HAL
open science

Reactivity of 4-phenylthiazoles in ruthenium catalyzed direct arylations

A. Daher, D. Jacquemin, V. Guerchais, Jean-François Soulé, H. Doucet

- To cite this version:

A. Daher, D. Jacquemin, V. Guerchais, Jean-François Soulé, H. Doucet. Reactivity of 4phenylthiazoles in ruthenium catalyzed direct arylations. Applied Organometallic Chemistry, 2019, 33 (4), pp.e4794. 10.1002/aoc. 4794 . hal-02090015

HAL Id: hal-02090015 https://univ-rennes.hal.science/hal-02090015

Submitted on 27 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Reactivity of 4-phenylthiazoles in ruthenium catalyzed direct arylations

Ahmad Daher, ${ }^{\text {a }}$ Denis Jacquemin, ${ }^{\mathrm{b}}$ Véronique Guerchais, ${ }^{\text {a* }}$ Jean-François Soulé, ${ }^{\text {a* }}$ and Henri Doucet ${ }^{\text {a }}$ *
${ }^{\text {a }}$ Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
E-mail: veronique.guerchais@univ-rennes1.fr; jean-francois.soule@univ-rennes1.fr; henri.doucet@univ-rennes1.fr
${ }^{\mathrm{b}}$ Univ. Nantes, CNRS, CEISAM (UMR 6230), 2 rue de la Houssinière, 44322 Nantes, Cedex 03, France

Abstract

The reactivity of the phenyl substituent of 4-phenylthiazoles in Ru-catalyzed direct arylation was studied. 4-Phenylthiazole was found to be unreactive; whereas, the introduction of an aryl unit at C5-position of 4-phenylthiazole enhances its reactivity, allowing the selective mono-arylation of the phenyl unit of 4-phenylthiazoles in moderate to high yields using $5 \mathrm{~mol} \%$ of $\left[\mathrm{Ru}\left(\mathrm{p} \text {-cymene) } \mathrm{Cl}_{2}\right]_{2}\right.$ catalyst precursor associated to KOPiv as base. These results reveal that the conformation and electronic properties of 4phenylthiazoles are crucial to allow the formation of suitable intermediates in the course of the catalytic cycle. The reaction tolerated both electron-rich and electron-poor aryl bromides allowing the straightforward tuning of the electronic properties of the arylated 2-methyl-4-phenyl-5-arylthiazoles.

Introduction

Iridium(III) complexes containing 4-arylthiazole ligands exhibit intriguing photophysical properties. ${ }^{[1 a-c]}$ For example, phosphorescent homoleptic thiazole-based $\operatorname{Ir}($ III $)$ emitters were found to exhibit high electroluminescence efficiencies in monochromic PhOLEDs. ${ }^{[1 c]}$ They have also been employed as catalysts for enantioselective reactions. ${ }^{[1 d-f]}$ Therefore, the
discovery of simple, but general routes to new families of substituted 4-arylthiazole derivatives, used as cyclometallated ligands, will allow to tune easily their steric and electronic properties which have a direct impact on their photophysical and catalytic properties and therefore, this will be useful for organometallic chemists. In recent years, arylations via a metal-catalyzed $\mathrm{C}-\mathrm{H}$ bond activation step, has brought a revolution in the access of polyaromatics. ${ }^{[2]}$ Such C-C couplings are very attractive compared to the more classical Pd-catalyzed reactions such as Negishi, Stille and Suzuki cross-couplings as the synthesis of organometallic derivatives is not requested. ${ }^{[3]}$ The Ru-catalyzed direct arylation of a wide variety of compounds containing a nitrogen atom as directing group such as the use of 2-arylpyridines for access to (hetero)arylated 2-arylpyridines has been largely described. ${ }^{[4]}$ Several examples of Ru-catalyzed arylations via a C-H bond activation the aryl substituent of N-arylpyrazoles with aryl halides (Scheme 1, a, left) ${ }^{[5]}$ and the arylation or diarylation of the aryl unit of 2-aryl(poly)azoles and 2-arylimidazoles have also been reported (Scheme 1, a, right). ${ }^{[6]}$ In sharp contrast, very few examples of Ru-catalyzed direct arylations of an aryl at C4-position of (poly)azoles have been described, as to our knowledge, only 1,2,3-triazoles have been successfully employed (Scheme 1, b). ${ }^{[7]}$ In 2010, Ackermann et al. reported that the reaction of 4 -aryltriazoles with aryl chlorides using $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right)_{2}$ delivered the diarylated 4-aryltriazoles; whereas, the mono-arylated compounds could be obtained with ortho- and meta-substituted 4-aryltriazoles such as 1-alkyl-4-(o-tolyl)-1,2,3-triazoles. ${ }^{[7]}$ Thiazoles containing a biaryl unit at C4-position are currently prepared via Suzuki couplings. ${ }^{[8]}$ To our knowledge, the metal-catalyzed direct arylation of the aryl unit of 4arylthiazoles has not been described yet. As the discovery of an effective method, for the arylation of the phenyl unit of 4-phenylthiazoles, especially using easily available aryl sources, catalysts and bases is highly desirable, the reactivity 4-phenylthiazoles in direct arylations in the presence of ruthenium catalysts needed to be investigated. Here, we report on the influence of C5-aryl substituents on 4-phenylthiazoles on their reactivity in rutheniumcatalyzed direct arylations, and on the scope of the reaction (Scheme 1, c).

