or ovary, structure of developing gonad. We cultured developing mouse gonads in vitro in the presence of the MMPs inhibitors (α-2-macroglobulin, leupeptin, phosphoramidon) or the MMPs activator, APMA (4-aminophenylmercuric acetate). These inhibitors and activator inhibit/activate, to a different degree, matrix metalloproteinases, but the exact mechanism of inhibition/activation remains unknown. We found that the MMP inhibitors increased accumulation of ECM in the developing gonads. The α-2-macroglobulin had the weakest, and 46 the phosphoramidon the strongest effect on the ECM and the structure of the gonads. The α -2macroglobulin caused a slight increase of ECM and did not disrupt the gonad structure. Leupeptin led to the strong accumulation of ECM, resulted in the formation of the structures resembling testis cords in both testes and ovaries, and caused increase of apoptosis and complete loss of germ cells. Phosphoramidon caused the strongest accumulation of ECM, which separated individual cells and completely prevented intercellular adhesion both in the testes and in the ovaries. As a result of abberrant morphology, the sex of the phosphoramidontreated gonads was morphologically unrecognizable. The APMA - the activator of MMP caused ECM loss, which led to the loss of cell adhesion, cell dispersion and an aberrant 55 morphology of the gonads. These results indicate that the ECM accumulation is MMPs-56 dependent and that the correct amount and distribution of ECM during gonad development 57 plays a key role in the formation of the gonad structure.

58

59

Highlights:

- Inhibition of MMPs in developing gonads leads to accumulation of ECM 60
- 61 Inhibition of MMPs causes decrease of testis-markers expression
- 62 Accumulation of ECM in developing gonads disrupts cell adhesion
- 63 Accumulation of ECM disrupts gonad structure formation
 - Activation of MMPs leads to dispersion of gonad cells

65 66

64

Key words: extracellular matrix; gonad differentiation; ovary; testis; metalloproteinases; α -2macroglobulin; leupeptin; phosphoramidon; APMA

68

1. Introduction

70	During sexual differentiation of the gonads, the bipotential gonads differentiate into the
71	testis or ovary. Although this processes has been well studied in mice, the molecular and
72	cellular machinery governing the development of testes and ovaries is very complex and still
73	requires further studies. Gonad primordia, termed genital ridges, appear in mice soon before
74	10.5 th day of embryonic life (E10.5) (Hu et al., 2013; reviewed by Piprek et al., 2016).
75	Between stage E10.5 and E12.5, the still undifferentiated gonads initiate the expression of
76	sex-determining genes (Bullejos and Koopman, 2001; Kobayashi et al., 2005). Depending on
77	the genetic sex, the male or female sex-determining pathway prevails and determines the
78	structure and fate of the gonad (Kim et al., 2006; Chassot et al., 2008; reviewed by Piprek,
79	2009a,b). The first differences in the structure between male and female gonads appear
80	around stage E12.5 (Schmahl et al., 2000; Nel-Themaat et al., 2009; reviewed by Piprek,
81	2010). A day later, i.e. at E13.5, the gonads are already sexually differentiated, and their sex
82	can be easily distinguished histologically (Nel-Themaat et al., 2009). In the differentiating
83	testes, the somatic cells derived from the coelomic epithelium proliferate leading to the
84	extensive growth of the male gonad (Schmahl et al., 2000). The presumptive Sertoli cells
85	enclose germ cells forming elongated testis cords surrounded by the basement membrane
86	(Svingen and Koopman, 2013). The cells migrating from the adjacent mesonephros give rise
87	to mainly the endothelial cells of the gonad vasculature (Brennan et al., 2002). The
88	subpopulation of the mesonephros-derived cells, and the cells derived from the coelomic
89	epithelium form the interstitium, which separate the testis cords, and thus, shape the testis
90	structure (Tilmann and Capel, 1999; DeFalco et al., 2011). The interstitium contains
91	steroidogenic fetal Leydig cells (FLCs) and abundant extracellular matrix (ECM). The
92	development of the ovary takes a different path. Although the germ cells in developing ovary
93	also become surrounded by the somatic cells (pre-follicular cells) (Albrecht and Eicher,
94	2001), the elongated cords do not develop. The ovigerous cords are built of many small and
95	irregularly shaped clusters of the somatic and germ cells, known as the germ cell nests,
96	embedded in the ovarian stroma (Lei and Spradling, 2013). Later in development, the
97	ovigerous cords split into ovarian follicles (Pepling and Spradling, 2001; Pepling et al., 2010).
98	It has been shown that in mouse, rat, cattle, chicken, slider (Trachemys scripta) and the
99	African clawed frog (Xenopus laevis) (Paranko et al., 1983; Yao et al., 2004; Hummitzsch et
100	al., 2013; Piprek et al., 2017a,2018) the ECM plays important role in gonad development. The
101	ECM contains many different proteins including collagens, laminins, fibronectin, and
102	proteoglycans (reviewed by Yue, 2014). The amount and distribution of ECM depends on two

103	processes: i.) synthesis of the ECM components and their deposition between cells, ii.)
104	degradation of the ECM components by the extracellular matrix enzymes (ECM enzymes).
105	Two main groups of ECM enzymes involved in the ECM formation/degradation are matrix
106	metalloproteinases (MMPs: MMP1 to MMP28) that digest ECM components, and inhibitors
107	of MMPs (TIMPs), which inhibit MMPs (Birkedal-Hansen, 1993; Stamenkovic, 2003; Arpino
108	et al., 2015). We hypothesize that a balance between the formation and degradation of ECM
109	components plays an important role in the regulation of the amount and distribution of ECM.
110	The knowledge on the role of the ECM in gonad development, especially during the
111	sexual differentiation, is very limited. We showed recently that in the mouse, between E11.5
112	and E13.5 (i.e. during the period of sexual differentiation) many genes encoding ECM
113	components and MMPs are expressed differentially in the male and female gonads (Piprek et
114	al. 2018). Considering the high number of ECM enzymes, the machinery of ECM remodeling
115	in developing gonads is probably very complex. Because the structure of the gonads is
116	different between sexes, the ECM has different distribution in the testes and ovaries;
117	presumably the sex-determining pathways (responsible for the gonad fate) also regulate the
118	sex-specific distribution of ECM. Indeed it has been shown that in the mouse, the TIMP3, an
119	enzyme inhibiting MMPs, is upregulated by male sex-determining pathway (Nishino et al.,
120	2002). Moreover, gonads develop in the close proximity of the mesonephros. Between these
121	two organs there is the vascular plexus. The vascular plexus disintegrates, and mesonephric
122	cells derived from the disintegrating vascular plexus contribute to the endothelium and
123	interstitium of the gonad, which is crucial for the patterning of testis cords (Coveney et al.,
124	2008). The ECM enzymes are probably involved in the disintegration of vascular plexus and
125	thus they facilitate the migration of the mesonephros-derived cells to the gonads. Several
126	studies showed the role of ECM enzymes in kidney development (Ota et al., 1998; Tanney et
127	al., 1998; Lelongt et al., 2005), however, a role of mesonephros in sexual differentiation of
128	gonads remains unknown. It is known that tubular system of mesonephros joins rete testis
129	later in development, however, molecular mechanisms driving this process are obscure
130	(Joseph et al., 2009; Davidson et al., 2018).
131	Because the ECM is differentially patterned in developing testes and ovaries, and the
132	genes encoding ECM components and enzymes responsible for ECM remodeling are
133	differentially expressed, we hypothesized that the ECM and its enzymes are important factors
134	controlling sexual differentiation of the gonads. The aim of this study was to explore how the
135	structure of differentiating mouse testes and ovaries changes upon inhibition or activation of
136	ECM regulating enzymes. Fetal gonads isolated at E11.5, i.e. just before the onset of sexual

