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Abstract 

Diesel exhaust particles (DEPs) are common environmental air pollutants known to impair 

expression and activity of drug detoxifying proteins, including hepatic ATP-binding cassette 
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(ABC) drug transporters. The present study was designed to determine whether organic DEP 

extract (DEPe) may also target ABC drug transporters in bronchial cells. DEPe (10 µg/mL) 

was demonstrated to induce mRNA and protein expression of the multidrug resistance-

associated protein (MRP) 3 in cultured bronchial epithelial BEAS-2B cells, whereas mRNA 

levels of other MRPs, multidrug resistance gene 1 or breast cancer resistance protein were 

unchanged, reduced or not detected. DEPe also increased MRP3 mRNA expression in normal 

human bronchial epithelial cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway 

by AhR antagonists or AhR silencing, as well as the silencing of nuclear-factor-E2-related 

factor 2 (Nrf2) repressed DEPe-mediated MRP3 induction. This underlines the implication of 

the AhR and Nrf2 signaling cascades in DEPe-mediated MRP3 regulation. DEPe was 

additionally demonstrated to directly inhibit MRP activity in BEAS-2B cells, in a 

concentration-dependent manner. Taken together, these data indicate that DEPs may impair 

expression and activity of MRPs, notably MRP3, in human bronchial cells, which may have 

consequences in terms of lung barrier and toxicity for humans exposed to diesel pollution.   

Key-words: Drug transporter; MRP3; diesel exhaust; bronchial cells; aryl hydrocarbon 

receptor; Nrf2. 

 

 

 

 

 

1. Introduction 
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Human ATP-binding cassette (ABC) drug transporters are plasma membrane proteins 

mediating cellular efflux of xenobiotics (Schinkel and Jonker, 2003). They have been 

historically characterized as efflux pumps reducing anticancer drug accumulation in cancer 

cells and thus conferring multidrug resistance (MDR) (Glavinas et al., 2004). They have next 

been shown to be expressed at various anatomical/histological sites, known to play a major 

role for xenobiotic disposition, such as intestine, blood-tissue barriers like the blood-brain 

barrier, liver and kidney (Konig et al., 2013). In this way, ABC drug transporters play a major 

role in the different steps of pharmacokinetics, which are absorption, distribution and hepatic 

and renal elimination (Giacomini et al., 2010), and beyond, in drug efficacy and toxicity 

(DeGorter et al., 2012). Modulation of their activity and/or their expression may therefore 

have notable consequences for drug disposition and activity, and has consequently to be 

addressed during the pharmaceutical development of new molecular entities according to a 

regulatory point of view (Prueksaritanont et al., 2013).  

ABC transporters, including P-glycoprotein, encoded by the MDR1 (ABCB1) gene, 

breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 

(MRP) 1 (ABCC1), are also expressed in the lung epithelium (Courcot et al., 2012; Endter et 

al., 2007; Sakamoto et al., 2015). They therefore likely contribute to the lung barrier and, in 

this way, may be involved in pulmonary absorption of xenobiotics (Bosquillon, 2010; 

Ehrhardt et al., 2017), including that of noxious compounds such as air pollutants and 

cigarette smoke components (van der Deen et al., 2005). They may also participate in lung 

protection towards volatile toxicants (Leslie et al., 2005). They may additionally be involved 

in the release of inflammatory mediators such as uric acid, leukotrienes and prostaglandins, 

which are substrates for some ABC transporters (Nakayama et al., 2011; Rius et al., 2008). 

This may contribute to lung toxicity caused by air pollutants (Gold et al., 2016; Schneider et 

al., 2005). The potential relationship between ABC transporters and atmospheric pollutants is 
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moreover supported by the fact that diesel exhaust particle (DEP) extract (DEPe) as well as 

cigarette smoke condensate (CSC) have been shown to induce expression of BCRP, MRP3 

(ABCC3) and MRP4 (ABCC4) in cultured human hepatic cells (Le Vee et al., 2015; Sayyed et 

al., 2016). However, whether pulmonary expression of ABC drug transporters may also be 

regulated by inhaled pollutants remains mainly unknown. The lung being the primary and 

main site of exposure to these pollutants, their effects on pulmonary expression of ABC drug 

transporters are probably important to assess. In order to gain insights about this point in the 

present study, and owing to the relevance of human exposure to diesel exhaust (Steiner et al., 

2016), we have analyzed the effects of DEPe on ABC drug transporter expression in human 

bronchial epithelial BEAS-2B cells, used here as in vitro lung epithelium model responsive to 

DEPe (Cao et al., 2010; Le Vee et al., 2016). Our data demonstrate that treatment by DEPe 

induces expression of the ABC transporter MRP3 in BEAS-2B cells, in an aryl hydrocarbon 

receptor (AhR)- and nuclear-factor-E2-related factor 2 (Nrf2)-dependent manner. Such data 

support the idea that air pollutants, including DEPs, may target ABC transporters in the lung.  

