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Abstract 1 

The clinical efficacy of neurofeedback is still a matter of debate. This paper analyzes the 2 

factors that should be taken into account in a transdisciplinary approach to evaluate the use of 3 

EEG NFB as a therapeutic tool in psychiatry. Neurofeedback is a neurocognitive therapy 4 

based on human-computer interaction that enables subjects to train voluntarily and modify 5 

functional biomarkers that are related to a defined mental disorder. We investigate three kinds 6 

of factors related to this definition of neurofeedback. We focus this article on EEG NFB. The 7 

first part of the paper investigates neurophysiological factors underlying the brain 8 

mechanisms driving NFB training and learning to modify a functional biomarker voluntarily. 9 

Two kinds of neuroplasticity involved in neurofeedback are analyzed: Hebbian 10 

neuroplasticity, i.e. long-term modification of neural membrane excitability and/or synaptic 11 

potentiation, and homeostatic neuroplasticity, i.e. homeostasis attempts to stabilize network 12 

activity. The second part investigates psychophysiological factors related to the targeted 13 

biomarker. It is demonstrated that neurofeedback involves clearly defining which kind of 14 

relationship between EEG biomarkers and clinical dimensions (symptoms or cognitive 15 

processes) is to be targeted. A nomenclature of accurate EEG biomarkers is proposed in the 16 

form of a short EEG encyclopedia (EEGcopia). The third part investigates human-computer 17 

interaction factors for optimizing NFB training and learning during the closed loop 18 

interaction. A model is proposed to summarize the different features that should be controlled 19 

to optimize learning. The need for accurate and reliable metrics of training and learning in 20 

line with human-computer interaction is also emphasized, including targeted biomarkers and 21 

neuroplasticity. All these factors related to neurofeedback show that it can be considered as a 22 

fertile ground for innovative research in psychiatry.  23 

 24 
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Introduction 1 

Neurofeedback (NFB) is a neurocognitive therapy based on human-computer interaction. The 2 

objective of NFB is to enable subjects to voluntarily train and modify functional biomarkers 3 

that are specific to mental disorders, in order to improve symptoms or cognitive processes. In 4 

psychiatry, a biomarker is usually a psychophysiological variable that is objectively measured 5 

and evaluated as an indicator of pathogenic processes or therapeutic responses [71]. However, 6 

most of the current electroencephalographic (EEG) NFB protocols are not based on the 7 

modulation of disorder-specific biomarkers but on the modulation of a few spontaneous brain 8 

rhythms, mainly defined by the frequency of their oscillation [2, 55, 57]. This strategy is 9 

prevalent since spontaneous brain rhythms demonstrate a high signal-to-noise ratio in EEG 10 

recordings, and because they can be disrupted in some mental disorders, e.g. increased theta 11 

and reduced beta power in patients with Attentional Deficit and Hyperactivity Disorder 12 

(ADHD) when compared to healthy controls [3]. However, the clinical efficacy of this 13 

approach remains a controversial and delicate issue even for well-investigated applications, 14 

such as the therapeutic use of EEG NFB in ADHD [14, 54]. Indeed, the effectiveness of 15 

neurofeedback is largely debated [22, 56, 79, 80]. In this paper, we propose that several 16 

factors related to the concept of biomarker may be responsible for the conflicting results in 17 

the EEG NFB literature:  18 

(i) Limited understanding of the brain mechanisms driving NFB learning to modify a 19 

functional biomarker voluntarily, i.e. neurophysiological factors [22],  20 

(ii) The inconsistent relationship between EEG biomarkers and clinical dimensions 21 

(symptoms or cognitive processes), potentially due to the symptom-based 22 

classification of psychiatric disorders and the heterogeneity of diagnostic 23 

categories, i.e. psychophysiological factors [25]  24 

(iii) Superficial knowledge of how best to measure and optimize NFB learning during 25 

the closed loop interaction, i.e. human-computer interaction factors [36].  26 

This paper investigates these factors (neurophysiological, psychophysiological and human-27 

computer interaction) in a critical review of the existing literature on EEG NFB. The 28 

objective is to integrate these interdependent issues into a general NFB framework in order to 29 

demonstrate that EEG NFB can be considered as fertile scientific ground for psychiatry and to 30 

provide a roadmap for future research in this field.  31 

 32 
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Neurofeedback and its neurophysiological 1 

foundations 2 

From electroencephalographic oscillations to neurofeedback 3 

The EEG may be recorded via non-invasive electrodes placed on the scalp as a result of 4 

intracranial fluctuations of electromagnetic field potentials, which are generated by ionic 5 

exchanges at cell membranes and synapses during neuronal activity. When neuronal activities 6 

occur in a circumscribed region and become temporally synchronized, their local field 7 

potentials (LFPs) are then spatially summated, giving rise to large fluctuations of the EEG 8 

signal [84]. Hence, changes in EEG oscillation amplitude essentially reflect the degree of 9 

synchronization of intracortical neuronal populations. Synchronization is influenced by both 10 

the intrinsic excitability of the neuronal population and the synaptic input it receives from 11 

other regions. Hence, intra- and inter- electrode EEG measures of amplitude and coherence 12 

indicate neuronal excitability within and functional segregation/integration between cortical 13 

regions, respectively [17]. Moreover, this dynamic activity can occur simultaneously on 14 

different timescales (i.e. frequencies): infraslow (<1 Hz), delta (1–4 Hz), theta (4–8 Hz), alpha 15 

(8–12 Hz), sigma (12–15 Hz), beta (15–30 Hz), and gamma (>30 Hz). Studies involving 16 

patients with mental disorders have reported significant deviations in a host of task-related 17 

and resting-state EEG parameters (e.g. amplitude, coherence) compared to healthy controls 18 

[13].  19 

Thus, NFB has been developed in these patients mostly to correct notable deviations of 20 

cortical oscillations by training subjects to modify their EEG activities. In this perspective, the 21 

impact of NFB is thought to be based on the training and subsequent normalization of specific 22 

“targeted” neurophysiological signatures to reduce the clinical symptoms related to a given 23 

disorder. It has been also postulated that, to achieve therapeutic efficacy with NFB, it is 24 

important to demonstrate significant online self-regulation of the trained parameter(s) (i.e. 25 

during NFB). After which, long-term offline changes might be induced through mechanisms 26 

of neuroplasticity (i.e. of functionally persistent brain reorganization after termination of NFB 27 

training) [74]. Thus, in the simplest scenario, the incremental process of NFB “learning” can 28 

be seen as the direct sum of two principal factors:  29 

1) the online component, i.e. the within-session change of the trained signal relative to its 30 

resting-state baseline, also called “performance” in the field of Brain Computer Interface - 31 

BCI, and  32 
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2) the offline component, i.e. the absolute change of the between-session resting-state 1 

baseline, which may be related to “skills acquisition”.  2 

Surprisingly however, there is a scarcity of BCI/NFB studies that examine these online and 3 

offline criteria in combination. Moreover, a better definition of online/offline metrics would 4 

enable a more rigorous assessment of NFB protocols and BCI training [46] together with their 5 

impact on brain plasticity [67] (see last section on human-computer interaction factors) and 6 

the impact of structural and functional brain traits on plasticity [28]. This first section focuses 7 

on the basis of neuroplasticity during NFB. 8 

From electroencephalographic oscillations to neuroplasticity 9 

The dynamic modulation of EEG oscillations using NFB may induce different types of 10 

neuroplasticity [67]. Neuroplasticity in general may be defined as a durable (i.e. long-term) 11 

change in neural function outlasting the training period itself, underpinned by long-term 12 

modification of neural membrane excitability and/or synaptic potentiation. In practice, one 13 

may expect long-term plasticity to manifest itself during resting-state EEG recording(s) 14 

outside of training sessions (i.e. offline), and/or as progressive changes during repeated 15 

training sessions (i.e. online). Based on the neuroscience literature, there are two main forms 16 

of neuroplasticity: the Hebbian type and the homeostatic type.  17 

The underlying mechanism of Hebbian plasticity is correlation-based. Hence, NFB-induced 18 

Hebbian plasticity may be expected to produce functional changes that occur in the same 19 

direction as that dictated by the NFB protocol (e.g. long-term alpha increase following alpha-20 

upregulation NFB) [92]. On the other hand, since homeostasis attempts to stabilize network 21 

activity within a bounded range, homeostatic plasticity is not correlation-based and may be 22 

expected to produce changes in the opposite direction of NFB training (e.g. long-term alpha 23 

increase following alpha-downregulation NFB) [40]. Generally, synaptic potentiation brain 24 

oscillations are closely linked, given that changes in neuronal coupling directly affect levels 25 

of neuronal synchronization, and vice-versa.  26 

Hebbian plasticity and neurofeedback 27 

Historically speaking, pioneering experiments in the 1960s that demonstrated self-regulation 28 

of the EEG [39] were followed by reports that NFB training of spindle oscillations during 29 

wakefulness may result in their stronger expression during sleep [77]. Recent studies provide 30 

convincing data that NFB can be used to induce plastic increases of theta, alpha, beta, and 31 
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gamma rhythms, as well as their corresponding decreases [74]. However, the exact 1 

neurophysiological mechanism(s) behind the long-term conditioning of brain rhythms remain 2 

unclear. 3 

Given common observations that plasticity manifests in the same direction/frequency targeted 4 

by the NFB protocol, Ros and colleagues proposed a mechanism based on associative (i.e. 5 