137	differentiation, were cultured in a medium supplemented with the inhibitors of MMPs (α -2-
138	macroglobulin, leupeptin, or phosphoramidon) or with the activator (APMA, 4-
139	aminophenylmercuric acetate) (Table 1). The gonads were analyzed after 3 days in culture
140	using histological techniques, immunohistochemistry and gene expression analysis.
141	
142	2. Material and methods
143	2.1. Animals and genotyping
144	The gonads were isolated from the C57bl/6 mouse strain. The study was approved by
145	the I Local Commission for Ethics in Experiments on Animals. The animals were bred and
146	housed in the Animal Facility at the Jagiellonian University (Krakow, Poland). The number of
147	studied animals is presented in Table 1. Timed matings were performed by placing a male
148	with 2 females overnight. The following morning, females were checked for the presence of
149	the vaginal plug, and the pregnancies were estimated as E0.5 (embryonic day). Females were
150	euthanized by spinal dislocation at 11.5. The sex of all studied animals was confirmed by
151	genotyping using primers for Sly (Y chromosome) and Xlr (X chromosome) (McFarlane et al.,
152	2013). Primers used for genotyping are listed in Suppl. Table 1. PCR reactions were
153	performed in a final volume of 10 μ l with primers (0.5 μ L each), extracted DNA (1 μ L), water
154	(3.5 μ L), and 2X PPP Master Mix (Top-Bio) (5 μ L) and the following PCR parameters: initial
155	denaturation at 94°C for 2 min, 35 cycles at 94°C for 30 s, 57°C for 30 s, and 72°C for 30 s,
156	followed by final elongation at 72°C for 5 min. PCR products were electrophoresed on 2%
157	agarose gels containing GelRed (Biotium) and visualized under UV-illumination.
158	
159	2.2. In vitro culture
160	Gonads were dissected from embryos at E11.5 along with mesonephroi and cultured
161	on agar in DMEM high glucose GlutaMAX (ThermoFisher, 10566) medium supplemented
162	with 10% fetal bovine serum (FBS, Biomedical Industries, 04-001) and a mixture of
163	antibiotics (penicillin 100 U/ml, streptomycin 100 μg/ml, amphotericin B 0.25 μg/ml,
164	Biomedical Industries, 03-033). For MMP inhibition, α -2-macroglobulin, leupeptin,
165	phosphoramidon were added to the medium at concentration listed in Table 2. To activate
166	MMPs, an activator (APMA, 4-aminophenylmercuric acetate) was added to the medium
167	(Table 2). Inhibitors and the activator were dissolved in DMSO (Sigma, D2650) and added in
168	amount of 1 $\mu l/ml$ of the medium. Only DMSO (1 $\mu l/ml)$ was added to the medium in the
169	control. Organs were cultured at the air/medium interface for 3 days at 37°C in 5% CO ₂ .
170	

1/1	2.3. MMPs modulators
172	α -2-macroglobulin is an endogenous large plasma protein, synthesized mainly in the
173	liver (Rehman et al., 2013). It has a broad spectrum of action in an organism, including
174	modulation of growth factors activities, regulation of blood coagulation, and functions in
175	developmental process, such as the development of liver in zebrafish (Westwood et al., 2001;
176	Hong and Dawid, 2008). Leupeptin (N-acetyl-L-leucyl-L-leucyl-L-argininal) is a protease
177	inhibitor produced by actinomycetes. It also has a broad spectrum of action, and inhibits
178	numerous enzymes, such as MMPs, serine and threonine proteases, calpain, cathepsin,
179	trypsin, plasmin, papain (Kuramochi et al., 1979). Phosphoramidon derives from the
180	bacterium Streptomyces tanashiensis isolated from the soil in Japan (Kitagishi and Hiromi
181	1984). It inhibits MMPs and bacterial thermolysin, and regulates endothelins that have a key
182	role in vascular homeostasis (Plumpton et al., 1994; McMahon et al., 1991; Keller et al.,
183	1996). APMA (4-aminophenylmercuric acetate) is an organomercurial compound and thiol-
184	blocking reagent, which activates MMPs and collagenase proteolytic enzymes (Rosenfeldt et
185	al., 2005).
186	
187	2.4. Gelatin zymography
188	Activity of MMPs was studied as previously described (Hibbs et al., 1985). After 3
189	days of in vitro culture, gonads were lysed for 30 min. at 4°C with 20µl of 1% NP-40 and
190	5mM EDTA. Lysates were mixed with Zymogram sample buffer (ZymoResearch) with 2%
191	SDS and 10% glycerol and subjected to electrophoresis on a 10% SDS-polyacrylamid gel
192	containing 1mg/mL gelatin (Sigma) in the absence of any reducing agent, at room
193	temperature. The gel was washed 4x in the washing buffer (50 mM Tris-HCl, 5 mM CaCl ₂ , 5
194	μM ZnCl ₂ , 0.02% NaN ₃ and 2.5% Triton X-100). The gel was stained with Coomassie
195	Brilliant blue R-250, washed in Coomassie washing solution, dried, and documented.
196	
197	2.5. RNA isolation and Real-Time Quantitative PCR (qPCR)
198	After 3 days of culture the gonads were pooled accordingly to the genetic sex. Total
199	RNA was isolated using Trizol and further purified with RNeasy Mini kit per manufacturer's
200	instructions (Qiagen, Valencia, CA). Total RNA in RNase-free water was frozen at -80° C and
201	then used for multigene qPCR analysis. 50 ng RNA of each sample was reverse-transcribed
202	into cDNA using random primers and SuperScript III Reverse Transcriptase (Invitrogen,
203	18080044) following manufacturer's instructions. A list of primers is presented in Suppl.
204	Table 1. The RT-qPCR procedure was performed in 5ul reactions using SYBR Green Master

205	Mix (Life Technologies, 4312704) on a 7500 Fast Real-Time PCR System (Applied
206	Biosystems) with universal cycling parameters and analyzed as previously described (Svingen
207	et al., 2009). Data were collected as raw $C_{\scriptscriptstyle T}$ values and analyzed using the $2^{\scriptscriptstyle -\Delta\DeltaCT}$ method.
208	Beta-actin (Actb) was used as a reference gene. Gene expression was normalized on an
209	arbitrary scale with Actb as 1.0. Statistical analysis was performed using the nonparametric
210	ANOVA Kruskal-Wallis test followed by the Tukey's test. Statistica 7.0 software was used
211	for the analyses.
212	
213	2.6. Histology and Immunohistochemistry
214	Freshly isolated gonads and gonad after 3 days of in vitro culture, were rinsed in PBS
215	and fixed in Bouin's solution, dehydrated and embedded in paraffin (Paraplast, Sigma,
216	P3683). Histological staining was performed according to Debreuill's trichromatic method as
217	previously described (Kiernan, 1990; Piprek et al., 2017b). For immunochemistry, heat-
218	induced epitope retrieval was conducted in sodium citrate buffer (10 mM sodium citrate,
219	0.05% Tween-20, pH 6) at 95°C for 20 minutes. Subsequently, the sections were blocked with
220	$3\%\ H_2O_2$ and 10% goat serum (Sigma, G9023). Sections were incubated with primary
221	antibodies (all rabbit polyclonal: anti-AMH, Santa Cruz Biotechnology, sc-166752; anti-
222	collagen I, Abcam, ab34710; anti-laminin, Abcam, ab11575; anti-cleaved caspase 3, Assay
223	BioTech, L0104) at 4°C overnight, and with UltraVision Quanto Detection System (TL-125-
224	QHD). Mayer's hematoxylin was used as a counterstain. Sections were examined under
225	Nikon Eclipse E600 microscope. The germ cells and somatic cells were identified by the size
226	and morphological features. The germ cells were larger than the somatic cells, and had a
227	large, round and pale nuclei. The somatic cells were smaller than the germ cells and had small
228	and dark nuclei. The apoptotic cells were identified by the presence of small, dark, pyknotic
229	nuclei with a highly condensed chromatin, and by caspase 3 immunostaining.
230	
231	2.7. Quantification of apoptotic cells
232	The number of (caspase 3-positive) apoptotic cells was calculated within the 10,000
233	μm^2 area in 5 cross sections from each gonad using ImageJ software. The number of
234	apoptotic cells in gonads cultured in medium supplemented with MMP inhibitors and
235	activator was compared to the control using χ^2 test. Statistical data were analyzed using
236	Statistica 6 PL Software (Krakow, Poland).
237	