 

2. Materials and Methods 

2.1 Chemicals  

DEPe used in the study was the standard reference material (SRM) 1975, provided by 

the National Institute of Standards and Technology (Gaithersburg, MD, USA). It is a 

dichloromethane extract of filter-collected combustion particulate matter, referenced as SRM 

2975, from operating forklifts with diesel engines (Hughes et al., 1997). It notably contains 

polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (Manzano et al., 2013). For cell 

exposure, dichloromethane was evaporated under nitrogen and the final residue was dissolved 

in dimethyl sulfoxide (DMSO). Probenecid, sulforaphane, benzo(a)pyrene (B(a)P), 
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StemRegenin-1 and pifithrin-α were purchased from Sigma-Aldrich (Saint-Quentin Fallavier, 

France), whereas 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was obtained from Cambridge 

Isotope Laboratories (Cambridge, MA, USA). Carboxy-2,7-dichlorofluorescein (CF) diacetate 

was from Life Technologies (Paisley, United Kingdom).  

2.2 Cell culture 

The human bronchial epithelial cell line BEAS-2B as well as normal human bronchial 

epithelial (NHBE) cells (isolated from epithelial lining of airways above bifurcation of the 

lungs from normal donors and provided by Lonza, Basel, Switzerland) were cultured in 

BEBMTM bronchial epithelial cell growth basal medium, supplemented with BEGMTM 

bronchial epithelial cell growth medium BulletKitTM (Lonza). BEAS-2B cells were usually 

seeded at 18 x 103 cells/cm2 and treated by DEPe at confluency stage. Chemicals were 

initially dissolved in DMSO and stored frozen as stock solutions until use. Final concentration 

of solvent in culture media did not exceed 0.2% (vol/vol); control cultures received the same 

dose of DMSO as for their treated counterparts. When chemical inhibitors were used, they 

were added 15 min before DEPe treatment. 

2.3 Cytotoxicity assay 

Cellular apoptosis or necrosis were investigated through cell staining with 10 μg/mL 

Hoechst 33342 and 1 μg/mL propidium iodide for 15 min at 37 °C, as previously described 

(Sayyed et al., 2016). Apoptotic cells, i.e., cells with condensed blue chromatin or fragmented 

blue nuclei, and necrotic cells, i.e., cells with red nuclei, were next counted in comparison 

with total cell population using fluorescence microscopy. The percentage of viable cells, 

defined as non-apoptotic and non-necrotic cells, was deduced by subtracting the percentages 

of apoptotic and necrotic cells from 100% (total cell number).  

2.4 RNA isolation and analysis  
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Total RNAs were extracted from cells using the TRI reagent (Sigma-Aldrich), and 

were then reverse-transcribed to cDNA using the reverse-transcription (RT) kit from Applied 

Biosystems (Foster City, CA, USA). Quantitative polymerase chain reaction (qPCR) assays 

were next performed using the fluorescent dye SYBR Green methodology and a CFX384 

real-time PCR detection system (Bio-Rad, Marnes-la-Coquette, France), as previously 

described (Mayati et al., 2018). Gene primers are described in Table S1. The specificity of 

each gene amplification was verified at the end of qPCR reactions through analysis of 

dissociation curves of the PCR products. Amplification curves were analyzed with CFX 

Manager software (Bio-Rad), using the comparative cycle threshold method. Relative 

quantification of the steady-state target mRNA levels was calculated after normalization of 

the total amount of cDNA tested to the 18S rRNA endogenous reference, using the 2(−ΔΔCt) 

method. Data were finally commonly expressed as fold change comparatively to control 

untreated cells or in arbitrary units relatively to 18S rRNA content (Moreau et al., 2011).  

2.4 RNA interference assays 

Control non-targeting siRNAs (siNT) or siRNAs targeting AhR (siAhR) or Nrf2 

(siNrf2), provided by Sigma-Aldrich and prepared in Opti-MEM medium (ThermoFischer 

Scientific, Waltham, MA, USA) at a final 0.4 µM concentration, were incubated overnight at 

37°C in the presence of 12 μL/mL of Lipofectamine RNAiMax TM (ThermoFisher Scientific) 

with BEAS-2B cells plated in 24 wells plates. Transfected BEAS-2B cells were next 

maintained in usual medium for 48 h before treatment by DEPe.  

2.5 Western-blotting 

Total protein extracts were prepared from BEAS-2B cells as previously reported (Le 

Vee et al., 2016). Protein were then separated on polyacrylamide gel and electrophoretically 

transferred onto Protan® nitrocellulose membranes (Whatman GmbH, Dassel, Germany). 