N-arylpyrazoles:[5]

2-aryl-oxazoles, -thiazoles, -imidazoles, -polyazoles: ${ }^{[6]}$

c) This work

Scheme 1. Ru-catalyzed direct arylations of arenes bearing a 5-membered aromatic ring as directing group.

Results and Discussion

Ethyl 4-bromobenzoate (1.5 equiv.) and 2-methyl-4-phenylthiazole (1 equiv.) were employed as substrates for our initially study (Table 1). We examined the influence of the two solvents NMP (NMP: N-Methyl-2-pyrrolidone) and xylene using $5 \mathrm{~mol} \%\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ catalyst and KOPiv as the base as reaction conditions, but in both cases, the desired mono-arylation product $\mathbf{1 a}$ and the di-arylation product $\mathbf{1 b}$ were not detected, and 2-methyl-4-phenylthiazole was recovered unreacted (Table 1, entries 1 and 2). The use of 4-bromoanisole, 4-tertbutylbromobenzene and 4-bromobenzonitrile as aryl sources or the addition of $10 \mathrm{~mol} \%$ AgSbF_{6} as additive to the reaction mixture also failed to provide any desired coupling product (Table 1, entries 3-6).

Table 1. Influence of the reaction conditions on the Ru-catalyzed arylation of 4phenylthiazole with aryl bromides.

Entry	Solvent	R	Yield in $\mathbf{1 a}$ or $\mathbf{1 b}$ $(\%)$	
1	NMP	$\mathrm{CO}_{2} \mathrm{Et}$	0	
2	Xylene	$\mathrm{CO}_{2} \mathrm{Et}$	0	
3	NMP	$\mathrm{CO}_{2} \mathrm{Et}$	0^{a}	
4	NMP	OMe^{2}	0	
5	NMP	CN	0	
6	NMP	$t \mathrm{Bu}$	0	

Conditions: $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2} 5 \mathrm{~mol} \%$, aryl bromide (1.5 equiv.), 4-phenylthiazole (1 equiv.), KOPiv (2 equiv.), $16 \mathrm{~h}, 150{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{a}}$ With $10 \mathrm{~mol} \% \mathrm{AgSbF}_{6}$ as additive.

Based on the results of the table 1, we assumed that either the electronic properties and/or the conformation (i.e. position of the phenyl group relative to that of the thiazole ring) of 2-methyl-4-phenylthiazole are not suitable to promote the C-H bond cleavage in the presence of the Ru-catalyst, or a Ru-catalyst poisoning occurred due to the presence of the acidic C-H bond at C5-position on thiazole. Therefore, we introduced a set of aryl substituents at C5position of 4-phenylthiazole in order to 1) block that position to avoid potential Ru-poisoning, 2) tune the electronic properties of the thiazole ring, 3) more importantly, modify the conformation of 4-arylthiazole via the modulation of the steric hindrance of the incorporated aryl groups at C5-position.

The 2-methyl-4-phenyl-5-arylthiazoles 2-8 were prepared via Pd-catalyzed direct arylations of 2-methyl-4-phenylthiazole with a set of aryl bromides using our previously reported optimized reaction conditions, ${ }^{[9]}$ (i.e. $1 \mathrm{~mol} \%$ of phosphine-free $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst, KOAc as the base in DMA) (Scheme 2). Regiospecific C5-arylations and high yields in 2-5 were obtained using aryl bromides bearing cyano, fluoro, tert-butyl, or methoxy para-substitutents.

A methoxy-substituent at meta-position on the aryl bromide was also tolerated giving access to $\mathbf{6}$ in 86% yield. Reactions with the more hindered substrates, 2-bromobenzonitrile and 1bromonaphthalene were also successful affording 7 and 9 in 85% yields. The complete regioselectivity in favor of the arylation at C5-position of thiazoles observed with palladiumcatalysis is due to the Concerted Metalation Deprotonation CMD mechanism which is operative for these couplings. ${ }^{[10,11]}$

Scheme 2. Scope of the Pd-catalyzed C5-arylation of 2-methyl-4-phenylthiazole.

Then, the reactivity for arylation via a Ru-catalyzed C-H bond activation of the phenyl unit of the previously prepared C5-arylated 4-phenylthiazole derivatives 2-9 was evaluated (Schemes 3 and 4). The reaction of 2-methyl-5-(naphthalen-1-yl)-4-phenylthiazole 9 with 4bromobenzonitrile using $5 \mathrm{~mol} \%\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ catalyst and KOPiv as base in NMP gave 10 in 50% yield (Scheme 3). It should be mentioned that no formation of the 2,6diarylated phenyl product, which was often obtained in $\mathrm{Ru}(\mathrm{II})$-catalyzed ortho-directed $\mathrm{C}-\mathrm{H}$ bond arylations (see scheme 1, b), was observed. Aryl bromides bearing methyl-, tert-butylor methoxy-substituents at para- or meta-positions were also tolerated, and their reaction with 9 afforded the products $\mathbf{1 1 - 1 4}$ in $62-85 \%$ yields. Conversely, the reaction of 9 with 2bromotoluene was very sluggish affording 15 in <5\% yield, revealing that congested aryl bromides are not suitable for such arylations.