238	3. Results and discussion
239	3.1. Activity of MMPs in the gonads after incubation in the presence of inhibitors and
240	activator
241	Zymography analyses showed that α -2-macroglobulin, leupeptin and phosphoramidon
242	inhibited MMP2, MMP3 and MMP9 in the gonads after 3 days of in vitro culture (Fig. 1).
243	Phosphoramidon inhibited MMP2, MMP3 and MMP9 to the higher degree than a α -2-
244	macroglobulin and leupeptin did. As expected, APMA activated MMP2, MMP3 and MMP9
245	(Fig. 1). The results of these experiments are summarized in Table 3.
246	
247	3.2. Development of gonads under control in vitro conditions
248	The histology of the freshly isolated XY and XX gonads, before the start of the in
249	vitro culture, was identical (Fig. 2A,C).
250	3.2.1. XY gonads
251	After three days of in vitro culture the XY gonads contained cell clusters (Fig. 3A).
252	These clusters, which are the early testis cords, contained the germ cells with large, round
253	nuclei, surrounded by AMH (anti-müllerian hormone) positive pre-Sertoli cells with the small
254	nuclei (Fig. 3C). The clusters of pre-Sertoli/germ cells were enclosed by the basement
255	membrane. The space (interstitium) between the cords was filled with the thin layers of ECM
256	(Fig. 3E). Immunostaining showed that this interstitial ECM contained collagen I and laminin
257	(Fig. 3E,G). Only singular apoptotic cells were present (Fig. 3I). The overall structure of the
258	testis was similar to the structure of physiologically developing testes of the same age (Fig.
259	2B).
260	3.2.2. XX gonads
261	The XX gonad after 3 days of in vitro culture had poorly defined clusters of somatic
262	and germ cells (Fig. 5A), which were separated by a small amount of ECM containing
263	collagen I and laminin (Fig. 5C,E). Only singular apoptotic cells were present (Fig. 5G). The
264	overall structure of the ovary was similar to the physiologically developing ovaries of the
265	same age (Fig. 2D).
266	
267	3.3. The effect of α -2-macroglobulin inhibitor on ECM and gonad structure
268	3.3.1. XY gonads
269	The structure of XY gonads cultured for 3 days in the medium supplemented with α -2-
270	macroglobulin, which inhibits MMPs, was similar to the control gonad cultured in the absence
271	of inhibitor. Both contained well defined testis cords containing germ and somatic cells (Fig.

272	3B). The only noticeable difference was the higher amount of ECM around the cords and the
273	stronger collagen I and laminin immunostaining in the gonad cultured in the presence of
274	inhibitor (Fig. 3F,H). This indicates that α -2-macroglobulin, which inhibits MMPs, inhibited
275	disintegration of ECM. The AMH immunostaining showed the presence of solid, well
276	differentiated clusters of pre-Sertoli cells in the testis cords both in control and in cultured
277	gonads (Fig. 3D). Singular apoptotic (caspase 3-positive) cells were observed, indicating cell
278	death (Fig. 3J, Table 4).
279	3.3.2. XX gonads
280	The overall structure of the XX gonads after three days of culture in the medium
281	supplemented with α -2-macroglobulin was similar to the control. However, in the inhibitor
282	treated gonads, the amount of ECM was higher (Fig. 5B). The streams of ECM separated
283	clusters of somatic/germ cells (Fig. 5D,F).
284	These results indicate that the <i>in vitro</i> exposure of gonads to the α -2-macroglobulin
285	inhibitor causes only moderate increase of ECM and does not affect the structure of
286	developing XX or XY gonads.
287	
288	3.4. Leupeptin increases ECM content and changes gonad structure
289	3.4.1. XY gonads
290	Our zymography analysis showed that leupeptin had a stronger inhibitory effect on
291	MMPs than α -2-macroglobulin (Fig. 1). Accordingly, we found that the gonad cultured in the
292	medium supplemented with leupeptin had higher content of ECM than the gonads cultured
293	with α -2-macroglobulin (Fig. 4A). After three days of culture in the medium supplemented
294	with leupeptin, XY gonads contained strong accumulations of ECM components, i.e. collagen
295	I and laminin (Fig. 4E,G). AMH immunostaining showed that the integrity of testis cords was
296	compromised; the clusters of AMH-positive cells were much looser than in control (Fig. 4C).
297	Such testis cords were surrounded by a high accumulation of ECM. The germ cells were
298	absent, indicating that leupeptin led to the loss of germ cells. Occasionally apoptotic cells
299	were observed, indicating enhanced cell death (Fig. 4I, Table 4).
300	3.4.2. XX gonads
301	The XX gonads cultured in the medium with leupeptin, similar to the XY gonads, had
302	higher content of ECM (Fig. 6A,C,E) and lacked the germ cells.
303	
304	3.5. The phosphoramidon causes very high accumulation of ECM and changes the structure
305	of XY and XX gonads

306	The structure of the gonads cultured for three days in the medium supplemented with
307	phosphoramidon had a very high accumulation of ECM components collagen I and laminin
308	(Fig. 4B,D,F,H, 6B,D,F). The ECM was so abundant that it separated all cells preventing
309	intercellular adhesion. As a result, the clusters of cells, such as testis cords, were absent, and
310	AMH-positive cells were dispersed (Fig. 4D). The germ cells were absent and the apoptotic
311	cells were present and in XX and XY gonads (Fig. 4B,I, 6B,H). Among all used MMPs
312	inhibitors, the number of apoptotic cells in the phosphoramidon supplemented medium was
313	the highest (Table 4). Because of theprofound changes in the gonad structure, the gonad sex
314	was morphologically unrecognizable. The XY and XX had the same structure with the
315	dispersed cells embedded in ECM. This indicated that phosphoramidon had very strong
316	inhibitory effect on MMPs, which resulted in excessive accumulation of ECM. This in turn
317	caused complete disruption of the gonad structure and the loss of the germ cells.
318	It has been shown that the proper cell adhesion is important for the germ cell survival
319	in mouse gonads (Nagano et al., 2000; Luaces et al., 2014). This explains why the excessive
320	accumulation of ECM around the cells, which prevents cell adhesion caused germ cell loss in
321	the gonads cultured in the presence of MMPs inhibitors.
322	Although, the phosphoramidon was described previously as a weak MMP inhibitor
323	(Kitagishi and Hiromi, 1984; Matsumura et al., 1990), in our experimental system
324	phosphoramidon had the strongest inhibitory effect on MMPs in developing gonads. The
325	strong correlation between the zymography-measured anti-MMP activity of used inhibitors,
326	ECM content, and the changes in the gonads structure, described here, argues for the
327	important role of MMPs and ECM in the process of gonad development and germ cell
328	survival, and thus for the future fecundity of the individual.
329	Mazaud and coauthors (2005) showed that the rat ovaries cultured in vitro in the
330	presence of α -2-macroglobulin or phosphoramidon had only sporadic ovarian follicles, which
331	indicated a partial inhibition of folliculogenesis. However, a culture of ovaries with leupeptin
332	led to a complete absence of ovarian follicles (ibid). In our experimental system the leupeptin
333	had much lower impact on gonad development than the phosphoramidon. This points to the
334	profound differences between the processes of sexual differentiation of gonads and the
335	folliculogenesis.
336	
337	3.6. MMPs activator APMA decreases ECM content and disrupts structure of XY and XX
338	gonads