After blocking with Tris-buffered saline containing 4 % (vol/vol) bovine serum albumin and 
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0.1% (vol/vol) Tween 20 for 30 min at room temperature, membranes were incubated 

overnight at 4°C with primary antibodies against MRP3 (clone M3II-9) (Enzo Life Sciences, 

Villeurbanne, France) or p38 (clone C20) (Santa Cruz Biotechnology, Dallas, TX, USA). 

After washing, membranes were next re-incubated with appropriate horseradish peroxidase-

conjugated secondary antibodies (Dako, Glostrup, Denmark). Immunolabeled proteins were 

finally visualized by chemiluminescence. Gel loading and transfer were verified by staining 

membranes with Ponceau red. Densitometry with ImageJ 1.40g software (National Institutes 

of Health, Bethesda, MD, USA) was used to quantify intensities of stained bands and for 

normalization to p38 content.  

2.6   MRP activity assay 

MRP activity was analyzed through measuring intracellular retention of the MRP 

substrate CF, as previously described (Jouan et al., 2016). Briefly, BEAS-2B cells were 

incubated at 37°C with 3 μM CF diacetate for 30 min. After washing in phosphate-buffered 

saline, cells were re-incubated in CF diacetate-free medium at 37°C for 60 min in the 

presence or absence of DEPe or of 2 mM probenecid, a reference inhibitor of MRPs (Rosati et 

al., 2004). Intracellular retention of CF was next determined by spectrofluorimetry (excitation 

and emission wavelengths were 485 and 535 nm, respectively) using a SpectraMax Gemini 

SX spectrofluorometer (Molecular Devices, Sunnyvale, CA, USA). Protein content was in 

parallel determined by the Bradford method. Data were expressed as % of CF initial loading, 

as CF fluorescence arbitrary unit/mg protein or as % of MRP activity according to the 

following equation: 

% MRP activity =
(CF RetentionProbenecid

 - CF RetentionDEPe) x 100

CF RetentionProbenecid
 - CF RetentionControl

 

             (1) 
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with CF RetentionProbenecid = CF retention in the presence of probenecid, CF RetentionDEPe = 

CF retention in the presence of DEPe and CF RetentionControl = CF retention in control cells 

not exposed to probenecid or DEPe. 

2.7 Statistical analysis 

Quantitative data were usually expressed as means ± SEM. Data were statistically 

analyzed using Student's t test or analysis of variance (ANOVA) followed by Dunnett’s or 

Newman-Keuls post-hoc test. The criterion of significance was p < 0.05. Half maximal 

inhibitory concentration (IC50) value of DEPe towards MRP activity was determined using 

GraphPad Prism software (GraphPad Software, La Jolla, CA), through nonlinear regression 

based on the four parameter logistic function. 

3. Results 

3.1 Induction of MRP3 expression by DEPe 

BEAS-2B cells were first exposed for 48 h to 10 µg/mL DEPe, a DEPe concentration 

in the range of those previously used for treating cultured cells (Bach et al., 2015; Le Vee et 

al., 2015; Mundandhara et al., 2006). Such a treatment failed to trigger apoptosis or necrosis 

(Fig. 1). Among ABC transporter mRNA expressions, that of MDR1 was not detected in both 

untreated control BEAS-2B cells and DEPe-exposed counterparts (Fig. 2A). Those of BCRP, 

MRP2, MRP5 and MRP6 were low in untreated BEAS-2B cells (mRNA level means < 2 

arbitrary units) and were either unchanged (BCRP and MRP5) or reduced (MRP2 and MRP6) 

by DEPe (Fig. 2A). MRP1, MRP3 and MRP4 were the most expressed ABC drug transporters 

in BEAS-2B cells (mRNA level means > 8 arbitrary units). DEPe treatment decreased MRP1 

and MRP4 levels, by 1.5 ± 0.2-fold and 1.6 ± 0.1-fold factors, respectively; by contrast, it 

induced that of MRP3 by a 3.3 ± 0.9-fold factor. As (i) MRP3 was the ABC drug transporter 

exhibiting the higher mRNA expression in BEAS-2B cells (Fig. 2A), (ii) it was the only to 
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display mRNA up-regulation in response to DEPe and (iii) it may be implicated in lung 

diseases, notably in lung cancers (Hanada et al., 2008; Young et al., 1999), we decided to 

focus the next studies on DEPe-mediated MRP3 up-regulation. Time-course analysis (Fig. 

2B) indicated that a short DEPe-treatment (8 h) failed to induce MRP3 mRNA expression, in 

contrast to longer treatments (24 h and 48 h). DEPe-mediated MRP3 mRNA up-regulation 

was next shown to be concentration-dependent, i.e., it required a 10 µg/mL DEPe 

concentration, whereas lower concentrations (from 0.1 to 5 µg/mL) were inactive (Fig. 2C). 