Scheme 3. Scope of the Ru-catalyzed arylation of 2-methyl-5-(naphthalen-1-yl)-4phenylthiazole.

Then, the influence of a set of electron-donating and electron-withdrawing substituents on the aryl group at thiazolyl-C5-position was investigated (Scheme 4). Electron-donating para-tert-butyl- and para-methoxy-substituents were tolerated. From compounds $\mathbf{4}$ and $\mathbf{5}$ using 4bromobenzonitrile as the coupling partner, the target products 16 and 19 were obtained in 73% and 71% yields, respectively. Again, no formation of diarylated products was detected by GC/MS analysis of the crude mixtures. The reaction of 4-bromobenzonitrile with meta-methoxy-substituted 5-arylpyrazole $\mathbf{6}$ afforded the expected product 20 in 70% yield. Conversely, a poor reactivity of the thiazolyl derivative $\mathbf{2}$ bearing a para-cyano-substituent with 4-bromobenzonitrile was observed; whereas, good yields in $\mathbf{2 2}$ and $\mathbf{2 3}$ were obtained for the reaction of $\mathbf{2}$ with 4-tert-butylbromobenzene or 3-bromotoluene. The position of the cyano-substituent on the aryl unit on thiazole had no significant influence, as from the ortho-cyano-substituted compound 7, the products $\mathbf{2 4}$ and $\mathbf{2 5}$ were obtained in similar yields than from 2. The ortho- and para-fluoro-substituted 5-arylthiazoles $\mathbf{3}$ and $\mathbf{8}$ in the presence of 4-tert-butylbromobenzene also provided the target products $\mathbf{2 6}$ and 27 in good yields.
(p-cymene) Clis $]_{2}$

Scheme 4. Scope of the Ru-catalyzed arylation of 2-methyl-4-phenyl-5-arylthiazole.

In order to gain more insight into the mechanism, we performed DFT calculations and also competition reactions to investigate the impact of the C5-aryl substituent of thiazole for such couplings. The DFT-optimized structures of 2-methyl-4-phenylthiazole, $2\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}-\mathrm{C} 5-\right.$ substituent on thiazole) and $5\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{MeO}-\mathrm{C} 5\right.$-substituent on thiazole) confirms that 2-methyl-4-phenylthiazole has a low dihedral angle between the thiazole core and the phenyl ring attached at position $\mathrm{C} 4\left(9^{\circ}\right)$; whereas this angle is significantly higher for compounds $2\left(37^{\circ}\right)$ and $\mathbf{5}\left(33^{\circ}\right)$ (Figure 1). Moreover, the calculated total charge of the thiazole cycle is -0.30 e for 2-methyl-4-phenylthiazole, -0.57 e for $\mathbf{2}$ and -0.77 e for $\mathbf{5}$, there are therefore significant differences leading to different coordination strengths with Ru.

Figure 1. Representation of the DFT-optimized structures of 2-methyl-4-phenylthiazole, 5 and 6 . We provide the dihedral angle between the thiazole core and the phenyl ring attached at position C4 (in degrees) as well as the total charge of the thiazole cycle. See computational part in the experimental section for details.

Then three competition reactions were performed (Schemes 5 and 6). From an equimolar mixture of 2-methyl-4-phenylthiazole and 5-(4-methoxyphenyl)-2-methyl-4-phenylthiazole 5
using 1 equiv. of 4 -bromobenzonitrile as the coupling partner, in the presence of $5 \mathrm{~mol} \%$ $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ catalyst, only the formation the product $\mathbf{1 6}$ arising from the arylation of $\mathbf{5}$ was observed (Scheme 5 top). A similar result was obtained from an equimolar mixture of 2-methyl-4-phenylthiazole and 4-(2-methyl-4-phenylthiazol-5-yl)benzonitrile 2, as only product 22 was obtained (Scheme 5, bottom). These results confirm that the electronic properties and/or conformation of 2-methyl-4-phenylthiazole are not appropriate for Rucatalyzed direct arylations, and demonstrate that this substrate is not a poison for the Rucatalyst.

Scheme 5. Competition reactions for Ru-catalyzed arylations of 2-methyl-4-phenylthiazoles.

The influence of electron-donating and electron-withdrawing substituents on the thiazolyl 5aryl unit was also examined using an equimolar mixture of 4-(2-methyl-4-phenylthiazol-5yl)benzonitrile 2 and 5-(4-methoxyphenyl)-2-methyl-4-phenylthiazole 5 (Scheme 6). Only the product 16 arising from the coupling with 5 was observed, confirming a deleterious influence of the presence of a cyano substituent on the thiazolyl C5-aryl unit for couplings with electron-deficient aryl bromides. This indicates that the electronic properties of the C5aryl group also have an influence on the reactions rates.

Scheme 6. Competition reaction for Ru-catalyzed arylation of 2-methyl-4-phenyl-5arylthiazoles.

