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Terahertz (THz) links will play a major role in high data rate communication over a distance of few meters. In order to achieve this
task, antenna designs with high gain and wideband characteristics will spearhead these links. In this contribution, we present
different antenna designs that offer characteristics better suited to THz communication over short distances. Firstly, a
single-element antenna having a dipole and reflector is designed to operate at 300GHz, which is considered as a sub-terahertz
band. That antenna achieves a wide impedance bandwidth of 38.6% from 294GHz to 410GHz with a gain of 5.14 dBi. Secondly,
two designs based on the same dipole structure but with added directors are introduced to increase the gain while maintaining
almost the same bandwidth. The gains achieved are 8.01 dBi and 9.6 dBi, respectively. Finally, an array of 1 × 4 elements is used
to achieve the highest possible gain of 13.6 dBi with good efficiency about 89% and with limited director elements for a planar
compact structure to state-of-the-art literature. All the results achieved make the proposed designs viable candidates for
high-speed and short-distance wireless communication systems.

1. Introduction

Over the last few years, wireless data traffic has been drasti-
cally increasing due to a change in the way today’s society
creates, shares, and consumes information. This change has
been accompanied by an increasing demand for much
higher speed wireless communication anywhere at any
time. In particular, wireless data rates have doubled every
eighteen months over the last three decades and are quickly
approaching the capacity of wired communication systems.
Following this trend, wireless terabit-per-second (Tbps) links
are expected to become a reality within the next five to ten
years [1]. Advanced physical layer solutions and, more
importantly, new spectral bands will be required to support
these extremely high data rates [2].

Terahertz (THz) and sub-THz communication refers
to the use of the band that coves region from (0.1–10) THz
and sub-THz region is covered from (0.1–0.3) THz [1].

THz communication links will play a major role in which
very high data rates are required over short distances. Tera-
hertz band can be used for high-speed data transmission
within a range of 10m. This coverage area consists of small
cells of cellular networks. Terahertz communication is appli-
cable in the indoor as well as outdoor environments with sta-
tionary andmobile users. Terabit wireless local area networks
(T-WLAN) can provide flawless communication between
high-speed fiber optical links and personal laptops and tab-
lets. Wired and wireless links enjoy the same speed in tera-
hertz communication [2]. Very high path loss is imposed as
one of the main challenges at THz band frequencies, which
poses a major constraint on communication distances. Addi-
tional challenges range from the implementation of compact
high-power THz band transceivers, the development of
efficient ultra-broadband antennas at THz Band frequen-
cies, and characterization of the frequency-selective path
loss of the THz band channel to the development of novel
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modulations, transmission schemes, and communication
protocols tailored to the peculiarities of this paradigm.
Many of these challenges are common to mm-wave com-
munication systems, and as a result, the THz band is not
yet regulated [3].

One of the major advantages of THz and sub-THz fre-
quencies is the antenna size, which reduces to about sub-
millimeter [4]. The implementation of these systems is
now possible due to the advancements in the realization
of the photonic and semiconductor devices with an operat-
ing frequency in the terahertz band. A common approach is
to design the antenna in a low loss substrate and then inte-
grate it to the active devices. On-chip antennas are easily
integrated to the rest of the system but they have lower effi-
ciencies due to the lossy substrate [5–7]. The substrate inte-
gration technology, one of the technologies used in THz,
converts nonplanar antenna structures into their planar
forms. Advanced microfabrication techniques are adopted
for the design of terahertz antennas. Some of the substrate-

integrated antenna structures used in THz technology are
slot array, dipole, reflector, horn, and leaky wave antennas
[8]. For the sub-THz designs, high gain with compact size
and wide bandwidth is preferred. Some antennas have been
presented in literature such as in [9] where authors pre-
sented three antenna designs (rectangular horn, Cassegrain,
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Figure 1: Geometric design of single-element dipole antenna: (a) perspective view and (b) front view.

Table 1: Optimized dimensions of single-element dipole antenna.

Dimensions Value (μm)

d1 78

d2 116

d3 82

h1 50

h2 6

h3 2

g 4

Lf 35

Lr 280
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Wf 10
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Figure 2: Reflection coefficient (S11) and gain (dB) of single-
element dipole antenna.
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(c) E-plane versus ϕ: Eϕ at θ=90°
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(d) H-plane versus θ: Eϕ at ϕ=0°

Figure 3: Radiation pattern of the single-element dipole antenna at 300GHz: (a) 3D directivity, (b) 3D gain, (c) E-plane, and (d) H-plane.
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Figure 4: Geometric design of single-element dipole antenna with 3 directors: (a) perspective view and (b) front view.