The effects of DEPe concentrations higher than 10 µg/mL on MRP3 mRNA levels were not 

studied as such concentrations were found to be cytotoxic (data not shown). DEPe was 

demonstrated to enhance MRP3 protein expression in BEAS-2B cells by a 2.6-fold factor 

(Fig. 2D). Finally, we investigated the effects of DEPe on MRP3 expression in NHBE cells 

from three donors. Constitutive MRP3 mRNA levels were clearly detectable (mRNA level>2 

arbitrary units) in NHBE cells from each donor (Fig. S1). DEPe (10 µg/ mL) was found to 

induce MRP3 mRNA expression in these NHBE cells by a 5.7 ± 0.7-fold factor (Fig. 2E). 

3.2 Inhibition of MRP activity by DEPe 

DEPe has previously been shown to inhibit MRP2-like activity in human hepatic 

HepaRG cells (Le Vee et al., 2015). As MRPs, notably MRP1, MRP2 and MRP3, share 

numerous inhibitors (Payen et al., 2000; Zhou et al., 2008), DEPe may be postulated to also 

block MRP activity in bronchial BEAS-2B cells. To test this hypothesis, we initially loaded 

BEAS-2B cells with the generic MRP substrate CF and next analyzed the efflux of the dye in 

the absence or presence of 10 µg/mL DEPe or of 2 mM probenecid. As shown in Fig. 3A, 

BEAS-2B cells exhibited probenecid-inhibitable efflux of CF, indicating that they 

constitutively displayed MRP activity. Addition of 10 µg/mL DEPe during the efflux period 

significantly enhanced CF retention in BEAS-2B cells, indicating that DEPe inhibited MRP 

activity. This inhibitory effect towards MRP activity was next shown to be concentration-
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dependent (DEPe IC50 value = 10.0 µg/mL) (Fig. 3B). We next investigated whether BEAS-

2B cells exposed to DEPe treatment conditions known to trigger MRP3 induction, i.e., a 48 h 

exposure to 10 µg/mL DEPe, exhibit impaired MRP activity. For such a purpose, DEPe was 

withdrawn during the efflux assay, in order to study only the effects of the prior 48 h exposure 

to DEPe. As indicated in Fig. 3C, the levels of CF retention after the efflux phase were not 

different in both untreated and DEPe-exposed cells.  

3.3 Implication of AhR in DEPe-mediated MRP3 induction 

The regulatory effects of DEPe towards hepatic transporter expression implicate AhR 

(Le Vee et al., 2015), a xenobiotic-sensing receptor known to be activated by some 

components of DEPe, notably PAHs (Mason, 1994; Palkova et al., 2015). We therefore 

studied the implication of AhR in DEPe-mediated induction of MRP3 in bronchial BEAS-2B 

cells. The AhR pathway was first shown to be activated by DEPe in BEAS-2B cells, as 

demonstrated by (i) the up-regulation of the reference AhR target gene cytochrome P-450 

(CYP) 1B1 (Nebert et al., 2004) in DEPe-exposed BEAS-2B cells and (ii) the suppression of 

this up-regulation by co-treatment with StemRegenin-1, a potent antagonist of AhR (Boitano 

et al., 2010) (Fig. 4A). CYP1B1 mRNA induction was maximal at an 8 h exposure to DEPe 

(Fig. S2) and was thus faster than that of MRP3 (Fig. 2B). The AhR blocker StemRegenin-1 

hindered MRP3 mRNA up-regulation due to DEPe (Fig. 4A). Transfection of BEAS-2B cells 

with siRNAs directed against AhR, resulting in a strong repression of AhR mRNA by a 3.8 ± 

0.3-fold factor (Fig. S3), inhibited DEPe-mediated up-regulation of CYP1B1 and MRP3 (Fig. 

4B). To determine if AhR activation was sufficient to trigger MRP3 induction, we next 

studied the effects of TCDD, a potent and reference activator of AhR (Okey et al., 1994). As 

shown in Fig. 4C, TCDD markedly induced mRNA expression of CYP1B1, but failed to 

enhance that of MRP3. By contrast, exposure of BEAS-2B cells to the prototypical PAH 

B(a)P increased both CYP1B1 and MRP3 mRNA levels (Fig. 4C). 
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3.4 Implication of Nrf2 in DEPe-mediated MRP3 induction 

As Nrf2, a transcription factor activated by oxidative stress (Nguyen et al., 2004), is 

involved in both MRP3 regulation (Mahaffey et al., 2009) and DEP effects (Jaguin et al., 

2015; Li et al., 2004), we analyzed its role in MRP3 up-regulation by DEPe. We first 

demonstrated that the Nrf2-related MRP3 regulation pathway was active in BEAS-2B cells, 

through showing that sulforaphane, a potent Nrf2 activator (Thimmulappa et al., 2002), 

induced MRP3 mRNA and protein expression in BEAS-2B cells (Fig. 5A and 5B). DEPe 

exposure was next shown to induce mRNA expression of the reference Nrf2 target genes 

NQO1 (Tanigawa et al., 2007) and HO-1 (Alam and Cook, 2003) (Fig. 5C), indicating that 

the Nrf2 signaling pathway was activated by DEPe in BEAS-2B cells, as already 

demonstrated in other lung cell lines (Baulig et al., 2003). Transfection of BEAS-2B cells by 

siRNAs targeting Nrf2, which reduced Nrf2 mRNA expression by a 3.7 ± 0.4-fold factor (Fig. 