The structure of the gonads after three days of culture in the medium supplemented
with APMA was drastically altered (Fig. 7A-C). XY and XX gonads were morphologically
undistinguishable. All somatic cells were widely dispersed within the gonad, did not adhere
one to another, and only very low amount of ECM was present, and the germ cells were either
absent or morphologically unrecognizable.

3.7. Modifications of gene expression pattern by MMPs modulators

To identify molecular effects of the MMPs modulators, we studied the expression of marker gene for the female germ cells (*Oct4*), testis specific Sertoli cells (*Sox9*, *Amh*), ovary specific follicular cells (*Fst*) The actin β encoding gene (*Actb*), was used as a control (Fig. 8). Inhibitors of MMPs caused a significant decrease of *Oct4* expression in both XY and XX gonads. The APMA activator of MMPs, caused a slight increase in *Oct4* expression (Fig. 8). A decrease of *Oct4* expression likely reflected the observed germ cell loss.

The Sertoli cell marker *Sox9* had decreased expression in XY gonads cultured with MMP inhibitors. *Sox9* expression was almost completely lost in the gonads treated with MMP activator APMA (Fig. 8). The expression of *Amh*, another Sertoli cells marker, was slightly lower in XY gonads cultured with MMPs inhibitors, and was almost completely lost in gonads treated with MMP activator. These results indicate that disregulation (increase or decrease) of the amount) of ECM content disrupts differentiation of Sertoli cells. This, in turn, implies that a proper content and distribution of ECM may be critical for the expression of genes directing sex determination and differentiation of Sertoli cells.

Fst, a marker of the developing ovary, remained unchanged (low in XY gonads and elevated in XX gonads) in the presence of MMP inhibitors and slightly downregulated in the presence of MMP activator (Fig. 8). This indicates that the expression of ovarian markers is not affected by the changes in ECM. It is possible that the changes in ECM and cell adhesion are less important for ovarian than testis development.

The gene expression analysis showed that MMP inhibition or activation did not impaired sex determination in the gonads; the ovarian marker (*Fst*) was not upregulated in the XY gonads, and Sertoli cells markers (*Sox9*, *Amh*) were not upregulated in the XX gonads (Fig. 8). Thus, no sex reversal was detected. Importantly, the *Actb* gene (used as a control) was expressed at the constant level in all analyzed gonads, which indicated that the observed changes in the expression of markers were not caused by the *in vitro* culturing conditions.

372	4. Conclusion
373	We showed that the modulators, both the inhibitors and the activator, of MMPs trigger
374	important changes in the structure of sexually differentiating developing mouse gonads (Table
375	3). 1. MMPs inhibitors causes accumulation of ECM, which drives cells dispersion and
376	disappearance of testis cords. 2. MMPs activator APMA causes ECM loss and a complete
377	disruption of the gonad structure. Thus, both the excessive accumulation of ECM and its
378	decrease or loss leads to a dramatic impairment of the tissue architecture in developing
379	gonads. In addition, leupeptin and phosphoramidon led to the enhanced apoptosis and the loss
380	of germ cells, and thus lowered expression of germ cell marker <i>Oct4</i> . APMA decreased the
381	expression level of Sertoli cell markers <i>Sox9</i> , <i>Amh</i> , which indicated disruption of Sertoli cell
382	integrity. Thus, we postulate that the ECM amount, which depends on a balanced synthesis
383	and degradation of its components, is critical for the establishment of the proper structure of
384	the gonads, and that MMPs play a crucial role in this process.
	the gollads, that that 171711 is play a crucial role in this process.
385	
386	Acknowledgments
387	The study was conducted within the project financed by the Polish National Science Centre
388	(NCN) assigned on the basis of the decision number DEC-2013/11/D/NZ3/00184.
389	
390	References
391 392 393	Albrecht, K.H., Eicher, E.M. 2001. Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev. Biol. 240, 92–107.
394 395 396	Arpino, V., Brock, M., Gill, S.E., 2015. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 44-46, 247–254.
397 398 399	Birkedal-Hansen, H., 1993. Role of matrix metalloproteinases in human periodontal diseases. J. Periodontol. 64, 474–484.
400 401 402	Brennan, J., Karl, J., Capel, B., 2002. Divergent vascular mechanisms downstream of Sry establish the arterial system in the XY gonad. Dev. Biol. 244, 418–428.
403 404 405	Bullejos, M., Koopman P., 2001. Spatially dynamic expression of Sry in mouse genital ridges. Dev. Dyn. 221, 201–205.
406 407	Cawston, T.E., Mercer, E., 1986. Preferential binding of collagenase to alpha 2-macroglobulin in the presence of the tissue inhibitor of metalloproteinases. FEBS Lett. 209, 9–12.
408 409	Chassot A.A., Ranc F., Gregoire E.P., Roepers-Gajadien H.L., Taketo M.M., Camerino G., de

Rooij D.G., Schedl A., Chaboissier M.C., 2008. Activation of beta-catenin signaling by

Rspo1 controls differentiation of the mammalian ovary. Hum. Mol. Genet. 17, 1264–77.

410

	_	_
- 1	1	′)
4		Δ

- 413 Coveney, D., Cool, J., Oliver, T., Capel, B., 2008. Four-dimensional analysis of
- vascularization during primary development of an organ, the gonad. Proc. Natl. Acad. Sci. U.
- 415 S. A. 105, 7212–7217.

416

- Davidson, A.J., Lewis, P., Przepiorski, A., Sander, V., 2018. Turning mesoderm into kidney.
- 418 Semin. Cell Dev. Biol. S1084-9521, 30417-2.

419 420

DeFalco, T., Takahashi, S., Capel, B., 2011. Two distinct origins for Leydig cell progenitors in the fetal testis. Dev. Biol. 352, 14–26.

423

- 424 Galazka, G., Windsor, L.J., Birkedal-Hansen, H., Engler, J.A., 1996. APMA (4-
- aminophenylmercuric acetate) activation of stromelysin-1 involves protein interactions in
- addition to those with cysteine-75 in the propertide. Biochemistry 35, 11221–7.

427

- 428 Hibbs, M.S., Hasty, K.A., Seyer, J.M., Kang, A.H., Mainardi, C.L., 1985. Biochemical and
- immunological characterization of the secreted forms of human neutrophil gelatinase. J. Biol.
- 430 Chem. 260, 2493–500.

431

- Hong, S.K., Dawid, I.B., 2008. Alpha2 macroglobulin-like is essential for liver development
- 433 in zebrafish. PLoS One 3(11), e3736.