3International Journal of Antennas and Propagation



and off-set parabolic type) for achieving high gain charac-
teristics at 300GHz. They were able to achieve gains of
around 25 dBi for alleviating link noises, but the size was
not compact enough. Similarly, authors in [10] presented
a rectangular cavity design based on InP substrate having
multilayers. They achieved a wide impedance bandwidth of
38GHz around the center frequency of 300GHz with limited
gain of 4 dBi. In [11], authors used CMOS on-chip technol-
ogy to design a broadband sub-THz antenna. Four resona-
tors were placed in top of a microstrip patch antenna. The
authors were able to achieve a fractional bandwidth of 10%
with radiation efficiency of 15% at the center frequency.
The complications were in the manufacturing and measuring
capability as every step is needed to be as precise as possible.

With the above literature review discussion, it can be seen
that possibilities of designing sub-THz antenna at 300GHz
are a lot but limitations are presented in terms of trade-off
between acquiring wide bandwidths, high gain, and complex
structures. In this paper, we propose a simple antenna design
solution that presents better results in terms of wide band-
width and high gains at the sub-THz band. We propose a
single-element design based on dipole technology that offers
a much wider bandwidth and acceptable gain. Next, we intro-
duce different radiating directors and array design to increase
the gain of the structure while maintaining a compact size
and wide bandwidth.

2. Antenna Designs and Results

The following sections will discuss the antenna design geom-
etry and its simulation results performed in electromagnetic
simulator CST Microwave Studio [12] with verifications
done on commercially available simulator HFSS [13]. For
all the designs, i.e., single element, enhanced gain with 3
directors, enhanced gain with 5 directors, and the array, the
substrate materials used were indium phosphide (InP) and
benzocyclobutene (BCB).

2.1. Single-Element Dipole with a Reflector. The geometry of
the proposed single-element design is depicted in Figure 1.
The perspective and front views are presented. The single-
element design is based on a dipole antenna resonating at
the center frequency of 300GHz. A reflector element is
placed behind the dipole. Both of the elements are made with
gold as a conducting material with conductivity σ = 4 561 ×
107 S/m. The placement of reflector is for the purpose of
increasing the directivity and gain of the single-element
antenna. Its distance is approximately λ/4 from the dipole
element at the center frequency. All the conducting elements,
starting from the bottom layer to top, are placed on InP
and BCB substrates. BCB has electrical properties of per-
mittivity (2.5) and loss tangent (0.005) while InP has per-
mittivity (12.5) and loss tangent (0.003) [11], respectively.
The whole antenna occupies a small footprint of Ls ×Ws =
322 × 280 × 58 μm3. The remaining optimized dimensions
of the single-element design are listed in Table 1.

Figure 2 shows the simulated results in terms of reflec-
tion coefficient (S11) and gain (dBi) of the proposed single-
element dipole antenna. The results have been verified
with another simulator HFSS. The similarity between them
confirms the design scenario and its output results. The
antenna covers a wide impedance bandwidth of 116GHz
(294-410GHz) with the gain of 5.14 dBi at the center fre-
quency of 300GHz. Since the antenna is placed parallel to
the y-axis, it should radiate in the end-fire direction (x-axis)
as per E-field excitation and it is also evident by the place-
ment of reflector.

The antenna radiation pattern in terms of directivity
and gain is depicted in Figures 3(a)–3(b). The 3D pattern
confirms its radiation in the end-fire direction with the
directivity and gain of 5.74 dBi and 5.14 dBi, respectively,
while the polar plots in both the E-plane and H-plane are
depicted as well in Figures 3(c)–3(d). The E-plane (xy or
θ = 90°) presents the antennas side lobe levels at -12.4 dB
and angular beam width of 123.37°. Similarly the H-plane
(xz or Ø = 0°) has a side lobe levels of -12.4 dB and angular
beam width of 97.9°. Here again, HFSS was used to confirm
the simulation results. Good efficiency is obtained and it is
about 87%.

Although the proposed single-element dipole antenna
produced a wide bandwidth response, but the gain was not
enough for sub-THz design. In order to increase the gain of
the antenna while maintaining the same wider bandwidth,
the next subsections will discuss the effects of adding con-
ducting radiators or directors to the design especially in front
of the main driven element.

Table 2: Optimized dimensions of single-element dipole antenna
with 3 directors.
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Figure 5: Reflection coefficient (S11) and gain (dB) of single-
element dipole antenna with 3 directors.
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2.2. Single-Element Dipole with 3 Directors. The geometric
design of the single-element dipole with three directors made
of the same conducting material, i.e., gold, is depicted in
Figure 4. The same substrate materials InP and BCB have
been utilized. Most of the dimensions are the same as was
for the single-element design. The addition in terms of
dimensions is listed in Table 2.