Conclusions

In summary, we demonstrated that 4-phenylthiazole derivatives bearing an aryl group at C5position are reactive coupling partners in Ru-catalyzed direct arylations affording selectively the mono-arylated compounds. Conversely, under the same conditions, 4-phenylthiazole remained unreacted revealing that appropriate conformation and electronic properties of 4arylthiazoles are crucial to allow the formation of suitable intermediates in the course of the catalytic cycle. A variety of mono-arylated 2-methyl-4-phenyl-5-arylthiazoles was obtained in moderate to high yields using both electron-rich and electron-poor aryl bromides and 5 $\mathrm{mol} \%$ of the easily available $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ catalyst precursor associated to KOPiv as inexpensive base. This strategy allows the straightforward synthesis of arylated 2-methyl-4-phenyl-5-arylthiazole via two successive metal-catalyzed C-H bond functionalization steps from commercially available compounds, allowing to tune easily their steric and electronic properties.

Experimental Section

General procedure for palladium-catalyzed direct arylations: The reaction of the aryl bromide (1.5 mmol), 2-methyl-4-phenylthiazole ($1 \mathrm{mmol}, 0.175 \mathrm{~g}$), and KOAc (2 mmol , $0.196 \mathrm{~g})$ in the presence of $\operatorname{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol}, 2.2 \mathrm{mg})$, at $150^{\circ} \mathrm{C}$ during 16 h in DMA (4 mL) under argon affords the coupling products 2-9 after evaporation of the solvent and
purification on silica gel. Eluent heptane:ethyl acetate $4: 1$ for compound 7, heptane:ethyl acetate $9: 1$ for compounds $2,3,8$; heptane:ethyl acetate 19:1 for compounds 4, 5, 6, 9 .

4-(2-Methyl-4-phenylthiazol-5-yl)benzonitrile (2): ${ }^{[12]}$ From 4-bromobenzonitrile (0.182 g , 1 mmol) and 2-methyl-4-phenylthiazole ($1 \mathrm{mmol}, 0.175 \mathrm{~g}$), product 2 was obtained in 87% yield $(0.240 \mathrm{~g})$ as a yellow oil.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.3,151.2,137.1,134.3,132.4,130.2,129.9,129.1,128.6$, 128.4, 118.5, 111.3, 19.3.

5-(4-Fluorophenyl)-2-methyl-4-phenylthiazole (3): ${ }^{[12]}$ From 4-bromofluorobenzene (0.175 $\mathrm{g}, 1 \mathrm{mmol}$) and 2-methyl-4-phenylthiazole ($1 \mathrm{mmol}, 0.175 \mathrm{~g}$), product 3 was obtained in 80% yield $(0.215 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 85-87^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.77$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.8,162.4(\mathrm{~d}, J=248.3 \mathrm{~Hz}), 149.6,134.7,131.3(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}), 131.2,129.0,128.3,128.2(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 127.8,115.8(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 19.2$.

5-(4-(tert-Butyl)phenyl)-2-methyl-4-phenylthiazole (4): From 1-bromo-4-tert-butylbenzene ($0.213 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-methyl-4-phenylthiazole ($1 \mathrm{mmol}, 0.175 \mathrm{~g}$), product 4 was obtained in 85% yield $(0.261 \mathrm{~g})$ as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39-7.26 (m, 7H), $2.78(\mathrm{~s}, 3 \mathrm{H}), 1.37$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.5,151.0,149.2,135.2,132.6,129.2,129.1,129.0,128.3$, 127.6, 125.6, 34.7, 31.3, 19.3.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NS}$ (307.46): C, 78.13; H, 6.88; N, 4.56. Found: C, 78.25; H, 7.05; N, 4.30 .

5-(4-Methoxyphenyl)-2-methyl-4-phenylthiazole (5): ${ }^{[12]}$ From 4-bromoanisole ($0.187 \mathrm{~g}, 1$ mmol) and 2-methyl-4-phenylthiazole ($1 \mathrm{mmol}, 0.175 \mathrm{~g}$), product 5 was obtained in 83% yield $(0.233 \mathrm{~g})$ as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2 H), 3.81 ($\mathrm{s}, 3 \mathrm{H}$), $2.76(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.2,159.4,148.9,135.1,132.4,130.8,129.0,128.3,127.5$, 124.4, 114.2, 55.3, 19.2.

5-(3-Methoxyphenyl)-2-methyl-4-phenylthiazole (6): From 3-bromoanisole ($0.187 \mathrm{~g}, 1$ mmol) and 2-methyl-4-phenylthiazole ($1 \mathrm{mmol}, 0.175 \mathrm{~g}$), product 6 was obtained in 86% yield (0.241 g) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.8,159.6,149.6,135.0,133.4,132.3,129.7,129.1,128.3$, 127.7, 122.0, 114.8, 113.9, 55.1, 19.2.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NOS}$ (281.37): C, 72.57; H, 5.37; N, 4.98. Found: C, 72.76; H, 5.47; N, 5.12.