Hebbian) plasticity and encapsulated by the phrase [67]: “synapses that fire together wire 6 

together, and synapses that fire apart wire apart”. This type of correlation-based plasticity 7 

occurs when connectivity is reinforced by temporally-coincident neuronal activation. As 8 

explained in the section above, EEG oscillatory amplitude positively covaries with the degree 9 

of synchronized neurons/synapses, see Figure 1.  10 

 11 

Figure 1: An example of Hebbian-type neuroplasticity mechanism subsuming neurofeedback 12 

training with experimental data on alpha rhythm up-regulation (adapted to experimental data 13 

from [20]).  14 

 15 

Hence, during amplified oscillations, synchronized neural populations involved in generating 16 

this oscillatory pattern would, after some time, strengthen the connections between 17 

themselves, and further facilitate the oscillation to emerge in the future. Conversely, 18 

maintaining a cortical region in a low-amplitude (“desynchronized”) state would reduce 19 

synaptic correlations and weaken the connections that give rise to synchronization. 20 

Encouragingly, recent experimental work provides support for this mechanism outside of 21 
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NFB, reporting up-regulation and down-regulation of cortical oscillations using synchronizing 1 

and desynchronizing patterns of stimulation, respectively [67, 74]. 2 

Homeostatic plasticity and neurofeedback 3 

Animal research has consistently revealed the presence of an additional form of plasticity 4 

referred to as ‘homeostatic’ plasticity, which actively counteracts the Hebbian type so as to 5 

prevent its unlimited expression [67]. Otherwise, unchecked Hebbian plasticity would 6 

inevitably lead to pathologically high or low neural connectivity, firing or synchronization. 7 

Hence, from the point of view of NFB, one would anticipate homeostatic forms of plasticity 8 

to produce changes opposite to the direction of training. Early observations within this context 9 

were made by Kluetsch and colleagues [40], who reported that following down-training of 10 

alpha rhythm, patients with Post Traumatic Stress Disorder (PTSD) displayed a paradoxical 11 

increase in alpha rhythm above and beyond its resting-state value. Since PTSD patients are 12 

found to exhibit significantly low alpha amplitude at baseline relative to healthy subjects, a 13 

recent framework proposed that this might reflect homeostatic regulation of the excitation/ 14 

inhibition balance [67, 68]. 15 

Towards new neurophysiological measures of neuroplastic 16 

effects of neurofeedback 17 

In addition to EEG-based measures, the neuroplastic effects of NFB have started to be 18 

explored using several other techniques, including transcranial magnetic stimulation (TMS), 19 

functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). For 20 

example, a single 30-minute session of NFB alpha downregulation has been found to enhance 21 

cortical excitability, as measured by a plastic (>20 minute) increase in TMS-induced motor 22 

evoked potentials after training [69]. Of note is also the observation of reduced intracortical 23 

inhibition, in view of its established association as a cortical state that facilitates plasticity and 24 

learning [8]. Elsewhere, fMRI has shown that NFB may induce plastic changes in cortical 25 

hubs responsible for cognitive control such as the dorsal anterior cingulate [30], which was 26 

associated with improvements in symptoms of ADHD [42] or on-task mind wandering [70]. 27 

fMRI studies shown also that NFB training can induce plasticity in patients with mental and 28 

brain disorder that may engage other regions and circuits implicated in the physiopathology 29 

[61] and that may be correlated with clinical amelioration [91]. Lastly, data from a DTI study 30 

make an encouraging case for NFB affecting white matter and grey matter [27]. 31 
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In closing, this first section has focused on the neurophysiological foundations of EEG NFB, 1 

which enable it to be used as a unique therapeutic tool for targeting specific neural activities 2 

and inducing neuroplasticity. However, beyond basic up- or down- regulation of brain 3 

rhythms, the central challenge of NFB is to target clinically relevant biomarkers that are 4 

consistent with the psychophysiological foundations of mental and brain disorders. The 5 

following section focuses on this challenge. 6 

Neurofeedback and its psychophysiological 7 

foundations 8 

Dimensional approach for neurofeedback in psychiatry 9 

Because the psychiatric nosology has weak biological grounds, on the one hand, and because 10 

the link between biomarkers (electrophysiologic biomarkers in particular with EEG or 11 

metabolic biomarkers with functional neuroimagery) and cognitive processes remain mostly 12 

unraveled, on the other hand, it is impossible to confirm the functional specificity of current 13 

NFB EEG biomarkers. In fact, contemporary psychiatry is undergoing a taxonomic crisis that 14 

is characterized by the poor diagnostic power of current nosology [15]. Interestingly, in 2010, 15 

the National Institute of Mental Health (NIMH) proposed a dimensional approach to 16 

circumvent this issue. For Insel et al., the current symptom-based classification probably does 17 

not reflect the pathophysiological mechanisms that underlie mental disorders [31]. The aim of 18 

the Research Domain Criteria (RDoC) project is to conceptualize mental illnesses as brain 19 

disorders with pathophysiological features represented by a reliable and validated continuum 20 

from the clinical to the genetic, all defined by tools from neuroscience [31]. Such an approach 21 

could be very useful in the field of NFB research applied to mental disorders. By targeting 22 

specific biomarkers related to well identified symptoms or cognitive processes, the 23 

psychophysiological rationale underlying NFB therapy should be stronger and its efficacy 24 

probably greater. Importantly, although the quality of EEG recordings and the design 25 

parameters of NFB protocols (e.g. the number of sessions per week) are essential variables to 26 

be optimized to foster training, their optimization will never overcome the putative 27 

deleterious effects of our current lack of precise knowledge about the underlying brain/mental 28 

processes. We advocate here that acknowledging this fundamental limitation is a useful 29 

starting point to guide the research and development of future NFB therapies. Furthermore, 30 
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this limitation holds whatever the functional modality used to record brain activity 1 

(electrophysiology, fMRI, fNIRS, etc.). 2 

As the first step to overcome this limitation, we consider it essential to inventory and refine 3 

the existing list of EEG biomarkers and associated cognitive functions. In the following 4 

section, we propose an “EEGcopia” to illustrate the need to rely on EEG biomarkers that are 5 

strongly linked to symptoms or cognitive processes. We discuss this concept of EEGcopia 6 

below and provide a preliminary list that highlights the need to link psychiatric nosology and 7 

putative biomarkers with clinical dimensions such as executive function, emotion regulation 8 

and reward processing (see Supplementary material). The opportunity to construct new 9 

therapeutic hypotheses based on other EEG and putatively more specific biomarkers than 10 

those used so far in NFB is illustrated in two concrete and very topical fields of 11 

NFB/psychiatric research: depression and ADHD. 12 

A proposed EEGcopia for neurofeedback in psychiatry 13 

Most NFB investigations to date have focused on a limited set of EEG frequency ranges (the 14 

two most famous being the θ
/β

 ratio and the Sensory Motor Rhythm - SMR). However, there 15 

are several other known correlates of cognitive functions that could be used as potential target 16 

biomarkers. Indeed, one can extract numerous biomarkers from EEG signals such as discrete 17 

EEG events like event-related potentials (ERP), measures of complexity, or local and long 18 

distance neural synchrony, which could have potential NFB applications. The use of these 19 

EEG biomarkers for NFB has received little attention until now. We introduce here a brief 20 

nomenclature of cognitive functions (see Supplementary material), together with their 21 

known EEG biomarkers. Dimensional EEG biomarkers of cognitive functions with known 22 

neural correlates of sensory processing, executive functions, emotional cognition, memory, 23 

embodied cognition and social cognition are presented. This short EEG encyclopedia 24 

(EEGcopia) reflects the main theories linking EEG and cognitive dimensions in 25 

neurophysiology. A more complete and exhaustive EEGcopia would be of great help to the 26 

NFB community. 27 

Among the different biomarkers listed, Event Related Potentials (ERP) for NFB open up new 28 

avenues for application. The numerous publications on BCI based on the real-time detection 29 

of P300 demonstrate the feasibility of this approach [87]. Recent studies have generalized 30 

these results to other ERP components, such as error negativity (ERN) [9] and auditory 31 

mismatch negativity (MMN) [7]. However, each ERP has its specific properties, such as 32 
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differences in refractoriness [88], which may limit their detection rate for real-time 1 

applications and make them usable only for discrete delayed feedback. Another promising 2 

candidate is the use of classification algorithms targeting specific dimensions. For instance, 3 

arousal detection using the VIGALL algorithm [60] was recently used to investigate brain 4 

mechanisms, and it can also be used to design efficient NFB strategies [29]. 5 

Linking brain / mental processes and psychiatric disorders 6 

The emblematic research field of depression 7 

Which innovative biomarker could be relevant to treat depression? Recently, Rayner et al. 8 

published a comprehensive review of cognition-brain related networks of depression [65]. 9 

This neurocognitive hypothesis of depression could be an interesting basis for an applied 10 

reflection on the choice of the most relevant target for NFB. Three main networks are 11 

involved: autobiographical memory (AMN), affective (AN) and cognitive control networks 12 

(CCN) [65]. The former is involved in self-referential cognitive processing and the latter in 13 

the ability to perform goal-directed tasks. The authors postulated that AMN is hyperactivated 14 