S3), markedly decreased MRP3 mRNA induction by DEPe and sulforaphane (Fig. 5D). By 

contrast, Nrf2 silencing did not impair up-regulation of CYP1B1 mRNA levels by DEPe. 

Sulforaphane failed to increase CYP1B1 expression (Fig. 5D) and its inducing effect towards 

MRP3 and NQO1 mRNA levels was not impaired by AhR silencing (Fig. S4). Besides, AhR 

or Nrf2 down-regulations by siRNA transfection repressed NQO1 mRNA induction by DEPe 

(Fig. S5). Finally, pifithrin-α, a potent inhibitor of CYP1A1/1B1 activity preventing the 

formation of PAH metabolites (Sparfel et al., 2006), failed to inhibit MRP3 up-regulation due 

to DEPe (Fig. S6). 

 

4. Discussion 

 The present study demonstrates that DEPe is able to induce MRP3 expression in 

bronchial epithelial cells. Indeed DEPe increased MRP3 mRNA levels in both BEAS-2B cells 
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and NHBE cells. It concomitantly induced MRP3 protein expression in BEAS-2B cells. This 

up-regulation of MRP3 by DEPe was concentration-dependent, i.e., it requires the use of 10 

µg/mL DEPe. Such a concentration failed to trigger cytotoxicity in BEAS-2B cells. MRP3 

up-regulation was consequently not the consequence of an unspecific toxicity caused by 

DEPe. The specificity of the MRP3 up-regulation by DEPe is additionally supported by the 

fact that DEPe did not induce expression of other ABC transporters; indeed, MRP1 and 

MRP4 mRNA expressions were rather reduced by DEPe, whereas those of MRP5 and BCRP 

were unchanged. With respect to MDR1, we failed to detect its expression at mRNA levels, in 

both untreated and DEPe-treated BEAS-2B cells. Drug transporter quantification by liquid 

chromatography-tandem mass spectrometry also failed to detect P-glycoprotein in BEAS-2B 

cells (Sakamoto et al., 2015). Taken together, these data suggest that BEAS-2B cells do not 

constitutively express P-glycoprotein/MDR1 and are thus probably not a valuable model for 

studying P-glycoprotein/MDR1 regulation in bronchial cells. Additionally, BEAS-2B cells 

unfortunately failed to polarize and form tight junctions, and exhibited only very low, if any, 

transepithelial electrical resistance (TEER) values (Stewart et al., 2012). This precludes their 

use for in vitro characterization of the effects of air pollutants like DEP on vectorial transport 

across the lung barrier.  

 The mechanisms responsible for MRP3 induction by DEPe in BEAS-2B cells likely 

implicate AhR, a xenobiotic-sensing transcription factor already involved in DEPe-mediated 

regulation of hepatic drug transporters (Le Vee et al., 2015). Indeed, the AhR antagonist 

StemRegenin-1, as well as AhR silencing through siRNA transfection, repressed MRP3 

induction in DEPe-exposed BEAS-2B cells. It is however noteworthy that the potent AhR 

ligand TCDD failed to increase MRP3 mRNA levels in BEAS-2B cells, thus indicating that 

AhR activation is not sufficient to induce MRP3 expression. Factors additional to AhR are 

consequently required for MRP3 up-regulation and, among these putative factors, Nrf2 has to 
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be considered with priority. This transcription factor is primarily responsive to oxidative or 

electrophilic stress, which prevents its degradation by the proteasome and subsequently 

triggers its translocation from the cytoplasm into the nucleus, where it binds to antioxidant 

response element (ARE) found in the upstream promoter of target genes, and initiates their 

transcription (Nguyen et al., 2004). Nrf2 is well known to be activated by DEPs (Li et al., 

2004), as illustrated by the up-regulation of NQO1 and HO-1, two reference Nrf2-responsive 

genes, in DEPe-exposed BEAS-2B cells. Its implication in DEPe-mediated induction of 

MRP3 is supported by the following points: (i) treatment by the reference Nrf2 activator 

sulforaphane triggered MRP3 induction in BEAS-2B cells, (ii) suppression of Nrf2 expression 

by siRNA transfection repressed MRP3 up-regulation due to DEPe, (iii) analysis of the MRP3 

promoter sequence has revealed the presence of multiple AREs (Mahaffey et al., 2009), 

mediating direct regulation of MRP3 by Nrf2 (Mahaffey et al., 2012) and (iv) Nrf2, in 

association with AhR, has already been demonstrated to be involved in various phenotypic 

effects of DEPe, notably in human macrophages (Jaguin et al., 2015).  