2-(2-Methyl-4-phenylthiazol-5-yl)benzonitrile (7): ${ }^{[13]}$ From 2-bromobenzonitrile (0.182 g , 1 mmol) and 2-methyl-4-phenylthiazole ($1 \mathrm{mmol}, 0.175 \mathrm{~g}$), product 7 was obtained in 85% yield $(0.235 \mathrm{~g})$ as a white solid: mp 131-133 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{td}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-$ 7.39 (m, 4H), 7.29-7.23 (m, 3H), 2.79 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.8,152.5,136.2,134.2,133.7,132.9,132.1,128.8,128.7$, 128.4, 128.1, 126.9, 117.4, 113.7, 19.3.

5-(2-Fluorophenyl)-2-methyl-4-phenylthiazole (8): From 2-bromofluorobenzene (0.175 g , 1 mmol) and 2-methyl-4-phenylthiazole ($1 \mathrm{mmol}, 0.175 \mathrm{~g}$), product 8 was obtained in 84% yield $(0.226 \mathrm{~g})$ as a yellow oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 2 \mathrm{H})$, 2.80 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.2,159.8(\mathrm{~d}, J=249.3 \mathrm{~Hz}), 151.7$, 134.9 , $132.4(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.5,128.3,127.8,124.6,124.3(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 120.2(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}), 116.2(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 19.2$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12}$ FNS (269.34): C, 71.35; H, 4.49; N, 5.20. Found: C, 71.19; H, 4.62; N, 5.14.

2-Methyl-5-(naphthalen-1-yl)-4-phenylthiazole (9): ${ }^{[14]}$ From 1-bromonaphthalene (0.207 g , 1 mmol) and 2-methyl-4-phenylthiazole ($1 \mathrm{mmol}, 0.175 \mathrm{~g}$), product 9 was obtained in 85% yield $(0.256 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 138-140{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.40$ $(\mathrm{m}, 6 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 164.8,151.1,134.9,133.9,132.5,129.8,129.7,129.5,129.3$, $128.5,128.3,128.2,127.6,126.9,126.4,125.8,125.6,19.4$.

General procedure for ruthenium-catalyzed direct arylations: The reaction of the 2-methyl-4-phenyl-5-arylthiazole derivative (1 mmol), aryl bromide (1.5 mmol), and KOPiv (2 $\mathrm{mmol}, 0.280 \mathrm{~g})$ in the presence of $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(0.05 \mathrm{mmol}, 30.5 \mathrm{mg})$, at $150{ }^{\circ} \mathrm{C}$ during 16 h in NMP (4 mL) under argon affords the coupling products 10-27 after evaporation of the solvent and purification on silica gel. Eluent heptane:ethyl acetate 5:1 for compound 10 ; heptane:ethyl acetate $10: 1$ for compounds $12,14,16,20,21$; heptane:ethyl acetate $13: 1$ for compounds $11,13,17,18,19$, heptane:ethyl acetate $20: 1$ for compounds 2227.

2'-(2-Methyl-5-(naphthalen-1-yl)thiazol-4-yl)-[1,1'-biphenyl]-4-carbonitrile (10): From 4-bromobenzonitrile ($0.273 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-methyl-5-(naphthalen-1-yl)-4-phenylthiazole $9(1 \mathrm{mmol}, 0.301 \mathrm{~g})$, product 10 was obtained in 50% yield $(0.201 \mathrm{~g})$ as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.23 (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (dd, $J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.4,150.7,145.9,139.4,133.7,133.4,131.6,131.4,131.2$, 131.1, 129.7, 129.0, 128.9, 128.6, 128.5 (*2), 128.4, 127.9, 126.0, 125.0, 124.9, 109.8, 19.4. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}$ (402.52): C, 80.57; H, 4.51; N, 6.96. Found: C, 80.82; H, 4.21; N, 7.00.

2-Methyl-4-(4'-methyl-[1,1'-biphenyl]-2-yl)-5-(naphthalen-1-yl)thiazole (11): From 4bromotoluene ($0.256 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-methyl-5-(naphthalen-1-yl)-4-phenylthiazole 9 (1 $\mathrm{mmol}, 0.301 \mathrm{~g})$, product 11 was obtained in 62% yield $(0.242 \mathrm{~g})$ as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H})$, 7.17-7.06 (m, 2H), 7.05-6.97 (m, 2H), $6.97(\mathrm{bs}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.6,151.7,141.5,138.3,135.5,133.7,133.3,131.6,131.2$, $130.9,130.0,128.9,128.8,128.4,128.3,128.2,128.1,127.7,127.0,125.5,125.4,125.3$, 124.9, 20.9, 19.3.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NS}$ (391.53): C, 82.83; H, 5.41; N, 3.58. Found: C, 82.60; H, 5.34; N, 3.39 .

4-(4'-(tert-Butyl)-[1,1'-biphenyl]-2-yl)-2-methyl-5-(naphthalen-1-yl)thiazole (12) From 1-bromo-4-tert-butylbenzene ($0.320 \mathrm{~g}, \quad 1.5 \mathrm{mmol}$) and 2-methyl-5-(naphthalen-1-yl)-4phenylthiazole $9(1 \mathrm{mmol}, 0.301 \mathrm{~g})$, product 12 was obtained in 85% yield $(0.368 \mathrm{~g})$ as a brown oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}$, $J=8.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 3 \mathrm{H}), 6.54-6.48(\mathrm{~m}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.6,151.6,148.7,141.4,138.4,133.8,133.3,131.3,131.1$, $131.0,130.1,128.8,128.6,128.3,128.1,127.8,127.0,125.7,125.5,125.4,125.0,124.5,34.3$, 31.4, 19.3.