(self-referential cogitation and congruent emotional processing) over the CCN, which is 15 

deactivated during a mood depressive episode. This state is also associated with AN 16 

overactivation which is linked with deficit of cognitive control network activity and 17 

postulated having a key role in dysfunction of mood regulation. This model highlights the 18 

central role of cognition (and its neural substrates) in regulating affective symptoms and 19 

autobiographical memory in depression [65]. This cognitive dimension could be a promising 20 

therapeutic target for NFB instead of more conventional therapeutics. However, the best 21 

psychophysiological signal related to this cognitive dimension remains to be determined.  22 

Most of the literature on EEG-NFB has focused on alpha asymmetry but with controversial 23 

results concerning its efficacy. In fact, EEG-NFB protocols on depression enhance cognitive 24 

functioning [20] but have failed to have any effect on emotional and mood features (for 25 

review; see Arns et al., 2017 [2]). As alpha asymmetry protocol is identified as a promising 26 

EEG-biomarker for depression [12], one recent open label trial proposed to work on another 27 

psychophysiological signal such as beta power band and alpha/theta training [11]. This latter 28 

has shown that combined NFB on EEG-biomarkers of cognitions could be critical in 29 

depression. Mehler and colleagues has questioned the specificity of EEG NFB from emotion-30 

regulating areas and its efficacy on depressive symptoms. Interestingly, fMRI-NFB has been 31 

described as an effective treatment for depression by targeting limbic areas involved in 32 
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emotional processing [43]. Through a single-blind trial, they have highlighted that 1 

experiencing self-regulation may probably be therapeutic, irrespective of brain areas targeted 2 

(emotional or higher visual area) [53]. Elsewhere, Young and colleagues has exhibited that 3 

amygdala fMRI NFB upregulation in a task of autobiographical memory is linked with 4 

decreased of anxiety and increase of happiness ratings [90]. They have confirmed this result 5 

in a randomized control trial in which residualized amygdala activity is a mediator of the 6 

relationship between residualized positive specific autobiographical memory recall and 7 

residualized MADRS score at follow-up [89]. 8 

Taken together, these data highlight that both cognitive and emotional/limbic areas might be 9 

relevant for therapeutic NFB-protocols in depression. But to date, there is a lack of data on the 10 

effect of EEG NFB working on both sides of depression, emotion and its cognitive regulation. 11 

Based on the cognitive dimension of depression [65], it can be hypothesized that the ultimate 12 

NFB should disengage the emotional cognitive processes of AMN, strengthen cognitive 13 

processes oriented to external stimuli (CCN), and strengthen working memory. Therefore, 14 

NFB targeting both AMN and CCN should fit this issue well. Some recent work on NFB has 15 

proposed to combine EEG and fMRI in order to provide a more specific self-regulation of 16 

these targets [50, 62]. These studies suggest that bimodal/simultaneous EEG and fMRI NFB 17 

could be more specific and more engaging than EEG-NFB alone. Zotev et al. have 18 

demonstrated its feasibility and potential in depression [93, 94]. This perspective seems to be 19 

of great interest for targeting complex psychophysiological processes involved in mental 20 

disorders such as depression. 21 

The emblematic research field of ADHD and P300-based training 22 

Which innovative biomarker could be relevant to treat ADHD? The effectiveness of classical 23 

EEG NFB, targeting the θ
/β

 ratio and the Sensory Motor Rhythm – SMR, in ADHD remain 24 

debated [5, 10, 16, 75, 81, 82]. Four meta-analyses studies analysed the therapeutic usefulness 25 

of EEG NFB in ADHD [4, 14, 54, 76]. The results of these meta-analyses depend of the 26 

choice of studies included, in particular if a criteria concerning the training during the 27 

neurofeedback protocol was added to include a study in the meta-analysis. Moreover, it 28 

should be noted that the classical EEG biomarker chosen in ADHD is probably not the most 29 

valid concerning the physiopathology of the disoder. Thus, P300 based training has been 30 

recently proposed. 31 
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The P300 is a large positive complex that reaches its peak at approximately 300 milliseconds 1 

after stimulus onset and is composed of two subcomponents, a frontal P3a reflecting 2 

attentional capture by some external stimulation, followed by a parietal P3b elicited by the 3 

voluntary orientation of attention [64]. The amplitude of the P300 grows with the amount of 4 

attentional resources engaged in processing the external event [37]. Although this biomarker 5 

has never been used for NFB, it is very much used online for controlling BCI applications 6 

such as the P300 speller [51]. With this interface, items are selected on screen based on the 7 

orientation of spatial attention. Interestingly, the same principle can be used in engaging 8 

EEG-controlled video games [49]. Such games offer a motivating training environment, may 9 

include strategic components (e.g. “Connect Four”) and rely on clear instructions about the 10 

requested mental effort to be produced in order to control the game and possibly win (e.g. 11 

focus spatial attention and avoid being distracted). Interestingly, the P300 is known to be 12 

altered in children with ADHD [38]. It is also a marker of treatment efficacy as P300 13 

amplitude has been shown to return to normal levels in patients who respond positively to 14 

methylphenidate [72]. This has led to an ongoing clinical trial to evaluate the usefulness of 15 

P300-based training in children with ADHD [21]. If successful, this trial will support the 16 

extension of this kind of training to other pathological states associated with impairment in 17 

selective attention. 18 

 19 

This second section has focused on the psychophysiological foundations of NFB applied to 20 

mental disorder and has demonstrated how it should be related to a better definition of 21 

biomarker in order to target neural activities specific to symptoms or cognitive processes. 22 

However, even if the chosen biomarker is strictly related to symptoms or cognitive processes, 23 

it should also be verified that it is effectively modified during the NFB sessions. Moreover, it 24 

should be studied the impact of control beliefs [86], i.e., participants’ beliefs that their efforts 25 

to learn would result in a positive outcome, and self-efficacy [6], which can be defined as 26 

participants’ beliefs in their own abilities to manage future events, on the NFB training. 27 

Surprisingly, this domain on which the following section focuses remains a major challenge 28 

for NFB, and the field of BCI is of great interest to enhance knowledge on optimized training 29 

and learning for NFB in psychiatry [22].  30 

NF and BCIs are traditionally underlain by different methods. In NF, the target 31 

neurophysiological pattern (location, frequency) is usually defined in advance. Users are 32 

asked to figure out by themselves how to self-regulate this pattern. In BCI however, a 33 

machine learning approach is most of the time employed. Such an approach consists in using 34 
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signal processing algorithms in order to determine the location and frequency of the target 1 

neurophysiological pattern that enables the best discrimination between different states (e.g., 2 

motor-imagery task vs. rest). In case of a BCI involving left vs. right-hand motor imagery 3 

tasks, these EEG patterns would theoretically correspond to modulations of sensorimotor 4 

rhythms. However, when a pure machine learning approach is used (i.e., without any a priori 5 

on the location/frequency of the pattern), as is mostly the case in BCIs, other EEG patterns 6 

could be selected. 7 

Neurofeedback and its human-computer 8 

interaction foundations  9 

A human computer interaction model for neurofeedback  10 

To globally improve NFB efficacy in patients, it is necessary to understand and then reduce 11 

its variability. To this end, Sitaram et al. (2016) and Gaume et al. (2016) have reviewed the 12 

neurophysiological [74] and neuropsychological [25] mechanisms underlying NFB training 13 

procedures. In addition, Enriquez-Geppert et al. (2017) have proposed a tutorial explaining 14 

how to design rigorous NFB training protocols [19]. While Sitaram et al. (2016) and Gaume 15 

et al. (2016) adopted a standpoint purely centered on “human learning” (i.e. centered on the 16 

psychological and neurophysiological mechanisms that enable patients to learn how to self-17 

regulate specific neural substrates), Enriquez-Geppert et al. (2017) focused on “machine 18 

learning” (i.e. centered on the technological factors, especially signal processing and machine 19 

learning, potentially impacting performance). These papers offer insightful elements to 20 

understand and reduce the variability of clinical NFB efficacy.  21 

When studying user training in NFB and BCI, it is indeed essential to consider the impact that 22 

both machine and user learning can have, and how they interact with each other. In the EEG-23 

based NFB/BCI context, machine learning usually aims at learning from examples of EEG 24 

data the user-specific EEG patterns corresponding to the target to self-regulate [44]. For 25 

instance, machine learning can be used to identify the spectral and spatial components of a 26 

user EEG signals that vary with different attention level (e.g., for ADHD NFB). Most BCI 27 

and most fMRI-NFB use machine learning techniques, while most EEG-NFB do not [35, 74]. 28 

When machine learning is used, the success of the NFB/BCI training thus depends in part on 29 

the machine learning algorithms used. On the other hand, user learning is involved in both 30 