 The exact way by which AhR and Nrf2 cooperate to induce MRP3 expression in 

response to DEPe remains to be determined. Basic implication of the AhR pathway in that of 

Nrf2 or, inversely, basic involvement of the Nrf2 signaling cascade in that of AhR is very 

unlikely. Indeed, silencing of Nrf2 is unable to hinder AhR-related induction of the AhR 

reference target CYP1B1 by DEPe, whereas that of AhR failed to impair up-regulation of the 

Nrf2 target NQO1 by sulforaphane. Additionally, the two ways are probably not involved at 

the same level in MRP3 up-regulation. Indeed, if basic activation of the Nrf2 signaling 

pathway by the reference activator sulforaphane is sufficient to induce MRP3 expression, 

likely via the AREs found in the upstream promoter region of the MRP3 gene (Mahaffey et 

al., 2009), it is not the case for the basic stimulation of the AhR signaling cascade by the 

reference AhR agonist TCDD. In this context, it is noteworthy that the AhR way is well-
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known to play a major role in the metabolism of some of these ligands, notably PAHs, 

through inducing the expression of PAHs-metabolizing enzymes like CYP1A1 and CYP1B1 

(Nebert et al., 2004). Some of these PAH metabolites are known to be electrophilic and to 

induce oxidative stress (Nebert et al., 2000). They may thus contribute in a major way to the 

activation of the Nrf2 transcription battery by PAHs (Souza et al., 2016). It is therefore 

tempting to speculate that the MRP3 induction by DEPe, as well as that of NQO1, which also 

depends on AhR and Nrf2 (Fig. S5), may require, first, the AhR-dependent formation of 

electrophilic/pro-oxidative metabolites of some DEPe chemical components, notably PAHs, 

and, secondly, the activation of the Nrf2 pathway by these metabolites or by the oxidative 

stress associated with the generation of these metabolites. This may finally result in increased 

transcription of the MRP3 gene via AREs. This hypothesis is supported by the fact that the 

PAH B(a)P, which is a component of diesel exhaust and which generates electrophilic 

metabolites, in contrast to TCDD (van Grevenynghe et al., 2004), induced MRP3 expression 

in BEAS-2B cells. Moreover, the time-course of MRP3 mRNA induction by DEPe indicates a 

rather delayed response, i.e., a shorter exposure (8 h) was ineffective, which may also argue in 

favor of the requirement of metabolite formation. By contrast, the pure AhR target CYP1B1 

was induced after an 8 h exposure to DEPe. CYP1B1, as well as CYP1A1, well known to 

generate electrophilic PAH metabolites (Nebert et al., 2004), are however unlikely to be 

involved in MRP3 up-regulation in DEPe-exposed BEAS-2B cells. Indeed, blockage of their 

activity using the CYP1A1/1B1 inhibitor pifithrin-α failed to inhibit MRP3 induction by 

DEPe.  

 Besides increasing MRP3 expression, DEPe directly inhibited MRP activity in BEAS-

2B cells, in a concentration-dependent manner (Fig. 3A and 3B). This agrees with the 

inhibitory effects of DEPe towards MRP2-like activity in human hepatic cells (Le Vee et al., 

2015). Such data favor the idea that some chemical components of DEPe may act as potent 
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inhibitors of MRP activity. However, these DEPe chemicals remain to be precisely identified. 

They may also be present in other pulmonary pollutants, such as the cigarette smoke, which 

hinders MRP1 activity in lung epithelial cells (van der Deen et al., 2007). The direct inhibition 

of MRP activity by DEPs and the regulation of MRP expression, notably of MRP3, by DEPe, 

may be difficult to interpret in terms of the final effects of DEPe towards MRPs. It is however 

noteworthy that the MRP activity inhibition by DEPe was rather reversible, i.e., pre-treatment 

by DEPe for 48 h following by its withdrawal during the MRP activity test, failed to inhibit 

MRP activity (Fig. 3C), whereas such a 48 h treatment by DEPs induced MRP3 expression 

(Fig. 2B and Fig. 2D). This suggests that the regulation of MRP expression, notably MRP3 

induction, may correspond to a more sustainable consequence to DEP exposure than the acute 

inhibition of MRP activity. In this context, it is noteworthy that MRP3 induction after a 48 h 

exposure to DEPe did not result in decreased CF retention, suggesting a lack of stimulatory 

effect towards MRP activity. Such data may be due to the fact that the probe used for the 