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NS}$ (433.61): C, 83.10; H, 6.28; N, 3.23. Found: C, 83.02; H, 6.21; N, 3.50 .

2-Methyl-4-(3'-methyl-[1,1'-biphenyl]-2-yl)-5-(naphthalen-1-yl)thiazole (13) From 3bromotoluene ($0.256 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-methyl-5-(naphthalen-1-yl)-4-phenylthiazole 9 (1 mmol, 0.301 g), product 13 was obtained in 63% yield $(0.246 \mathrm{~g})$ as a yellow solid: mp 143$145^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}$, $J=8.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.5,151.6,141.7,141.2,137.0,133.8,133.3,131.5,131.1$, $131.0,130.1,129.2,129.0,128.7,128.2,128.1,127.7$, 127.2, 127.1, 126.9, 126.0, 125.6, 125.5, 125.4, 124.9, 21.2, 19.3.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NS}$ (391.53): C, 82.83; H, 5.41; N, 3.58. Found: C, 82.87; H, 5.62; N, 3.50 .

4-(3'-Methoxy-[1,1'-biphenyl]-2-yl)-2-methyl-5-(naphthalen-1-yl)thiazole (14) From 3bromoanisole ($0.280 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-methyl-5-(naphthalen-1-yl)-4-phenylthiazole 9 (1 $\mathrm{mmol}, 0.301 \mathrm{~g})$, product 14 was obtained in 70% yield $(0.285 \mathrm{~g})$ as a orange oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41-7.33$ (m, 2H), 7.26 (td, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.19 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (dd, $J=8.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=7.4$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{bs}, 1 \mathrm{H}), 3.53(\mathrm{~s}$, 3 H), 2.86 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.6,158.8,151.5,142.6,141.4,133.8,133.3,131.5,131.2$, 131.1, 129.9, 129.1, 128.6, 128.4, 128.3, 128.2, 127.7, 127.3, 125.7, 125.5, 125.4, 124.9, 121.3, 113.3, 112.6, 54.8, 19.3.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NOS}$ (407.53): C, 79.58; H, 5.19; N, 3.44. Found: C, 79.47; H, 5.02; N, 3.34 .

2'-(5-(4-Methoxyphenyl)-2-methylthiazol-4-yl)-[1,1'-biphenyl]-4-carbonitrile (16) From 4-bromobenzonitrile ($0.273 \mathrm{~g}, \quad 1.5 \mathrm{mmol}$) and 5-(4-methoxyphenyl)-2-methyl-4phenylthiazole $5(1 \mathrm{mmol}, 0.281 \mathrm{~g})$, product 16 was obtained in 73% yield $(0.279 \mathrm{~g})$ as a white solid: mp 209-211 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.62-6.54(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.8,159.1,147.6,146.0,139.5,134.3,134.0,131.4,131.2$, 129.7, 129.5, 129.3, 128.8, 128.6, 123.8, 119.1, 113.8, 109.5, 55.3, 19.3.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}$ (382.48): C, 75.37; H, 4.74; N, 7.32. Found: C, 75.50; H, 4.89; N, 7.21.

5-(4-Methoxyphenyl)-2-methyl-4-(4'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)thiazole (17)

 From 4-(trifluoromethyl)bromobenzene ($0.338 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5-(4-methoxyphenyl)-2-methyl-4-phenylthiazole $5(1 \mathrm{mmol}, 0.281 \mathrm{~g})$, product 17 was obtained in 61% yield (0.259 g) as a brown oil.${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.44 (td, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.60-6.52(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.4,159.0,147.6,144.7,140.0,134.2,133.8,131.4,129.8$, 129.5, 128.9, 128.6, 128.4, 128.0 ($\mathrm{q}, ~ J=32.2 \mathrm{~Hz}$), $124.2(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.3(\mathrm{q}, J=271.7$ $\mathrm{Hz}), 123.8,113.7,55.3,19.2$.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NOS}$ (425.47): C, 67.75; H, 4.26; N, 3.29. Found: C, 67.49; H, 4.28; N, 3.54.

5-(4-Methoxyphenyl)-2-methyl-4-(3'-methyl-[1,1'-biphenyl]-2-yl)thiazole (18)

From 3-bromotoluene ($0.256 \mathrm{~g}, \quad 1.5 \mathrm{mmol}$) and 5-(4-methoxyphenyl)-2-methyl-4phenylthiazole $5(1 \mathrm{mmol}, 0.281 \mathrm{~g})$, product 18 was obtained in 64% yield $(0.237 \mathrm{~g})$ as a yellow solid: mp 98-100 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ (dd, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46-7.37 (m, 2H), 7.24 (dd, J $=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 6.61-6.56 (m, 3H), $6.51(\mathrm{bs}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.7,158.8,148.6,141.8,141.0,137.0,133.9,133.8,131.0$, 130.0, 129.7, 129.6, 128.3, 127.4, 127.1, 126.6, 125.8, 124.2, 113.5, 55.2, 21.3, 19.2.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NOS}$ (371.50): C, 77.60; H, 5.70; N, 3.77. Found: C, 77.69; H, 5.61; N, 3.97.