NFB and BCI, in particular in Mental Imagery BCI [32]. User learning refers to the user 31 
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learning to self-regulate increasingly better the target neurophysiological pattern by learning 1 

from the feedback she receives during NFB/BCI training. The success of the NFB/BCI 2 

training thus also depends on the quality of the user learning, which in turns depends on the 3 

feedback and training tasks used. If machine learning is used, both machine learning and user 4 

learning interact: the machine learns to recognize the EEG patterns of the user, while the user 5 

learns to produce EEG patterns that will be recognized by the machine. This is a form of co-6 

adaption or co-learning between the machine and the user [83]. Unfortunately, while this co-7 

learning is very common in BCI and NFB, how it works and how its impacts NFB/BCI 8 

training is still mostly unknown. An open challenge is thus to understand and model this co-9 

learning, in order to design BCI/NFB training with feedbacks and machine learning 10 

algorithms whose interaction will favor an effective self-regulation and clinical outcome [47]. 11 

Thus, as illustrated in Figure 2, uni-centered approaches are not sufficient to reach a deep 12 

understanding of the NFB training process. “A human-computer interaction/human-factor 13 

standpoint”, like the one proposed by Alkoby et al. (2017) [1] and Jeunet et al. (2017&2018) 14 

[34, 35], is also needed to understand how, depending on their profile (i.e., psychological, 15 

cognitive and neurophysiological states and traits), patients interact with the training protocol 16 

and what the consequences of this interaction on learning and on clinical efficacy are. In fact, 17 

we have proposed a model combining factors that influence learning in Brain Computer 18 

Interface (BCI) and NFB (NF) [34]. The model is based substantially on the BCI literature 19 

and more specifically on Mental-Imagery-based BCIs (MI-BCIs) [33, 36]. MI-BCIs are 20 

neurotechnologies that enable a user to control an application through the completion of 21 

mental-imagery tasks such as imagining movements, i.e., motor-imagery, that are associated 22 

with a specific modulation of the user’s brain activity. Therefore, as is the case in NFB 23 

applications, MI-BCI users have to learn to modulate a target neurophysiological substrate. 24 

Consequently, the literature on BCI is of interest to better understand the factors influencing 25 

learning in NFB.  26 

 27 



 16 

 1 

Figure 2: Schematic representation of proposed approach. While some studies contribute to 2 

improving the efficacy of neurofeedback procedures by adopting either purely “human-3 

learning” or “machine learning” standpoints, we posit that a “human-computer interaction / 4 

human-factor” approach would enable deeper understanding of the processes subsuming 5 

neurofeedback-related performance and skill acquisition, and thus improve its clinical 6 

efficacy. This would provide insights into how users’ traits and states impact the efficacy of 7 

neurofeedback, notably through three types of factors, and allow training tasks and feedback 8 

to be adapted in order to better grasp the interaction and improve the efficacy of 9 

neurofeedback. For an extensive description of the factors involved in the model, see [54, 55]. 10 

Moreover, we believe that neuroplasticity indicators are important intermediate variables to 11 

be considered between NFB training/learning and clinical efficacy. We distinguish two kinds 12 

of neuroplasticity indicators: dynamic modulation indicators and synaptic plasticity (also 13 

called Hebbian plasticity) indicators. For an extensive discussion on neuroplasticity and 14 

neurofeedback, see [17, 19]. 15 

 16 

The model in Figure 2 includes three categories of factors: task-specific, 17 

cognitive/motivational and technology-acceptance related factors. As this model focuses on 18 
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MI-BCIs, the task-specific factors refer to spatial abilities, i.e., the ability to produce, 1 

transform and manipulate mental images. It is likely that in other kinds of BCI or NFB 2 

paradigms, different task-specific factors related to the targeted neurophysiological will have 3 

to be identified. The other two families of factors are more generic and do not depend upon 4 

the BCI/NFB paradigm used. They include, on the one hand, factors related to cognitive and 5 

motivational traits and states, and on the other hand, factors related to patients’ acceptance of 6 

the technology, i.e., the way they perceive the technology and consequently the way they will 7 

interact with it, e.g., to what extent they feel in control as well as their anxiety or confidence. 8 

The model suggests that the learning process during BCI or NFB training procedures is 9 

influenced by patients’ traits and states, which in turn are modulated by the perception of the 10 

technology. By considering these factors, one could design training protocols and feedback 11 

adapted to the profile of each patient and adaptive to the evolution of their states and skills as 12 

they evolve during the course of BCI or NF. Both the training tasks and the feedback can be 13 

adapted (i.e., specific to the patient’s profile - traits and states - estimated at the beginning of 14 

training) and adaptive (i.e., modified dynamically during training to fit the evolving state of 15 

the patient) in order to optimize the learning process. The first subsection is dedicated to a 16 

review of the literature on how to design efficient adapted and adaptive training tasks and 17 

feedback. Then, to evaluate the efficacy of NFB training procedures, relevant metrics of 18 

performance, skills acquisition and clinical efficacy are needed. However, to date such 19 

relevant metrics have received little attention. Thus, the second subsection describes some 20 

metrics dedicated to assessing users’ performance and skills and then discusses the 21 

relationship between these metrics and the clinical efficacy of NFB procedures. 22 

BCI principles to adapt training tasks and feedback in 23 

neurofeedback  24 

Based on an analysis of the literature, the following paragraphs present insights on how a 25 

training protocol may be adapted. The protocol comprises two main parts: training tasks and 26 

feedback. Indeed, during BCI/NFB training, the patient performs different training tasks 27 

according to the instructions provided by the system or experimenter, so as to self-regulate 28 

their EEG. They are then provided with feedback from the machine to inform them about the 29 

quality of their EEG self-regulation (see Figure 2). Thus, training tasks are neurocognitive 30 

exercises that the patient will perform, such as trying different mental strategies or trying to 31 

self-regulate the targeted EEG feature with various levels of difficulty, e.g., thresholds to 32 
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reach. The feedback is the information provided by the machine to represent real-time 1 

variations in the EEG feature and/or to guide the patient in the training task, e.g., towards a 2 

modification of their strategy. For instance, feedback can be a visual gauge or an audio sound 3 

of which the size or amplitude varies according to the EEG feature value. The following 4 

sections first present various training tasks that have been explored for BCI training, and then 5 

present different types of feedback that have been used for the same purpose. They also 6 

describe which of these tasks and feedback types are adapted and adaptive according to the 7 

users’ traits and states, or how they could be made so.  8 

Towards adapted and adaptive BCI/Neurofeedback training tasks  9 

This subsection analyzes a training task that can be adapted and adaptive in order to optimize 10 

the learning process. The type of the task and its difficulty can be adapted [59]. The type of 11 

the task comprises the psychophysiological parameter that the user is asked to modulate. This 12 

modulation can be used to control various applications. For instance, with motor imagery, the 13 

different exercise types would be the possible mental commands; e.g., motor imagery of 14 

hands, feet or tongue. The instructions serve to guide the user in knowing which exact mental 15 

command he is supposed to perform in real time (trial-by-trial). The type of the task can be 16 

adapted or adaptive. So far in the literature, adapted types do not seem to have been explored. 17 

However, adaptive BCI/NFB task types have been explored. For instance, the machine could 18 

automatically identify which psychophysiological parameter works best for the users to assist 19 

them to more easily manipulate the system. For instance, machine learning (Bandit algorithm) 20 

has been used to select the MI task type within runs (among hands, feet and tongue) in order 21 

to identify as quickly as possible for which one the user has the best performance [24]. The 22 

same could apply for NFB tasks, where the user is asked to regulate different EEG patterns 23 

from the initial ones if he is unable to regulate or produce them. 24 

The difficulty of the task may be defined by the amount of mental resources that the patient 25 

needs to engage in it in order to complete it successfully. This is related to the skills of the 26 

user at EEG self-regulation. Ideally, to ensure efficient learning, the task difficulty should 27 

match the user’s skills in order to be neither too easy - which would be boring - nor too 28 

difficult - which would be frustrating. The difficulty of the task can be adapted or adaptive, 29 

i.e., increased or decreased according to the user’s profile and the speed at which he acquires 30 

skills. Traditionally, adapted and adaptive task difficulty has been set by using a threshold 31 

initially adapted to the user’s physiology and regularly updated between sessions. It has not 32 

yet been adapted to the user’s cognitive profile, which thus remains to be explored. 33 
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Additionally, recent research is now exploring other ways to dynamically adapt the difficulty 1 

instead of changing the threshold between sessions. For instance, in McFarland et al. (2010) 2 

motor-imagery task difficulty was increased from 1D, then to 2D, and finally to 3D cursor 3 

control within sessions [52]. Another way to increase user performance and motivation is to 4 

adapt the perceived task difficulty by providing a feedback which does not comply with the 5 

real performance of the user but is positively biased or is adaptively biased [58]. Finally, the 6 

difficulty in an experimental context can differ from an ecological one, so virtual reality 7 

coupled with NF/BCI could be useful to train the subject in a more realistic environment [45]. 8 

Indeed, in these types of protocol, the level of the environmental distractors and therefore 9 

difficulty can be controlled, e.g., by increasing the speed of instructions or adding distracting, 10 

real-life, environmental noise. 11 

Adaptive difficulty can be further explored by educational theories. Indeed, instructional 12 

design theories and flow theory show that to promote progress and intrinsic motivation, a task 13 

should be engaging, often ludic and adapted to the user’s skills [48, 58]. This suggests that 14 