MRP activity assay, i.e., CF, is shared by various MRPs, as most of MRP3 substrates (Payen 

et al., 2000; Zhou et al., 2008); therefore, the CF-based efflux assay likely reflects global 

MRP activity, not strictly that of MRP3. Nevertheless, as MRP3 has been hypothesized to be 

a cellular eliminator of toxins from both endogenous and exogenous sources in lung cells 

(Torky et al., 2005), its increased expression in response to DEPe may serve as an adaptive 

and protective response to the potential toxicity of DEP components.  MRP3 induction may 

notably facilitate anti-oxidant activities within DEP-exposed bronchial cells, as recently 

proposed for MRP3 up-regulation in airway epithelial cells from smokers (Aguiar et al., 

2019).    

Whether the MRP3 regulation occurring in DEPe-treated cultured bronchial cells may 

be relevant in humans environmentally exposed to DEPs is probably a key-point to determine. 

This likely requires to consider the concordance between in vitro-in vivo dosimetry, which 
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represents a common challenge in air pollutant toxicology (Donaldson et al., 2008; Klein et 

al., 2017; Oberdorster and Finkelstein, 2006). The mean DEP exposure in the United States of 

America is estimated to be 2 µg/m3, but concentrations in vehicles and by major streets and 

highways can approach 25 µg/m3, with “hot spots” of ambient exposure reaching around 100-

200 µg/m3 (Ghio et al., 2012); some occupational activities, notably in mines, result in much 

greater levels of exposure (up to 653 µg/m3) (Pronk et al., 2009). Based on in vivo 

calculations for high-risk individuals exposed to particulate matter levels of 79 μg/m3, 

deposition rates of fine particulate matter (PM 2.5), which represents an important fraction of 

DEP (Wichmann, 2007), have been estimated over 24 h to be 2.3 μg/cm2 in the 

tracheobronchial and 0.05 μg/cm2 in the alveolar regions (Li et al., 2003). Importantly, the 10 

µg/mL DEPe concentration inducing MRP3 expression in BEAS-2B cells corresponds to 

approximately 2 μg/cm2 equivalent DEP dose according to previous conversions of in vitro 

DEPe/DEP dose to DEP dose/unit surface area (Li et al., 2003). MRP3 expression may 

therefore be induced in tracheobronchial, but not in alveolar areas, of humans highly exposed 

to DEP. The fact that MRP3 mRNA expression has been recently shown to be induced in 

airway epithelial cells from smokers when compared to counterparts from non-smokers 

(Aguiar et al., 2019) additionally supports the conclusion that MRP3 may be a relevant target 

for air pollutants like DEP and cigarette smoke in the human lung. 

 In summary, exposure of bronchial epithelial BEAS-2B cells to DEPe resulted in 

AhR- and Nrf2-related induction of the ABC drug transporter MRP3. DEPe additionally 

directly inhibited MRP activity in BEAS-2B cells. Such data suggest that membrane 

transporters, including ABC transporters, but also solute carrier (SLC) transporters like the 

heterodimeric amino acid transporter LAT1 (SLC7A5)/CD98hc (SLC3A2) already 

demonstrated to be regulated by DEPe in BEAS-2B cells (Le Vee et al., 2016), are targets for 

DEPs in bronchial epithelial cells. Further studies are likely required to precise the potential 
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relevance of such regulations in humans exposed to air pollution, notably in terms of lung 

barrier and lung toxicity. 
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Legends to figures 

Figure 1. Effects of DEPe exposure on BEAS-2B cell viability. BEAS-2B cells were either 

untreated (CTR) or exposed to 10 µg/mL DEP for 48 h. Apoptotic and necrotic cells were 

next numerated as described in Materials and Methods. Data are expressed as percentages of 

total number of cells and are the means ± SEM of three independent assays.  

Figure 2. Induction of MRP3 expression in response to DEPe. (A) BEAS-2B cells were either 

untreated (CTR) or exposed to 10 µg/mL DEPe for 48 h. ABC drug transporter mRNA 

expression was then analyzed by RT-qPCR. Data are expressed as arbitrary units and are the 

means ± SEM of five independent assays. *, p < 0.05 when compared to control untreated 

cells. (B, C) BEAS-2B cells were either untreated (CTR) or exposed to (B) 10 µg/mL DEPe 

for various lengths of time (from 8 h to 48 h) or (C) various DEPe concentrations (from 0.01 

to 10 µg/mL) for 48 h. MRP3 mRNA expression was next determined by RT-qPCR. Data are 

expressed as fold change comparatively to MRP3 mRNA levels found in untreated control 

cells and are the means ± SEM of (B) five or (C) three independent assays. *, p <0.05 when 

compared to control untreated cells. (D) BEAS-2B cells were either untreated (CTR) or 

exposed to 10 µg/mL DEPe for 48 h. MRP3 protein expression was next determined by 