434

- Hu, Y.C., Okumura, L.M., Page, D. C., 2013. Gata4 is required for formation of the genital
- ridge in mice. PLoS Genet 9, e1003629.

437

- Hummitzsch, K., Irving-Rodgers, H.F., Hatzirodos, N., et al., 2013. A new model of
- development of the mammalian ovary and follicles. PLoS One 8(2), e55578.

440

- Joseph, A., Yao, H., Hinton, B.T., 2009. Development and morphogenesis of the
- Wolffian/epididymal duct, more twists and turns. Dev. Biol. 325, 6–14.

443

- Keller, P.M., Lee, C.P., Fenwick, A.E., Atkinson, S.T., Elliott, J.D., DeWolf, W.E. Jr., 1996.
- Endothelin-converting enzyme: substrate specificity and inhibition by novel analogs of
- phosphoramidon. Biochem. Biophys. Res. Commun. 223, 372–8.

447

- Kiernan, J.A., 1990. Histological and Histochemical Methods: Theory and Practice. 2nd ed.
- 449 Oxford, New York, Seoul, Tokyo: Pergamon Press.

450

- 451 Kim Y., Kobayashi A., Sekido R., DiNapoli L., Brennan J., Chaboissier M.C., Poulat F.,
- Behringer R.R., Lovell-Badge R., Capel B., 2006. Fgf9 and Wnt4 act as antagonistic signals
- 453 to regulate mammalian sex determination. PLoS Biol. 4(6), e187.

454

- Kitagishi, K., Hiromi, K., 1984. Binding between thermolysin and its specific inhibitor,
- 456 phosphoramidon. J. Biochem. 95, 529–34.

457

- Kobayashi A., Chang H., Chaboissier M.C., Schedl A., Behringer R.R., 2005. Sox9 in testis
- determination. Ann. N. Y. Acad. Sci. 1061, 9–17.

- Kuramochi, H., Nakata, H., Ishii, S., 1979. Mechanism of association of a specific aldehyde
- inhibitor, leupeptin, with bovine trypsin. J. Biochem. 86, 1403–10.

463

- Lei L., Spradling, A.C., 2013. Mouse primordial germ cells produce cysts that partially
- fragment prior to meiosis. Development 140, 2075–2081.

466

- Lelongt, B., Bengatta, S., Ronco, P., 2005. Role of matrix metalloproteinase-9 (MMP-9) in
- kidney development and injury. Kidney Int. 68, 1963-1964.

469

- 470 Luaces, J.P., Rossi, L.F., Sciurano, R.B., Rebuzzini, P., Merico, V., Zuccotti, M., Merani, M.
- 471 S., Garagna, S., 2014. Loss of Sertoli-germ cell adhesion determines the rapid germ cell
- elimination during the seasonal regression of the seminiferous epithelium of the large hairy
- armadillo Chaetophractus villosus. Biol. Reprod. 90, 1–11.

474

- 475 Matsumura, Y., Hisaki, K., Takaoka, M., Morimoto, S., 1990. Phosphoramidon, a
- 476 metalloproteinase inhibitor, suppresses the hypertensive effect of big endothelin-1. Eur. J.
- 477 Pharmacol. 185, 103–6.

478

- 479 Mazaud, S., Guyot, R., Guigon, C.J., Coudouel, N., Le Magueresse-Battistoni, B., Magre, S.,
- 480 2005. Basal membrane remodeling during follicle histogenesis in the rat ovary: contribution
- of proteinases of the MMP and PA families. Dev. Biol. 277, 403–16.

482

- 483 McFarlane, L., Truong, V., Palmer, J.S., Wilhelm, D., 2013. Novel PCR assay for
- determining the genetic sex of mice. Sex. Dev. 7, 207–211.

485

- 486 McMahon, E.G., Palomo, M.A., Moore, W.M., 1991. Phosphoramidon blocks the pressor
- activity of big endothelin[1-39] and lowers blood pressure in spontaneously hypertensive rats.
- 488 J. Cardiovasc. Pharmacol. 7, S29–33.

489

- 490 Nagano, R., Tabata, S., Nakanishi, Y., Ohsako, S., Kurohmaru, M., Hayashi, Y., 2000.
- 491 Reproliferation and relocation of mouse male germ cells (gonocytes) during
- 492 prespermatogenesis. Anat. Rec. 258, 210–220.

493

- Nel-Themaat L., Vadakkan T.J., Wang Y., Dickinson M.E., Akiyama H., Behringer R.R.,
- 495 2009. Morphometric analysis of testis cord formation in Sox9-EGFP mice. Dev. Dyn. 238,
- 496 1100–10.

497

- Nishino, K., Yamanouchi, K., Naito, K., Tojo, H., 2002. Matrix metalloproteinases regulate
- 499 mesonephric cell migration in developing XY gonads which correlates with the inhibition of
- tissue inhibitor of metalloproteinase-3 by Sry. Dev. Growth. Differ. 44, 35–43.

501

- 502 Ota, K., Stetler-Stevenson, W.G., Yang, Q., Kumar, A., Wada, J., Kashihara, N., Wallner,
- 503 E.I., Kanwar, Y.S., 1998. Cloning of murine membrane-type-1-matrix metalloproteinase
- 504 (MT-1-MMP) and its metanephric developmental regulation with respect to MMP-2 and its
- 505 inhibitor. Kidney Int. 54, 131–142.

506

- Paranko, J., Pelliniemi, L.J., Vaheri, A., Foidart, J.M., Lakkala-Paranko, T., 1983.
- Morphogenesis and fibronectin in sexual differentiation of rat embryonic gonads.
- 509 Differentiation 23 Suppl, S72–81.

- Pepling, M.E., Spradling, A.C., 2001. Mouse ovarian germ cell cysts undergo programmed
- 512 breakdown to form primordial follicles. Dev. Biol. 234, 339–351.

513

- Pepling, M.E., Sundman, E.A., Patterson, N.L., Gephardt, G.W., Medico, L., Wilson, K.I.,
- 515 2010. Differences in oocyte development and estradiol sensitivity among mouse strains.
- 516 Reprod. Camb. Engl. 139, 349–357.

517

- 518 Piprek, R.P., 2009a. Genetic mechanisms underlying male sex determination in mammals. J.
- 519 Appl. Genet. 50, 347–360.

520

- 521 Piprek, R.P., 2009b. Molecular mechanisms underlying female sex determination—
- antagonism between female and male pathway. Folia Biol. (Krakow) 57, 105–113.

523

- 524 Piprek, R.P., 2010. Molecular machinery of gonadal differentiation in mammals. Int. J. Dev.
- 525 Biol. 54, 779–786.

526

- 527 Piprek, R.P., Kloc, M., Kubiak, J.Z., 2016. Early Development of the Gonads: Origin and
- 528 Differentiation of the Somatic Cells of the Genital Ridges. Results Probl. Cell Differ. 58, 1–
- 529 22

530

- Piprek, R.P., Kloc, M., Tassan, J.P., Kubiak, J.Z., 2017b. Development of Xenopus laevis
- bipotential gonads into testis or ovary is driven by sex-specific cell-cell interactions,
- proliferation rate, cell migration and deposition of extracellular matrix. Dev. Biol. 432, 298–
- 534 310.

535

- Piprek, R.P., Kolasa, M., Podkowa, D., Kloc, M., Kubiak, J.Z., 2017a. Cell adhesion
- molecules expression pattern indicates that somatic cells arbitrate gonadal sex of
- differentiating bipotential fetal mouse gonad. Mech. Dev. 147, 17–27.