NFB training tasks could also follow educational theories to foster learning and intrinsic 15 

motivation. Moreover, the cognitive strategy of the user, which refers to the way the user tries 16 

to modulate the psychophysiological parameter used in the exercise, could be influenced by 17 

the instructions as well as by various feedback. 18 

Towards adapted and adaptive feedback for BCI/Neurofeedback  19 

This subsection analyzed the feedback that can be adapted and adaptive in order to optimize 20 

the learning process. Feedback is an indication provided to users that allows them to learn to 21 

modulate their brain activity. However, providing feedback that is appropriate and 22 

informative is a great challenge [48]. A substantial number of studies on BCI have focused on 23 

feedback modality, content and social features. 24 

Concerning the feedback modality, the effects of adapted and adaptive classic visual 25 

feedback, auditory feedback, tactile feedback or even multiple sensory modalities feedback 26 

have been studied. Such feedback can improve control display mapping to further enhance the 27 

sense of agency which influences the technology acceptance factor presented in Figure 2. 28 

Adapting the modality of the feedback also makes it possible to take general cognitive 29 

principles into account, e.g. the presentation of information on different modalities enables a 30 

faster response, related to the “redundant signal effect”, but it also makes it possible to adapt 31 

to the sensorial impairments of patients [41]. Moreover, virtual reality can be used to improve 32 

training by providing motivating and immersive feedback [45].  33 
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Concerning the content of feedback, some task-specific elements have been studied. For 1 

example, a key element for controlling BCI is for users to understand how their brain activity 2 

is modified when performing a task. Such representation of their brain activity can be 3 

provided by new visualization tools, e.g., TEEGI [23]. These can show users an engaging 4 

visualization of their own brain activity in real time to help them to understand which EEG 5 

patterns should be produced. 6 

Lastly, concerning social features, some original studies have provided adapted and adaptive 7 

emotional support as well as a social presence to compensate for the lack of interaction during 8 

BCI/NFB sessions by using a learning companion, see Figure 3 [63]. Each of the companion 9 

interventions was composed of an animation of its face and a spoken sentence. The feedback 10 

provided took the performances and progression of the user into account. It focused on the 11 

subject’s effort and strategy and on reinforcing good performances and progress. Results 12 

showed a beneficial impact on the user’s experience and might also indicate a differential 13 

effect on users that is yet to be verified. These results are encouraging and require further 14 

investigation. 15 
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Figure 3: Brain Computer Interface training during which PEANUT (on the left) provides 18 

user with social presence and emotional support adapted to his performance and progression 19 

[64]. 20 
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A key objective for future research should be to focus on making feedback more informative 1 

by better understanding learning processes and improving measures of performances of BCI. 2 

Moreover, a challenge arises from enriching the feedback without overloading users with 3 

more information than they can process given their capacities. Assessing cognitive abilities 4 

such as attention and providing related adaptive feedback would provide interesting insights 5 

into this issue. Overall, BCI/NFB would benefit from studies combining several of these 6 

factors and assessing the interactions between them. The goal is to provide feedback that is 7 

both adapted and adaptive to training tasks, users’ profiles, and their social and physical 8 

environment, a criterion often forgotten but which should be given more consideration by 9 

doing more ecological experiments, e.g. by using virtual reality. 10 

Redefining the assessment of BCI/Neurofeedback training 11 

efficacy  12 

The assessment of NFB training efficacy is essential to better understand the clinical efficacy 13 

of such therapeutics. Indeed, most studies that investigated the clinical efficacy of NFB did 14 

not evaluate or even report the efficacy of training [95]. Thus, it cannot be concluded whether 15 

patients gained control over their brain activity during the NFB training procedure or not. 16 

However, as learning is the most immediate result of NFB training according to the principle 17 

of NFB, it seems essential to measure the learning that takes place across sessions. As 18 

Rémond & Rémond stressed: “Doubting the effectiveness of a biofeedback treatment on a 19 

physiological variable when this treatment is carried out without previously testing the 20 

modification of this variable, is the equivalent of doubting the effectiveness of a drug to cure a 21 

disease when the drug has not been absorbed by the patient” [66].  22 

The principles behind NFB is that self-regulation of a target neurophysiological pattern 23 

underlying a cognitive function should lead to clinical benefits linked to that cognitive 24 

function. Thus, a positive clinical outcome requires that the user learned to self-regulate the 25 

target pattern. Unfortunately, as mentioned before, many NFB publications do not report any 26 

metric of user learning [22]. There is also no clear consensus on what these metrics should be. 27 

It is thus necessary to identify relevant metrics of performance reflecting user learning of self-28 

regulation. Some metrics of this sort have been recently proposed for BCI for instance [46]. 29 

Then, we will need to study how these metrics are related to the clinical outcome. Ideally, we 30 

need metrics that would enable us to compare how different feedback approaches or machine 31 

learning impact user learning, as well as to predict clinical outcome. This would enable us to 32 
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screen participants that are likely to benefit from neurofeedback as well as to identify the best 1 

NFB/BCI training methods. 2 

Thus, the following subsections first present how to assess NFB and BCI user learning by 3 

distinguishing: (i) how well users can self-regulate their EEG activity at a given time, which 4 

represents their current “performance”, and (ii) how well they acquire new skills across 5 

sessions to improve this EEG self-regulation, which represents their EEG self-regulation 6 

“skill”. The following subsection describes the issues involved in redefining such metrics in 7 

order to both (i) improve the design of adapted and adaptive training tasks and feedback in 8 

NF, and (ii) better link such metrics to neurophysiological and neuroplasticity indicators. 9 

Towards new performance and skill metrics in BCI/Neurofeedback 10 

Performance is typically assessed by using success rates as metrics , i.e., how often a) users’ 11 

NFB features successfully crossed the threshold, or b) users’ mental tasks are successfully 12 

recognized by the BCI. In both cases, a threshold is used: generally, a univariate one for 13 

classical NFB analysis in mental disorders (i.e., a single value to be crossed by the 14 

unidimensional feature value) [2], usually defined manually, or a multivariate one for BCI, 15 

the EEG classifier typically used being a multidimensional threshold on all the features used 16 

by the BCI to recognize each mental task. While success rates are typically used in NFB/BCI, 17 

it can be argued that they are a poor performance metric of user learning. Indeed, success 18 

rates are discrete and depend on the data used to determine the threshold/classifier, whereas 19 

users’ skills at EEG self-regulation are continuous and threshold/classifier-independent. This 20 

means that an improvement in EEG self-regulation might not translate into an improvement in 21 

success rates, e.g. if the threshold is too high. This also means that if the threshold or 22 

classifier is calibrated on data of poor quality, this will result in poor feedback and in a poor 23 

measure of performance based on them. To date, only a few studies have evaluated the 24 

relevance of performance metrics in BCI/NFB during a session. Recently, new metrics were 25 

proposed to study BCI user training that provide a continuous and threshold-free measure of 26 

how stable and distinct EEG patterns for each mental task are [46]. Comparisons showed that 27 

such metrics could reveal fast learning of EEG self-regulation in several BCI subjects 28 

whereas success rates sometimes did not. NFB success rates very likely have the same 29 

limitation and should thus be reconsidered when assessing NFB interventions. In any case, 30 

research into more specific and learning-related metrics of performance is needed. 31 

Skill metrics are computed to quantify learning across sessions. They are typically based on 32 

relevant performance metrics estimated on each session/run. They estimate whether these 33 
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performance metrics increase over time and sessions, which would indicate learning. An 1 

example of such a metric could be the difference between performances obtained during the 2 

previous sessions and those obtained during the first ones, or the slope of the regression line 3 

passing by the performances across sessions (the steeper the regression line, assuming 4 

increasing performances, the faster the learning). Nonetheless, so far there is no gold standard 5 

in skill metrics and the ones currently used suffer from several limitations. For instance, the 6 

metrics mentioned above are very sensitive to outliers, and a single failed session (e.g., due to 7 

a failing sensor or a tired patient) or an overly good one (due, e.g., to chance) may lead to an 8 

inadequate corresponding skill metric. Skill metrics also depend typically on the threshold 9 

used in the performance metrics. If the threshold changes across sessions, which is typically 10 

the case in NF as in BCI if the classifiers are adaptive or recalibrated regularly, then 11 

performances are not comparable between sessions and the resulting skill metric may be 12 

meaningless. Finally, performance metrics also depend on rest/baseline EEG, such baseline 13 

values typically changing at each session. As such, the performance metrics used to compute 14 

skill metrics may not be comparable with each other. Overall, there is thus a need for new 15 

relevant skill metrics that are stable, meaningful and robust to outliers, as well as for 16 

investigation into their impact on clinical efficacy. 17 

Towards optimizing clinical efficacy based on new metrics and 18 

neuroplastic approaches 19 

We need to improve our knowledge about the relevant performance and skill metrics in order 20 

to optimize the clinical efficacy of NFB. Indeed, such metrics are essential for designing 21 

adapted and adaptive training tasks and feedback in NFB. At present, the task and the 22 

feedback are adapted by NFB practitioners before and during the training procedure. An 23 

important step for NFB practitioners is determining a threshold and the kind of feedback [73, 24 