Western-blotting. A representative blot is shown in (D, Left). The results of densitometric 

analysis of blots and normalization to p38 content from three independent assays, expressed 
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as fold change comparatively to MRP3 protein expression in control cells, are indicated in (D, 

Right). *, p < 0.05 when compared to control cells. (E) NHBE cells were either untreated 

(CTR) or exposed to 10 µg/mL DEPe for 24 h. MRP3 mRNA expression was then analyzed 

by RT-qPCR. Data are expressed as fold change comparatively to MRP3 mRNA levels found 

in untreated control cells and are the means ± SEM of values from three independent NHBE 

cell populations. *, p < 0.05 when compared to control untreated cells.  

Fig. 3. Effects of DEPe towards MRP activity. (A) BEAS-2B cells, initially loaded with the 

MRP substrate CF used under its diacetate ester form, were re-incubated in CF-free medium 

in the absence (CTR) or presence of 2 mM probenecid or 10 µg/mL DEPe for 60 min. 

Intracellular retention of CF was then determined by spectrofluorimetry. Data are expressed 

as % of initial CF loading and are the means ± SEM of three independent assays. *, p < 0.05 

when compared to control cells. (B) CF-loaded BEAS-2B cells were re-incubated in CF-free 

medium in the absence or presence of 2 mM probenecid or various concentrations of DEPe. 

MRP activity was then determined as described in Materials and Methods. Data are expressed 

as % of MRP activity found in control cells and are the means ± SEM of three independent 

assays. DEPe IC50 value is indicated at the top of the graph. (C) BEAS-2B cells were either 

untreated (CTR) or exposed to 10 µg/mL DEPe for 48 h. After washing, cells were loaded 

with CF used under its diacetate form for 30 min and then re-incubated in CF-free medium for 

60 min. Intracellular levels of CF were finally determined by spectrofluorimetry. Cellular 

concentrations of CF are expressed in fluorescence arbitrary units (FAU)/mg protein and are 

the means ± SEM of four independent assays. *, p < 0.05; NS, not statistically significant. 

Fig. 4. Implication of AhR in DEPe-mediated MRP3 induction. (A) BEAS-2B cells were 

either untreated (CTR) or exposed to 10 µg/mL DEPe, 5 µM StemRegenin-1 (SR) or 

DEPe/SR for 48 h. (B) BEAS-2B cells transfected with non-targeting siRNAs (siNT) or with 

siRNAs directed against AhR (siAhR) were either untreated (CTR) or exposed to 10 µg/mL 
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DEPe for 48 h. (C) BEAS-2B cells were either untreated (CTR) or exposed to 10 nM TCDD 

or 10 µM B(a)P for 48 h. (A-C) CYP1B1 and MRP3 mRNA expression was next determined 

by RT-qPCR. Data are expressed as fold change comparatively to gene expression in control 

cells and are the means ± SEM of four independent assays. *, p < 0.05; NS, not statistically 

significant. 

Fig. 5. Implication of Nrf2 in DEPe-mediated MRP3 regulation. (A, B) BEAS-2B cells were 

either untreated (CTR) or exposed to 10 µM sulforaphane (SULFO) for 48 h. (A) MRP3 

mRNA expression was determined by RT-qPCR; data are expressed as fold change 

comparatively to untreated control cells and are the means ± SEM of four independent assays. 

(B) MRP3 protein expression was determined by Western blotting. A representative blot is 

shown in (B, Up). The results of densitometric analysis of blots and normalization to p38 

content from three independent assays, expressed as fold change comparatively to MRP3 

protein expression in control cells, are indicated in (B, Down). (C) BEAS-2B cells were either 

untreated (CTR) or exposed to 10 µg/mL DEPe for 48 h. NQO1 and HO-1 mRNA expression 

was then determined by RT-qPCR. Data are expressed as fold change comparatively to 

untreated control cells and are the means ± SEM of four independent assays. (A-C) *, p < 

0.05 when compared to control cells. (D) BEAS-2B cells transfected with non-targeting 

siRNAs (siNT) or with siRNAs directed against Nrf2 (siNrf2) were either untreated (CTR) or 

exposed to 10 µg/mL DEPe for 48 h. MRP3 and CYP1B1 mRNA expression was then 

determined by RT-qPCR. Data are expressed as fold change comparatively to untreated 

control cells and are the means ± SEM of four independent assays. *, p < 0.05. NS, not 

statistically significant. 
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Highlights 

 

- DEPe induced mRNA and protein expression of MRP3 in human bronchial BEAS-2B cells 

- The transcription factors AhR and Nrf2 are implicated in DEPe-mediated MRP3 induction 

- DEPe concomitantly blocked MRP activity in cultured BEAS-2B cells 
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