With these optimized dimensions, the antenna provides an
impedance bandwidth of 98GHz (293-391GHz) with a gain of
8.01dBi which can be seen in Figure 5. Optimization was done
in such a way that almost wide bandwidth is maintained. The
introduction of three directors placed at certain distances
proved to be worthy in terms of achieving better gain.

This achievement can be seen from the radiation pattern
results in the 3D and 2D polar plots depicted in Figures 6(a)–
6(d). At the center frequency of 300GHz, the antenna radi-
ates with the directivity and gain of 8.44 dBi and 8.01 dBi,
respectively. In this case, the efficiency is much better to
the last dipole and it is about 90%. From the polar plots,
the E-plane has a side lobe levels of -10.8 dB and angular
beam width of 77.9°. The H-plane on the other hand offers

a side lobe levels of -10.8 dB and angular beam width
of 76.7°.

2.3. Single-Element Dipole with 5 Directors. In order to
further increase the gain of the antenna while keeping
the size compact and bandwidth wider, two more directors
were added to the previous design thus forming the 5-
director single-element dipole antenna. Its geometric design
with optimized dimensions is presented in Figure 7 and
Table 3, respectively.

The antenna was able to maintain a wide bandwidth
around 82GHz (294-376GHz) and gain of 10.2 dBi which
can be seen in Figure 8.

With 5 directors in place, the antenna further enhanced
the performance with better gain results. Figures 9(a)–9(d)
show the radiation pattern of the antenna in 3D and 2D plots
at the center frequency of 300GHz. The antenna radiates
with the directivity and gain of 10.2 dBi and 9.61 dBi, respec-
tively. Due to a number of metallic element, the efficiency is
reduced compared to the 3 directors but it remains good
and it is about 87.3%.
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Figure 6: Radiation pattern of the single-element dipole antenna with 3 directors at 300GHz: (a) 3D directivity, (b) 3D gain, (c) E-plane, and
(d) H-plane.
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From the polar plots, the E-plane has a side lobe levels of
-13.3 dB and angular beam width of 63°. The H-plane on the
other hand offers a side lobe levels of -13.9 dB and angular
beam width of 62.7°.

3. Array Design and Results

Final design improvement was done to the single element
with 5 directors in terms of presenting a linear array struc-
ture. Figure 10 presents the geometric dimensions of the
1 × 4 linear array with individual excitation. The geometric
dimensions were the same as the single-element dipole with
5 directors provided earlier in Table 3. The distance between
the array elements (m = 220 μm) was less than λ/2 which
gave good isolation among the radiators.

The array provided with a wide impedance bandwidth of
82GHz (294-376GHz), better mutual coupling of -20 dB and
increased gain of 13.6 dBi. Figure 11 presents the reflection
coefficient and mutual coupling coefficient results along with
achieved gain at the center frequency of 300GHz.

Figure 12 shows the gain improvements by depicting the
radiation patterns of the 1 × 4 array at the center frequency of
300GHz. The array achieves directivity and gain of 14.1 dB
and 13.6 dB, respectively. The efficiency remains good and
it is about 89%. Of course, the final efficiency will depend
to feeding array losses. From polar plots, the E-plane has side
lobe levels of -10.2 dB and angular beam widths of 55 while
the H-plane has side lobe levels of -11.3 dB with angular
beam widths of 23.3 .

4. Conclusion

For sub-THz applications working at 300GHz, we have
proposed a single element and an array design based on
the dipole technology. The single-element dipole achieved
a wide impedance bandwidth of 38% (294-410GHz) with
a gain of 5.14 dBi as compared to other similar works
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Figure 7: Geometric design of single-element dipole antenna with 5 directors: (a) perspective view and (b) front view.

Table 3: Optimized dimensions of single-element dipole antenna
with 5 directors.
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Figure 12: Radiation pattern of the 1 × 4 array having single-element dipole antenna with 5 directors at 300GHz: (a) 3D directivity, (b) 3D
gain, (c) E-plane, and (d) H-plane.

8 International Journal of Antennas and Propagation



presented in Table 4. The gain of the single-element design
was further investigated and increased by adding conducting
directors (3 and 5) in front of the dipole driven element.
A maximum gain of 9.6 dBi and a compact size of 1122 ×
280 × 58 μm3 were achieved. To reach even better gain
values for sub-THz communication, a 1 × 4 array structure
was proposed. This array offered a bandwidth of 27.3%
(294-376GHz) with maximum gain of 13.9 dBi with 89% effi-
ciency. With these merits, the proposed antenna designs are
suitable candidates for high-speed and short-distance wire-
less communication in the sub-THz frequency range. All
measurements of input impedance and radiation patterns
will be published later and will include all details of wave-
guide to Yagi antenna transition.
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