539

- Piprek, R.P., Kolasa, M., Podkowa, D., Kloc, M., Kubiak, J.Z., 2018. Transcriptional
- 541 profiling validates involvement of extracellular matrix and proteinases genes in mouse gonad
- 542 development. Mech. Dev. 149, 9–19.

543

- Plumpton, C., Kalinka, S., Martin, R.C., Horton, J.K., Davenport, A.P., 1994. Effects of
- phosphoramidon and pepstatin A on the secretion of endothelin-1 and big endothelin-1 by
- 546 human umbilical vein endothelial cells: measurement by two-site enzyme-linked
- immunosorbent assays. Clin. Sci. (Lond) 87, 245–51.

548

- Rehman, A.A., Ahsan, H., Khan, F.H., 2013. α-2-Macroglobulin: a physiological guardian. J.
- 550 Cell. Physiol. 228, 1665–75.

551

- Rosenfeldt, M.T., Valentino, M., Labruzzo, S., Scudder, L., Pavlaki, M., Cao, J., Vacirca,
- J., Bahou, W.F., Zucker, S., 2005. The organomercurial 4-aminophenylmercuric acetate,
- independent of matrix metalloproteinases, induces dose-dependent activation/inhibition of
- platelet aggregation. Thromb. Haemost. 93, 326–30.

556

- 557 Schmahl, J., Eicher, E.M., Washburn, L.L., Capel, B., 2000. Sry induces cell proliferation in
- the mouse gonad. Development 127, 65–73.

560 561 562	Stamenkovic, I., 2003. Extracellular matrix remodelling: the role of matrix metalloproteinases. J. Pathol. 200, 448–64.
563 564 565	Svingen, T., Koopman, P., 2013. Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes Dev. 27, 2409–2426.
566 567 568	Tanney, D.C., Feng, L., Pollock, A.S., Lovett, D.H., 1998. Regulated expression of matrix metalloproteinases and TIMP in nephrogenesis. Dev. Dyn. 213, 121–129.
569 570 571	Tilmann, C., Capel, B., 1999. Mesonephric cell migration induces testis cord formation and Sertoli cell differentiation in the mammalian gonad. Development 126, 2883-90.
572 573 574 575	Westwood, M., Aplin, J.D., Collinge, I.A., Gill, A., White, A., Gibson, J.M., 2001. alpha 2-Macroglobulin: a new component in the insulin-like growth factor/insulin-like growth factor binding protein-1 axis. J. Biol. Chem. 276, 41668-74.
576 577 578	Yao, H.H., DiNapoli, L., Capel, B., 2004. Cellular mechanisms of sex determination in the red-eared slider turtle, Trachemys scripta. Mech. Dev. 121, 1393–1401.
579 580	Yue, B., 2014. Biology of the extracellular matrix: an overview. J. Glaucoma. 23, S20–3.
581	
582	
583	
584	
585	
586	
587	
588	
589	
590	
591	
592	
593	
594	
595	
596	
597	
598	
599	

600	Figure legends
601	Fig. 1. Gelatin zymography of developing XY and XX mouse gonads cultured in vitro for
602	3 days. Zymography shows that phosphoramidon inhibits matrix-metalloproteinase 2, 3 and
603	9, (MMP2, MMP3, and MMP9) to a higher degree than α-2-macroglobulin and leupeptin, and
604	that APMA (4-aminophenylmercuric acetate) activates these three MMPs.
605	
606	Fig. 2. Development of mouse XY and XX gonads in vivo at E11.5 and E13.5. A. XY
607	undifferentiated gonad structure at E11.5. The somatic (arrows) and germ cells (arrowheads)
608	are evenly distributed within the gonad. B. Testis at E13.5 developed in vivo. The testis cords
609	(encircled) are present, the interstitium (i) is located between the testis cords, and the germ
610	cells (arrowhead) are located within the cords. C. XX undifferentiated gonad at E11.5. The
611	somatic (arrows) and germ cells (arrowheads) are evenly distributed within the gonad. D .
612	Ovary at E13.5 developed in vivo. The ovigerous cords are small, irregular and not well
613	differentiated. Scale bar is equal to 25 μm.
614	
615	Fig. 3. Effect of 3-day in vitro culture of XY gonads in the control and in the presence of
616	α-2-macroglobulin. A. Control XY gonad after 3-day in vitro culture in the absence of MMP
617	inhibitors. The basement membranes (arrow) and the blue-stained ECM surrounding the
618	testis cords (encircled) are visible. The germ cells (arrowhead) are present in the testis cords.
619	B . XY gonad after 3-day <i>in vitro</i> culture in the presence of α -2-macroglobulin. The amount
620	of blue-stained ECM is slightly higher than in the control; the testis cords (encircled) and the
621	germ cells (arrowheads) are present. The apoptotic cells are marked by the asterisks. C,D.
622	Immunostaining of AMH (anti-müllerian hormone – a marker of Sertoli cells). The strongest
623	signal is visible in the control gonads. E,F. Immunostaining of collagen I. There is an increase
624	in collagen I accumulation between cells in gonads treated with α -2-macroglobulin. \mathbf{G},\mathbf{H} .
625	Immunostaining of laminin. There is an increase of signal in gonads treated with α -2-
626	macroglobulin. I,J. Immunostaining of caspase 3 (apoptosis marker). Only singular apoptotic
627	cells are present. Scale bar is equal to 25 μm.
628	
629	Fig. 4. Effect of 3-day in vitro culture of XY gonads in the presence of leupeptin and
630	phosphoramidon. A. XY gonad after 3-day in vitro culture in the presence of leupeptin.
631	There is high amount of ECM, the germ cells are absent. The testis cords (encircled) are small
632	and sterile. Occasionally, the apoptotic cells (asterisk) are visible. B . XY gonad after 3-day in
633	vitro culture with phosphoramidon. The is very high amount of ECM and the germ cells are

634	absent. Because of the high amount of ECM all cells are dispersed and the testis cords do not		
635	form. The apoptotic cells (asterisk) are present. C,D . Immunostaining of AMH. In the gonads		
636	treated with MMP inhibitors, the stronger the inhibitor the weaker the AMH signal. E , F .		
637	Immunostaining of collagen I. The gonads cultured in the presence of phosphoramidon had		
638	the strongest collagen I signal. G,H . Immunostaining of laminin. The strongest signal is in the		
639	gonads cultured in the presence of phosphoramidon. I,J. Immunostaining of caspase 3		
640	(apoptosis marker). The most numerous apoptotic cells are present in the gonads cultured in		
641	the presence of phosphoramidon. Scale bar is equal to 25 μm.		
642			
643	Fig. 5. Effect of 3-day in vitro culture of XX gonads in the control and in the presence of		
644	α-2-macroglobulin. A . Control XX gonad after-3 day <i>in vitro</i> culture in the absence of MMP		
645	inhibitors. The somatic and germ cells (arrowhead) are dispersed; blue-stained ECM is		
646	present between groups of cells. B . XX gonad after 3-day in vitro culture in the presence of α -		
647	2-macroglobulin. The amount of blue-stained ECM is slightly higher than in the control.		
648	Occasionally, the apoptotic cells (asterisk) are present. C,D . Immunostaining of collagen I .		
649	There is increase in collagen I content between the cells in gonads treated with α -2-		
650	macroglobulin. E,F . Immunostaining of laminin . There is increase in laminin content in the		
651	gonads treated with α -2-macroglobulin. G,H . Immunostaining of caspase 3 (apoptosis		
652	marker). Only singular apoptotic cells are present. Scale bar is equal to 25 μm .		
653			
654	Fig. 6. Effect of 3-day in vitro culture of XX gonads in the presence of leupeptin and		
655	phosphoramidon. A. XX gonad after 3-day in vitro culture in the presence of leupeptin. The		
656	amount of ECM is higher; the germ cells are absent; occasionally, the apoptotic cells		
657	(asterisk) are visible. B. XX gonad after 3day in vitro culture in the presence of		
658	phosphoramidon. There is very high amount of ECM. The germ cells are absent. Because of		
659	the high amount of ECM all cells are dispersed. The apoptotic cells (asterisk) are present.		
660	C,D. Immunostaining of collagen I. The gonads cultured in the presence of phosphoramidon		
661	have the strongest collagen I signal. E,F . Immunostaining of laminin . The gonads cultured in		
662	the presence of phosphoramidon have the strongest laminin signal. G,H. Immunostaining of		
663	caspase 3 (apoptosis marker). The most numerous apoptotic cells are present in the gonads		
664	cultured in the presence of phosphoramidon. Scale bar is equal to 25 μm .		
665			