78, 85]. Adjusting a threshold and a given occupation time determines the number of positive 25 

reinforcements. Traditionally, the threshold may be set automatically or manually. When the 26 

threshold is determined automatically, it is continuously updated in order to provide patients 27 

with a positive reinforcement for a given percentage of occupation time below or above the 28 

threshold. The threshold is continuously estimated according to the signal recorded just 29 

before. However, the limitation is that the patient is rewarded only for changing his/her brain 30 

signal based on the previous averaged time period and not from the starting point, which 31 

drastically reduces the chance of learning across NFB sessions [73]. When the threshold is set 32 

manually by the professional, it is based on a baseline recorded before the NFB session. If the 33 
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number of positive reinforcements is too high or too low during the session, the threshold can 1 

be adjusted [73]. However, there is a risk of inconsistency between different NFB 2 

practitioners, as each one will adapt the task according to their own clinical experience. 3 

Moreover, different practitioners will typically take the profile of each patient into account 4 

(i.e., psychological, cognitive and neurophysiological states and traits) subjectively according 5 

to their global feeling and not according to evidence and objective features. Moreover, the 6 

clinician may not be able to evaluate a state or a trait evolution that would be crucial to adapt 7 

the training task. Strehl (2014) stressed that “the therapist will need to know the laws of 8 

learning as well as how to apply NFB training in order to be a competent partner”. However, 9 

the limitation of this standpoint is that these skills currently rely on clinical experience [26] 10 

rather than on scientific knowledge related to NFB learning processes [73, 85, 95]. Thus, the 11 

remaining challenge for assessing the efficacy of NFB therapies is to develop rigorous 12 

standards that ensure the consistency (a.k.a., fidelity - Gevensleben et al., 2012) of NFB 13 

training protocols in order to optimize the potential positive effects of NFB on learning. 14 

However, no “optimal” NFB training procedure has yet been defined, and one research 15 

challenge is to design and evaluate optimal NFB training based on relevant performance and 16 

skill metrics. 17 

The second challenge is to improve understanding about how these metrics and 18 

neuroplasticity indicators are linked in order to grasp the underlying neurophysiological 19 

mechanisms that explain EEG self-regulation and skills acquisition. If this relationship could 20 

be established, it would go a long way to validating such metrics. Indeed, as shown in Figure 21 

2, performance and skills metrics should be understood not only in terms of the training 22 

BCI/NFB task but also with regard to indicators of neuroplasticity specific to the trained 23 

neural substrate [74]. Furthermore, this relationship could be considered as an important 24 

intermediate variable between NFB training/learning and clinical efficacy. As described in the 25 

first section of this paper, there are two kinds of indicators: dynamic modulation indicators  26 

based on EEG oscillation and Hebbian-type neuroplasticity indicators [67]. Thus, as EEG-27 

based BCI/NFB tasks generally tend to modify EEG oscillations, performance metrics need to 28 

be related to dynamic modulation indicators. Maintaining the brain in a persistent oscillatory 29 

pattern improves the brain circuit so that it can produce the same pattern with a higher 30 

probability in the future [67]. Thus, as BCI/NFB trains the brain to maintain certain 31 

oscillatory patterns, skills metrics need to be related to Hebbian neuroplasticity. See Figure 2. 32 

Very few studies dedicated to the clinical efficacy of NFB have investigated such 33 
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neurophysiological indicators. Thus, in NFB, the neurophysiological relationship between 1 

dynamic modulation and deserves further attention [18, 92]. 2 

In conclusion, the human-computer interaction foundations of NFB demonstrates that training 3 

and learning are central to designing rigorous NFB protocols. Such protocols should be 4 

designed so that the induction of neuroplasticity is optimized i.e. it produces a lasting change 5 

after the training session. The relationship between NFB training performance, skills metrics 6 

and neuroplasticity induction is very exciting new ground that must now be explored in order 7 

to find new means of optimizing the clinical effect of NFB in the long term.  8 

Conclusion 9 

This paper investigated the neurophysiological, psychophysiological and human computer 10 

interaction foundations of neurofeedback. A transdisciplinary approach is now needed to 11 

evaluate rigorously the use of EEG NFB as a therapeutic tool in psychiatry. Figure 4. 12 

Notwithstanding the debate on the efficacy of NFB for treating mental disorders, this field of 13 

research remains fertile ground for innovative research in psychiatry. Neurophysiology, 14 

psychophysiology and human-computer interaction approaches of NFB pave the way for 15 

innovative research on two levels: for fundamental research attempting to define the 16 

mechanisms subsuming NFB training; and for clinical research aiming to establish better 17 

designed EEG NFB protocols, control/active groups and clinical criteria that define efficacy 18 

in terms of targeted biomarkers. 19 
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 1 

Figure 4: The quest to optimize neurofeedback protocol according to a transdisciplinary 2 

approach taking into account the neurophysiological, psychophysiological and human 3 

computer interaction bases of neurofeedback.  4 

 5 

Acknowledgments 6 

We thank Anatole Lecuyer for his participation to the second French congress on 7 

neurofeedback organized by NExT.  8 

This work was supported by the French National Research Agency within the REBEL project 9 

(grant ANR-15-CE23-0013-01), the European Research Council with the BrainConquest 10 

project (grant ERC-2016-STG-714567), the Inria Project-Lab BCI-Lift and the EPFL/Inria 11 

International Lab. 12 

 13 

Conflict of interest 14 

None to declare concerning this paper. 15 

 16 

 17 

18 



 27 

References 1 

 2 

[1] Alkoby O, Abu-Rmileh A, Shriki O, et al. Can we predict who will respond to neurofeedback? 3 
A review of the inefficacy problem and existing predictors for successful EEG neurofeedback 4 
learning. Neuroscience 2017. 5 

[2] Arns M, Batail JM, Bioulac S, et al. Neurofeedback: One of today's techniques in psychiatry? 6 
Encephale 2017: 43 (2): 135-145. 7 

[3] Arns M, Conners CK, Kraemer HC. A decade of EEG Theta/Beta Ratio Research in ADHD: a 8 
meta-analysis. J Atten Disord 2013: 17 (5): 374-83. 9 

[4] Arns M, de Ridder S, Strehl U, et al. Efficacy of neurofeedback treatment in ADHD: the effects 10 
on inattention, impulsivity and hyperactivity: a meta-analysis. Clin EEG Neurosci 2009: 40 (3): 11 
180-9. 12 

[5] Arns M, Strehl U. Evidence for efficacy of neurofeedback in ADHD? Am J Psychiatry 2013: 170 13 
(7): 799-800. 14 

[6] Bandura A. Auto-efficacité : Le sentiment d'efficacité personnelle. Paris: De Boeck, 2007. 15 
[7] Brandmeyer A, Sadakata M, Spyrou L, et al. Decoding of single-trial auditory mismatch 16 

responses for online perceptual monitoring and neurofeedback. Front Neurosci 2013: 7: 265. 17 
[8] Butefisch CM, Davis BC, Wise SP, et al. Mechanisms of use-dependent plasticity in the human 18 

motor cortex. Proc Natl Acad Sci U S A 2000: 97 (7): 3661-5. 19 
[9] Buttfield A, Ferrez P, Del R Millan J. owards a Robust BCI: Error Potentials and Online 20 

Learning. EEE Trans. Neural Syst. Rehabil. Eng 2006: 14: 164–68. 21 
[10] Cannon RL, Pigott HE, Surmeli T, et al. The problem of patient heterogeneity and lack of 22 

proper training in a study of EEG neurofeedback in children. J Clin Psychiatry 2014: 75 (3): 23 
289-90. 24 

[11] Cheon EJ, Koo BH, Choi JH. The Efficacy of Neurofeedback in Patients with Major Depressive 25 
Disorder: An Open Labeled Prospective Study. Appl Psychophysiol Biofeedback 2016: 41 (1): 26 
103-10. 27 

[12] Choi SW, Chi SE, Chung SY, et al. Is alpha wave neurofeedback effective with randomized 28 
clinical trials in depression? A pilot study. Neuropsychobiology 2011: 63 (1): 43-51. 29 

[13] Coburn KL, Lauterbach EC, Boutros NN, et al. The value of quantitative 30 
electroencephalography in clinical psychiatry: a report by the Committee on Research of the 31 
American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci 2006: 18 (4): 460-32 
500. 33 

[14] Cortese S, Ferrin M, Brandeis D, et al. Neurofeedback for Attention-Deficit/Hyperactivity 34 
Disorder: Meta-Analysis of Clinical and Neuropsychological Outcomes From Randomized 35 
Controlled Trials. J Am Acad Child Adolesc Psychiatry 2016: 55 (6): 444-55. 36 

[15] Cuthbert BN. The RDoC framework: facilitating transition from ICD/DSM to dimensional 37 
approaches that integrate neuroscience and psychopathology. World Psychiatry 2014: 13 (1): 38 
28-35. 39 

[16] Dagenais E, Leroux-Boudreault A, El-Baalbaki G, et al. Doubting the efficacy/effectiveness of 40 
electroencephalographic neurofeedback in treating children with attention-41 
deficit/hyperactivity disorder is as yet unjustified. J Clin Psychiatry 2014: 75 (7): 778-9. 42 

[17] Engel AK, Gerloff C, Hilgetag CC, et al. Intrinsic coupling modes: multiscale interactions in 43 
ongoing brain activity. Neuron 2016: 80 (4): 867-86. 44 

[18] Engelbregt HJ, Keeser D, van Eijk L, et al. Short and long-term effects of sham-controlled 45 
prefrontal EEG-neurofeedback training in healthy subjects. Clin Neurophysiol 2016: 127 (4): 46 
1931-7. 47 