2'-(5-(4-(tert-Butyl)phenyl)-2-methylthiazol-4-yl)-[1,1'-biphenyl]-4-carbonitrile
From 4-bromobenzonitrile ($0.273 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5-(4-(tert-butyl)phenyl)-2-methyl-4phenylthiazole $4(1 \mathrm{mmol}, 0.307 \mathrm{~g})$, product 19 was obtained in 71% yield $(0.290 \mathrm{~g})$ as a brown oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.46 (td, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=8.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.7,150.6,148.0,146.0,139.5,134.4,134.0,131.5,131.1$, 129.7, 129.3, 128.8, 128.7, 128.5, 128.0, 125.2, 125.2, 109.4, 34.5, 31.3, 19.3.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}$ (408.56): C, 79.38; H, 5.92; N, 6.86. Found: C, 79.60; H, 6.05; N, 6.67.

2'-(5-(3-Methoxyphenyl)-2-methylthiazol-4-yl)-[1,1'-biphenyl]-4-carbonitrile (20) From 4-bromobenzonitrile ($0.273 \mathrm{~g}, \quad 1.5 \mathrm{mmol}$) and 5-(3-methoxyphenyl)-2-methyl-4phenylthiazole $6(1 \mathrm{mmol}, 0.281 \mathrm{~g})$, product 20 was obtained in 70% yield $(0.267 \mathrm{~g})$ as a brown solid: mp 197-199 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.46 (td, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{ddd}, \mathrm{J}=8.3,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.14(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.1,159.4,148.4,145.9,139.7,134.3,133.9,132.5,131.3$, 131.2, 129.7, 129.4, 129.3, 128.8, 128.7, 120.9, 119.1, 113.8, 113.0, 109.5, 54.9, 19.3.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}$ (382.48): C, 75.37; H, 4.74; N, 7.32. Found: C, 75.37; H, 4.58; N, 7.20.

2'-(5-(4-Cyanophenyl)-2-methylthiazol-4-yl)-[1,1'-biphenyl]-4-carbonitrile (21) From 4bromobenzonitrile $(0.273 \mathrm{~g}, \quad 1.5 \mathrm{mmol})$ and and 4-(2-methyl-4-phenylthiazol-5yl)benzonitrile $2(1 \mathrm{mmol}, 0.276 \mathrm{~g})$, product 21 was obtained in 23% yield $(0.087 \mathrm{~g})$ as a brown solid: mp 212-214 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.8,150.1,145.5,139.4,136.2,133.0,132.2,132.0,131.4$, 131.3, 130.0, 129.5, 129.4, 129.2, 128.7, 118.7, 118.3, 110.8, 110.0, 19.5.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}$ (377.47): C, 76.37; H, 4.01; N, 11.13. Found: C, $76.09 \mathrm{H}, 3.88$; N, 11.09 .

4-(4-(4'-(tert-Butyl)-[1,1'-biphenyl]-2-yl)-2-methylthiazol-5-yl)benzonitrile (22) From 1-bromo-4-tert-butylbenzene $(0.320 \mathrm{~g}, 1.5 \mathrm{mmol})$ and 4-(2-methyl-4-phenylthiazol-5-
yl)benzonitrile $2(1 \mathrm{mmol}, 0.276 \mathrm{~g})$, product 22 was obtained in 73% yield $(0.298 \mathrm{~g})$ as a yellow oil.
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26$ $(\mathrm{m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.0,151.0,148.9,141.2,137.5,136.6,132.9,131.7,131.6$, $130.9,130.2,129.0,128.7,128.4,127.7,124.5,118.7,110.2,34.3,31.3,19.4$.
Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}$ (408.56): C, 79.38; H, 5.92; N, 6.86. Found: C, 79.62; H, 5.71; N, 6.98.

4-(2-Methyl-4-(3'-methyl-[1,1'-biphenyl]-2-yl)thiazol-5-yl)benzonitrile (23) From 3bromotoluene ($0.256 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 4-(2-methyl-4-phenylthiazol-5-yl)benzonitrile 2 (1 $\mathrm{mmol}, 0.276 \mathrm{~g})$, product 23 was obtained in 70% yield $(0.256 \mathrm{~g})$ as as yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.23$ (m, 3H), 6.95-6.85 (m, 2H), $6.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H})$, 2.81 ($\mathrm{s}, 3 \mathrm{H}$), 2.15 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.0,151.0,141.5,140.5,137.4,136.5,132.9,131.7,130.9$, 130.3, 129.5, 129.0, 128.8, 127.8, 127.4, 126.8, 125.9, 118.7, 110.2, 21.3, 19.4.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}$ (366.48): C, 78.66; H, 4.95; N, 7.64. Found: C, 78.42; H, 5.14; N, 7.68.