Fig. 7. Effect of 3-day in vitro culture of XY and XX gonads in the presence of APMA.

567	In both XY (A) and XX (B) gonads, the cells are completely dispersed and only miniscule
568	amount of ECM is present between the cells. (C) There is no positive signal in gonads
569	immunostained for AMH. Scale bar is equal to 25 μm.
570	
571	Fig. 8. Gene expression analysis after 3-day in vitro culture of XY and XX gonad in the
572	absence or presence of MMP inhibitors (α-2-macroglobulin, leupeptin,
573	phosphoramidon) and MMP activator (APMA). The expression of Oct4 (marker of germ
574	cells), was lower in the gonads cultured with MMP inhibitors in comparison to the to the
575	control gonads and gonads cultured with APMA. The expression of testis-specific markers
676	(Sox9 and Amh) was slightly decreased in gonads cultured with MMP inhibitors, and
577	significantly decreased in gonads cultured with APMA. The expression of ovary-specific
578	follistatin (Fst) and control gene (Actb) show no significant changes in the gonads cultured
579	with MMP inhibitors or APMA. Relative quantitation (Y-axis) determines the changes in
580	steady-state mRNA level, data are normalized to the level of $Actb$ expression (value = 1.0).
581	
582	
583	
584	
585	
586	
587	
588	
589	
590	
591	
592	
593	
594	
595	
596 507	
597 508	
598	
599	

Table 1. Number of XY and XX mouse fetuses used for the *in vitro* culture in the medium supplemented with inhibitors/activator of metalloproteinases.

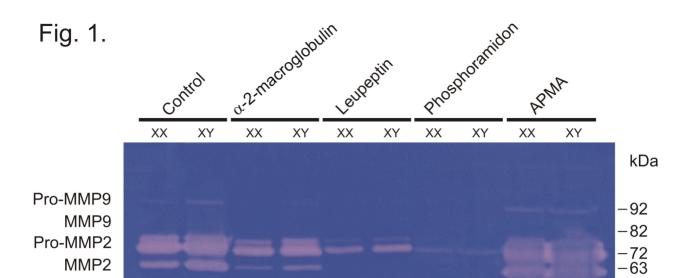
Chemical reagent	Number of	Number of
	XY fetuses	XX fetuses
α-2-macroglobulin	14	16
Leupeptin	20	15
Phosphoramidon	17	21
APMA, 4-aminophenylmercuric acetate	13	12
DMSO - control	17	15

Table 2. Inhibitors and activator of metalloproteinases used in the experiment.

Chemical reagent	Action	Concentration	Product number
α-2-macroglobulin	an inhibitor of endoproteases, including metalloproteinases (Cawston and Mercer, 1986)	100 μg/ml	Sigma, M3398
Leupeptin (N-acetyl- L-leucyl-L-leucyl-L- argininal)	an inhibitor of metalloproteinases, serine and threonine proteases, calpain, cathepsin, trypsin, plasmin, papain (Kuramochi et al., 1979)	100 μΜ	Sigma, L5793
Phosphoramidon	a weak inhibitor of metalloproteinases (Kitagishi and Hiromi, 1984; Matsumura et al., 1990)	200 μΜ	Sigma, R7385
APMA (4- aminophenylmercuric acetate)	an activator of metalloproteinases (Galazka et al., 1996)	1.5 mM	Sigma, A9563

Table 3. Summary of the experimental results.

Substance	MMPs	Histology and IHC	Gene expression
	activity in		
	zymography		
Control	Activity	- Gonadal sex recognizable by	Oct4, Sox9, Amh
	detected	morphological features	and <i>Fst</i> expressed
		- Testis cords present	
		- Germ cells present	
α-2-macroglobulin	Slightly	Slightly increased ECM	Lower
	decreased	accumulation	Oct4 expression
		- Gonadal sex recognizable	
		- Testis cords present	Y
		- Germ cells present	
		- Apoptosis	Y
Leupeptin	Decreased	Increased ECM accumulation	
		- Gonadal sex recognizable	
		- Testis cords present	
		- Germ cells absence	
		- Apoptosis	
Phosphoramidon	The strongest	High structure impairment by	
_	decrease	strong ECM accumulation	
		- Gonadal sex unrecognizable	
		by morphological features	
		- Cells dispersed in ECM	
		- No testis cords	
		- Germ cells absence	
		- Apoptosis	
APMA	High activity	High structure disturbance by	Lower
		strong ECM dispersion	Sox9 and Amh
		- Gonadal sex unrecognizable	expression
		by morphological features	
		- No testis cords	
		- Cells dispersed	


Table 4. Mean number and standard deviation of apoptotic (caspase 3-positive) cells per $10,000~\mu\text{m}^2$ in XY and XX gonads after 3 days of *in vitro* culture.

Inhibitor	XY	XX
Control without inhibitor	0.3 +/- 0.48 ^a	0.4 +/- 0.7 a
α-2-macroglobulin	1.1 +/- 1.1 a	1.2 +/- 1.32 a
Leupeptin	2.1 +/- 1.73 a	2.4 +/- 1.71 a
Phosphoramidon	6.4 +/- 2.72 a	5.7 +/- 2.54 a

 aSignificant difference between the experimental and control gonads (χ^2 test, P<0.05).

Suppl. Table 1. Primers used for genotyping and RT-qPCR.

Gene	Primers	
Primers used for genotyping		
SX (sex genotyping)	F: GATGATTTGAGTGGAAATGTGAGGTA	
	R: CTTATGTTTATAGGCATGCACCATGTA	
Primers used for RT-qPCR	Y	
Oct4	F: GCATTCAAACTGAGGCACCA	
	R: AGCTTCTTTCCCCATCCCA	
Sox9	F: GTGCAAGCTGGCAAAGTTGA	
	R: TGCTCAGTTCACCGATGTCC	
Amh	F: TCAACCAAGCAGAGAAGGTG	
	R: AGTCATCCGCGTGAAACAG	
Fst	F: AAAACCTACCGCAACGAATG	
	R: TTCAGAAGAGGAGGCTCTG	
Actb	F: CATGTACGTTGCTATCCAGGC	
	R: CTCCTTAATGTCACGCACGAT	

-57

MMP3

Fig. 2.

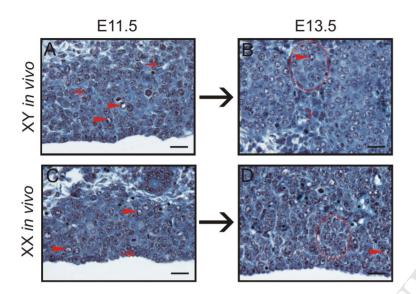


Fig. 3.