[19] Enriquez-Geppert S, Huster RJ, Herrmann CS. EEG-Neurofeedback as a Tool to Modulate 48 
Cognition and Behavior: A Review Tutorial. Front Hum Neurosci 2017: 11: 51. 49 



 28 

[20] Escolano C, Navarro-Gil M, Garcia-Campayo J, et al. A controlled study on the cognitive effect 1 
of alpha neurofeedback training in patients with major depressive disorder. Front Behav 2 
Neurosci 2014: 8: 296. 3 

[21] Fouillen M, Maby E, Le Carrer L, et al. ERP-based BCI training for children with ADHD: 4 
motivations and trial design. Proceeding 7th Int. Brain-Comput. Interface Conf. Graz 2017. 5 

[22] Fovet T, Micoulaud-Franchi JA, Vialatte FB, et al. On assessing neurofeedback effects: should 6 
double-blind replace neurophysiological mechanisms? Brain 2017: 140 (10): e63. 7 

[23] Frey J, Gervais R, Fleck S, et al. Teegi: tangible EEG interface. Proceedings of the 27th annual 8 
ACM symposium on User interface software and technology 2014: 301-8. 9 

[24] Fruitet J, Carpentier A, Munos R, et al. Automatic motor task selection via a bandit algorithm 10 
for a brain-controlled button. J Neural Eng 2013: 10 (1): 016012. 11 

[25] Gaume A, Vialatte A, Mora-Sánchez A, et al. A psychoengineering paradigm for the 12 
neurocognitive mechanisms of biofeedback and neurofeedback. Neurosci Biobehav Rev 13 
2016: doi: 10.1016/j.neubiorev.2016.06.012. 14 

[26] Gevensleben H, Rothenberger A, Moll GH, et al. Neurofeedback in children with ADHD: 15 
validation and challenges. Expert Rev Neurother 2012: 12 (4): 447-60. 16 

[27] Ghaziri J, Tucholka A, Larue V, et al. Neurofeedback training induces changes in white and 17 
gray matter. Clin EEG Neurosci 2013: 44 (4): 265-72. 18 

[28] Halder S, Varkuti B, Bogdan M, et al. Prediction of brain-computer interface aptitude from 19 
individual brain structure. Front Hum Neurosci 2013: 7: 105. 20 

[29] Hegerl U, Hensch T. The vigilance regulation model of affective disorders and ADHD. 21 
Neurosci Biobehav Rev 2012: 44: 45-57. 22 

[30] Heilbronner SR, Hayden BY. Dorsal Anterior Cingulate Cortex: A Bottom-Up View. Annu Rev 23 
Neurosci 2016: 39: 149-70. 24 

[31] Insel T, Cuthbert B, Garvey M, et al. Research domain criteria (RDoC): toward a new 25 
classification framework for research on mental disorders. Am J Psychiatry 2010: 167 (7): 26 
748-51. 27 

[32] Jeunet C, Glize B, McGonigal A, et al. Using EEG-based brain computer interface and 28 
neurofeedback targeting sensorimotor rhythms to improve motor skills: Theoretical 29 
background, applications and prospects. Neurophysiol Clin 2018. 30 

[33] Jeunet C, Jahanpour E, Lotte F. Why Standard Brain-Computer Interface (BCI) Training 31 
Protocols Should be Changed: An Experimental Study. Journal of Neural Engineering 2016: 13 32 
(3). 33 

[34] Jeunet C, Lotte F, Batail J-M, et al. How to improve clinical neurofeedback using a human-34 
factor centered standpoint? A short review of the insights provided by the literature on BCI. 35 
Neuroscience In revision. 36 

[35] Jeunet C, Lotte F, Batail JM, et al. Using Recent BCI Literature to Deepen our Understanding 37 
of Clinical Neurofeedback: A Short Review. Neuroscience 2018: 378: 225-233. 38 

[36] Jeunet C, N'Kaoua B, Lotte F. Advances in user-training for mental-imagery-based BCI control: 39 
Psychological and cognitive factors and their neural correlates. Prog Brain Res 2016: 228: 3-40 
35. 41 

[37] Johnson R, Jr. Scalp-recorded P300 activity in patients following unilateral temporal 42 
lobectomy. Brain 1988: 111 ( Pt 6): 1517-29. 43 

[38] Johnstone SJ, Barry RJ, Clarke AR. Ten years on: a follow-up review of ERP research in 44 
attention-deficit/hyperactivity disorder. Clin Neurophysiol 2013: 124 (4): 644-57. 45 

[39] Kamiya J. Biofeedback training in voluntary control of EEG alpha rhythms. Calif Med 1971: 46 
115 (3): 44. 47 

[40] Kluetsch RC, Ros T, Theberge J, et al. Plastic modulation of PTSD resting-state networks and 48 
subjective wellbeing by EEG neurofeedback. Acta Psychiatr Scand 2014: 130 (2): 123-36. 49 

[41] Kubler A, Furdea A, Halder S, et al. A brain-computer interface controlled auditory event-50 
related potential (p300) spelling system for locked-in patients. Ann N Y Acad Sci 2009: 1157: 51 
90-100. 52 



 29 

[42] Levesque J, Beauregard M, Mensour B. Effect of neurofeedback training on the neural 1 
substrates of selective attention in children with attention-deficit/hyperactivity disorder: a 2 
functional magnetic resonance imaging study. Neurosci Lett 2006: 394 (3): 216-21. 3 

[43] Linden DE. Neurofeedback and networks of depression. Dialogues Clin Neurosci 2014: 16 (1): 4 
103-12. 5 

[44] Lotte F, Bougrain L, Cichocki A, et al. A review of classification algorithms for EEG-based 6 
brain–computer interfaces: a 10 year update. Journal of neural engineering 2018: 15 (3): 7 
031005. 8 

[45] Lotte F, Faller J, Guger C, et al. Combining BCI with virtual reality: towards new applications 9 
and improved BCI. Towards Practical Brain-Computer Interfaces 2012: 197-220. 10 

[46] Lotte F, Jeunet C. Defining and quantifying users’ mental imagery-based BCI skills: a first step. 11 
. Journal of neural engineering 2018: 15 (4): 046030. 12 

[47] Lotte F, Jeunet C, Mladenovic J, et al. A BCI challenge for the signal processing community: 13 
considering the user in the loop. IET Book ‘Signal Processing and Machine Learning for Brain-14 
Machine Interfaces’: Tanaka & Arvaneh, 2018. 15 

[48] Lotte F, Larrue F, Muhl C. Flaws in current human training protocols for spontaneous Brain-16 
Computer Interfaces: lessons learned from instructional design. Front Hum Neurosci 2013: 7: 17 
568. 18 

[49] Maby E, Perrin M, Bertrand O, et al. BCI Could Make Old Two-Player Games Even More Fun: 19 
A Proof of Concept with “Connect Four”. . Adv. Hum.-Comput. Interact. 2012 (1-8). 20 

[50] Mano M, Lecuyer A, Bannier E, et al. How to Build a Hybrid Neurofeedback Platform 21 
Combining EEG and fMRI. Front Neurosci 2017: 11: 140. 22 

[51] Mattout J, Perrin M, Bertrand O, et al. Improving BCI performance through co-adaptation: 23 
applications to the P300-speller. Ann Phys Rehabil Med 2015: 58 (1): 23-8. 24 

[52] McFarland DJ, Sarnacki WA, Wolpaw JR. Electroencephalographic (EEG) control of three-25 
dimensional movement. J Neural Eng 2010: 7 (3): 036007. 26 

[53] Mehler DMA, Sokunbi MO, Habes I, et al. Targeting the affective brain-a randomized 27 
controlled trial of real-time fMRI neurofeedback in patients with depression. 28 
Neuropsychopharmacology 2018: 43 (13): 2578-2585. 29 

[54] Micoulaud Franchi J, Geoffroy P, Fond G, et al. EEG Neurofeedback treatments in children 30 
with ADHD: An updated meta-analysis of Randomized Controlled Trials. Front Hum Neurosc. 31 
2014: doi: 10.3389/fnhum.2014.00906. 32 

[55] Micoulaud Franchi JA, Pallanca O. Neurofeedback. In: Vion Dury J, Balzani C, Micoulaud 33 
Franchi JA, eds. Neurophysiologie clinique en psychiatrie. Paris: Elsevier Masson, pp. 185-34 
212, 2015. 35 

[56] Micoulaud-Franchi JA, Fovet T. Neurofeedback: time needed for a promising non-36 
pharmacological therapeutic method. Lancet Psychiatry 2016: 3 (9): e16. 37 

[57] Micoulaud-Franchi JA, McGonigal A, Lopez R, et al. Electroencephalographic neurofeedback: 38 
Level of evidence in mental and brain disorders and suggestions for good clinical practice. 39 
Neurophysiol Clin 2015: 45 (6): 423-33. 40 

[58] Mladenovic J, Frey J, Bonnet-Save M, et al. The Impact of Flow in an EEG-based Brain 41 
Computer Interface. 7th International Graz BCI Conference 2017. 42 

[59] Mladenovic J, Mattout J, Lotte F. A Generic Framework for EEG based BCI training and 43 
operation. BCI Handbook: Technological and Theoretical Advances 2917. 44 