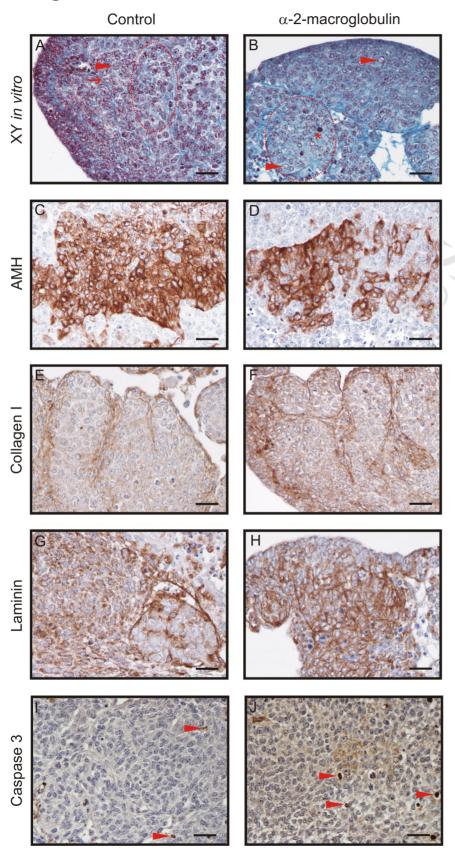


Fig. 4.

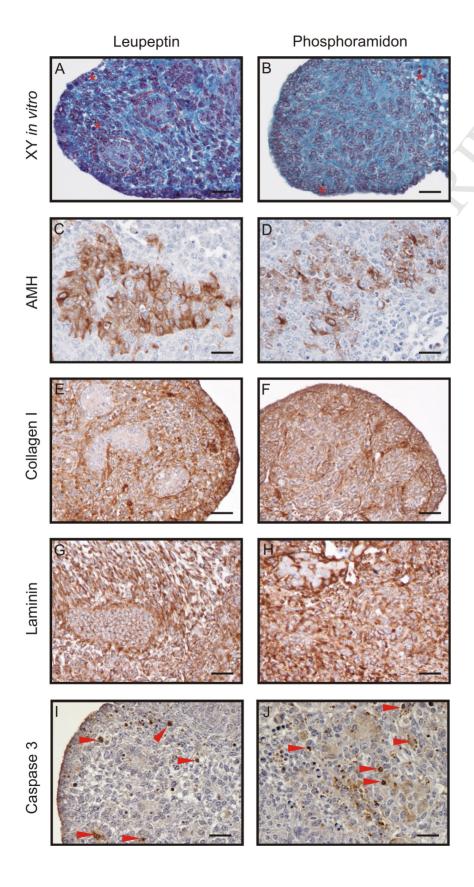
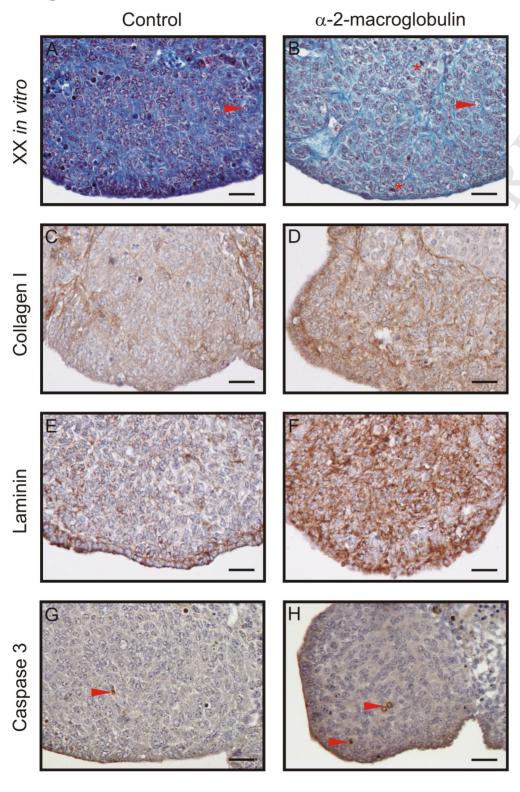



Fig. 5.

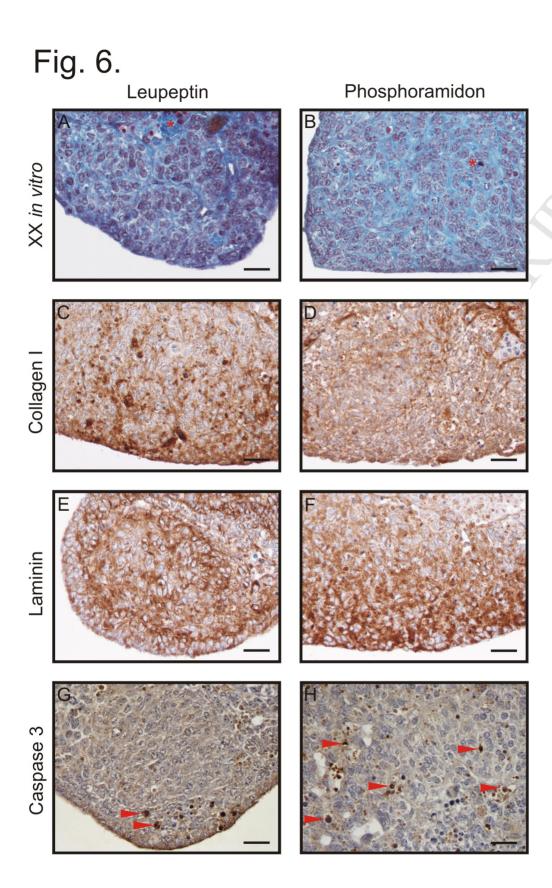
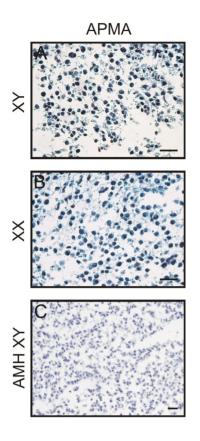
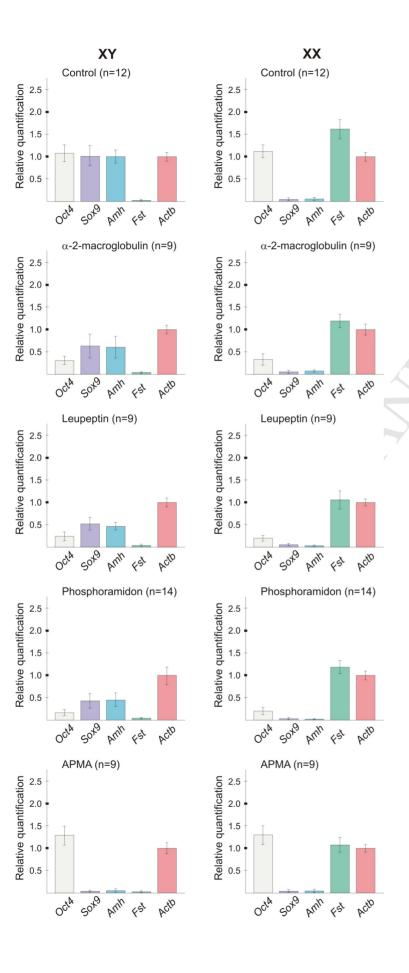




Fig. 7.