[60] Olbrich S, Mulert C, Karch S, et al. EEG-vigilance and BOLD effect during simultaneous 45 
EEG/fMRI measurement. Neuroimage 2009: 45 (2): 319-32. 46 

[61] Papoutsi M, Weiskopf N, Langbehn D, et al. Stimulating neural plasticity with real-time fMRI 47 
neurofeedback in Huntington's disease: A proof of concept study. Hum Brain Mapp 2018: 39 48 
(3): 1339-1353. 49 

[62] Perronnet L, Lecuyer A, Mano M, et al. Unimodal Versus Bimodal EEG-fMRI Neurofeedback 50 
of a Motor Imagery Task. Front Hum Neurosci 2017: 11: 193. 51 



 30 

[63] Pillette L, Jeunet C, Mansencal B, et al. PEANUT: Personalised Emotional Agent for 1 
Neurotechnology User-Training. 7th International BCI Conference 2017. 2 

[64] Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 2007: 118 3 
(10): 2128-48. 4 

[65] Rayner G, Jackson G, Wilson S. Cognition-related brain networks underpin the symptoms of 5 
unipolar depression: Evidence from a systematic review. Neurosci Biobehav Rev 2016: 61: 6 
53-65. 7 

[66] Rémond A, Rémond A. Biofeedback : principes et applications. Paris: Masson, 1997. 8 
[67] Ros T, B JB, Lanius RA, et al. Tuning pathological brain oscillations with neurofeedback: a 9 

systems neuroscience framework. Front Hum Neurosci 2014: 8: 1008. 10 
[68] Ros T, B JB, Lanius RA, et al. Tuning pathological brain oscillations with neurofeedback: a 11 

systems neuroscience framework. Front Hum Neurosci 2016: 8: 1008. 12 
[69] Ros T, Munneke MA, Ruge D, et al. Endogenous control of waking brain rhythms induces 13 

neuroplasticity in humans. Eur J Neurosci 2010: 31 (4): 770-8. 14 
[70] Ros T, Theberge J, Frewen PA, et al. Mind over chatter: plastic up-regulation of the fMRI 15 

salience network directly after EEG neurofeedback. Neuroimage 2013: 65: 324-35. 16 
[71] Savitz JB, Rauch SL, Drevets WC. Clinical application of brain imaging for the diagnosis of 17 

mood disorders: the current state of play. Mol Psychiatry 2013: 18 (5): 528-39. 18 
[72] Seifert J, Scheuerpflug P, Zillessen KE, et al. Electrophysiological investigation of the 19 

effectiveness of methylphenidate in children with and without ADHD. J Neural Transm 20 
(Vienna) 2003: 110 (7): 821-9. 21 

[73] Sherlin LH, Arns M, Lubar J, et al. Neurofeedback and basic lerning therory: implications for 22 
research and practice. Journal of Neurotherapy 2011: 15 (4): 292-304. 23 

[74] Sitaram R, Ros T, Stoeckel L, et al. Closed-loop brain training: the science of neurofeedback. 24 
Nat Rev Neurosci 2016: 18 (2): 86-100. 25 

[75] Sonuga-Barke E, Brandeis D, Cortese S, et al. Response to Chronis-Tuscano et al. and Arns 26 
and Strehl. Am J Psychiatry 2013: 170 (7): 800-2. 27 

[76] Sonuga-Barke EJ, Brandeis D, Cortese S, et al. Nonpharmacological interventions for ADHD: 28 
systematic review and meta-analyses of randomized controlled trials of dietary and 29 
psychological treatments. Am J Psychiatry 2013: 170 (3): 275-89. 30 

[77] Sterman MB, Howe RC, Macdonald LR. Facilitation of spindle-burst sleep by conditioning of 31 
electroencephalographic activity while awake. Science 1970: 167 (3921): 1146-8. 32 

[78] Strehl U. What learning theories can teach us in designing neurofeedback treatments. Front 33 
Hum Neurosci 2014: 8: 894. 34 

[79] Thibault RT, Raz A. Neurofeedback: the power of psychosocial therapeutics. Lancet 35 
Psychiatry 2016: 3 (11): e18. 36 

[80] Thibault RT, Raz A. When can neurofeedback join the clinical armamentarium? Lancet 37 
Psychiatry 2016: 3 (6): 497-8. 38 

[81] van Dongen-Boomsma M. Dr van Dongen-Boomsma replies. J Clin Psychiatry 2014: 75 (7): 39 
779. 40 

[82] van Dongen-Boomsma M, Vollebregt MA, Slaats-Willemse D, et al. Dr van Dongen-Boomsma 41 
and colleagues reply. J Clin Psychiatry 2014: 75 (3): 290. 42 

[83] Vidaurre C, Sannelli C, Müller KR, et al. Co-adaptive calibration to improve BCI efficiency. 43 
Journal of neural engineering 2011: 8 (2): 025009. 44 

[84] Vion-Dury J, Balzani C, Cermolaccce M. Modalités d'acquisition et d'analyse du signal EEG. In: 45 
Vion Dury J, Balzani C, Micoulaud Franchi JA, eds. Neurophysiologie clinique en psychiatrie. 46 
paris: Elsevier Masson, 2015. 47 

[85] Vollebregt MA, van Dongen-Boomsma M, Slaats-Willemse D, et al. What future research 48 
should bring to help resolving the debate about the efficacy of EEG-neurofeedback in 49 
children with ADHD. Front Hum Neurosci 2014: 8: 321. 50 

[86] Witte M, Kober SE, Ninaus M, et al. Control beliefs can predict the ability to up-regulate 51 
sensorimotor rhythm during neurofeedback training. Front Hum Neurosci 2013: 7: 478. 52 



 31 

[87] Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interfaces for communication 1 
and control. Clin Neurophysiol 2002: 113 (6): 767-91. 2 

[88] Woodman GF. A brief introduction to the use of event-related potentials in studies of 3 
perception and attention. Atten Percept Psychophys 2010: 72 (8): 2031-46. 4 

[89] Young KD, Siegle GJ, Zotev V, et al. Randomized Clinical Trial of Real-Time fMRI Amygdala 5 
Neurofeedback for Major Depressive Disorder: Effects on Symptoms and Autobiographical 6 
Memory Recall. Am J Psychiatry 2017: 174 (8): 748-755. 7 

[90] Young KD, Zotev V, Phillips R, et al. Real-time FMRI neurofeedback training of amygdala 8 
activity in patients with major depressive disorder. PLoS One 2014: 9 (2): e88785. 9 

[91] Zich C, Debener S, Schweinitz C, et al. High-Intensity Chronic Stroke Motor Imagery 10 
Neurofeedback Training at Home: Three Case Reports. Clin EEG Neurosci 2017: 48 (6): 403-11 
412. 12 

[92] Zoefel B, Huster RJ, Herrmann CS. Neurofeedback training of the upper alpha frequency band 13 
in EEG improves cognitive performance. Neuroimage 2011: 54 (2): 1427-31. 14 

[93] Zotev V, Phillips R, Yuan H, et al. Self-regulation of human brain activity using simultaneous 15 
real-time fMRI and EEG neurofeedback. Neuroimage 2014: 85 Pt 3: 985-95. 16 

[94] Zotev V, Yuan H, Misaki M, et al. Correlation between amygdala BOLD activity and frontal 17 
EEG asymmetry during real-time fMRI neurofeedback training in patients with depression. 18 
Neuroimage Clin 2016: 11: 224-38. 19 

[95] Zuberer A, Drandeis D, Drechsler R. Are treatment effects of neurofeedback training in 20 
children with ADHD related to the successful regulation of brain activity? A review on the 21 
learning of regulation of brain activity and a contribution to the discussion on specificity. 22 
Front Hum Neurosc. 2015: doi: 10.3389/fnhum.2015.00135. 23 

 24 


	* Corresponding author:
	Dr. MICOULAUD FRANCHI Jean-Arthur
	Services d'explorations fonctionnelles du système nerveux, Clinique du sommeil, CHU de Bordeaux, Place Amélie Raba-Leon, 33076 Bordeaux
	E-mail address: jarthur.micoulaud@gmail.com
	Introduction
	Neurofeedback and its neurophysiological foundations
	From electroencephalographic oscillations to neurofeedback
	From electroencephalographic oscillations to neuroplasticity
	Hebbian plasticity and neurofeedback
	Homeostatic plasticity and neurofeedback

	Towards new neurophysiological measures of neuroplastic effects of neurofeedback

	Neurofeedback and its psychophysiological foundations
	Dimensional approach for neurofeedback in psychiatry
	A proposed EEGcopia for neurofeedback in psychiatry
	Linking brain / mental processes and psychiatric disorders
	The emblematic research field of depression
	The emblematic research field of ADHD and P300-based training


	Neurofeedback and its human-computer interaction foundations
	A human computer interaction model for neurofeedback
	BCI principles to adapt training tasks and feedback in neurofeedback
	Towards adapted and adaptive BCI/Neurofeedback training tasks
	Towards adapted and adaptive feedback for BCI/Neurofeedback

	Redefining the assessment of BCI/Neurofeedback training efficacy
	Towards new performance and skill metrics in BCI/Neurofeedback
	Towards optimizing clinical efficacy based on new metrics and neuroplastic approaches


	Conclusion