2-(4-(4'-(tert-Butyl)-[1,1'-biphenyl]-2-yl)-2-methylthiazol-5-yl)benzonitrile (24) From 1-bromo-4-tert-butylbenzene $(0.320 \mathrm{~g}, 1.5 \mathrm{mmol})$ and 2-(2-methyl-4-phenylthiazol-5yl)benzonitrile $7(1 \mathrm{mmol}, 0.276 \mathrm{~g})$, product 24 was obtained in 76% yield $(0.310 \mathrm{~g})$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.40 (td, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.64-6.56(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.7,152.5,149.0,140.9,137.7,133.2,132.5,131.9,131.8$, $130.8,130.2,128.8,128.2,128.0,127.6,127.3,125.1,117.7,112.1,34.4,31.3,19.4$.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}$ (408.56): C, 79.38; H, 5.92; N, 6.86. Found: C, 79.47; H, 5.98; N, 6.74.

2-(2-Methyl-4-(3'-methyl-[1,1'-biphenyl]-2-yl)thiazol-5-yl)benzonitrile (25) From 3bromotoluene ($0.256 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-(2-methyl-4-phenylthiazol-5-yl)benzonitrile 7 (1 mmol, 0.276 g), product 25 was obtained in 73% yield $(0.267 \mathrm{~g})$ as as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 2 \mathrm{H})$, $6.62(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.43(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 165.6,152.5,141.2,140.6,137.6,135.1,133.3,132.6,131.9$, $131.8,131.0,130.1,129.1,128.8,128.3,128.0,127.7,127.3,127.2,125.8,112.3,21.4,19.4$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}$ (366.48): C, 78.66; H, 4.95; N, 7.64. Found: C, 78.48; H, 5.02; N, 7.51.

4-(4'-(tert-Butyl)-[1,1'-biphenyl]-2-yl)-5-(4-fluorophenyl)-2-methylthiazole (26) From 1-bromo-4-tert-butylbenzene $(0.320 \mathrm{~g}, \quad 1.5 \mathrm{mmol})$ and 5-(4-fluorophenyl)-2-methyl-4phenylthiazole $3(1 \mathrm{mmol}, 0.269 \mathrm{~g})$, product 26 was obtained in 62% yield $(0.249 \mathrm{~g})$ as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{dd}, J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.72-$ $6.65(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58-6.53(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.4,162.0(\mathrm{~d}, J=247.1 \mathrm{~Hz}), 149.4,148.7,141.3,137.9$, 133.4, 132.6, 131.0, 130.1, $130.0(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.5,128.3,127.8(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 127.4$, $124.4,114.9(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 34.3,31.3,19.3$.

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{FNS}$ (401.54): C, 77.77; H, 6.02; N, 3.49. Found: C, 77.89; H, 5.79; N, 3.49 .

4-(4'-(tert-Butyl)-[1,1'-biphenyl]-2-yl)-5-(2-fluorophenyl)-2-methylthiazole (27) From 1-bromo-4-tert-butylbenzene $(0.320 \mathrm{~g}, \quad 1.5 \mathrm{mmol}$) and 5-(2-fluorophenyl)-2-methyl-4phenylthiazole $8(1 \mathrm{mmol}, 0.269 \mathrm{~g})$, product 27 was obtained in 67% yield $(0.269 \mathrm{~g})$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71$ (dd, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.44(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.60-6.55(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H})$, 1.32 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.9,159.1(\mathrm{~d}, J=250.0 \mathrm{~Hz}), 151.6,148.8,141.2,137.8$, 133.6, 131.2 (d, $J=2.7 \mathrm{~Hz}$), 131.0, 130.0, 129.0 (d, $J=8.1 \mathrm{~Hz}$), 128.4, 128.0, 127.3, 126.1 (d, $J=2.3 \mathrm{~Hz}), 124.5,123.5(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 119.6(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 34.3$, 31.3, 19.2.

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{FNS}$ (401.54): C, 77.77; H, 6.02; N, 3.49. Found: C, 77.58; H, 5.89; N, 3.28.

Computational details All DFT calculations were performed using the Gaussian 16.A. 03 program, ${ }^{[15]}$ using tightened self-consistent field (10^{-10} a.u.) and geometry optimization (10^{-5} a.u.) convergence thresholds. For all compounds, we optimized the geometries of the ground singlet excited state without imposing symmetry constraints and confirmed their minimal nature through analytical Hessian calculations (no imaginary frequencies). All DFT calculations used the PBE0 hybrid functional, ${ }^{[16]}$ corrected for dispersion effects using the socalled D3-BJ approach, ${ }^{[17]}$ and the $6-311++G(d, p)$ atomic basis set. The partial atomic charges were obtained using the Natural Population Analysis (NPA) method. ${ }^{[18]}$

Acknowledgements

We thank CNRS and "Rennes Metropole" for providing financial support. This work used the computational ressources of the CCIPL installed in Nantes.

Keywords: Ruthenium • Palladium •C-H bond activation $\cdot \mathrm{C}-\mathrm{C}$ bond formation \cdot Arylation
[1] a) E. Margapoti, V. Shukla, A. Valore, A. Sharma, C. Dragonetti, C. C. Kitts, D. Roberto, M. Murgia, R. Ugo, M. Muccini, J. Phys. Chem. C 2009, 113, 12517-12522; b) A. Valore, E. Cariati, C. Dragonetti, S. Righetto, D. Roberto, R. Ugo, F. De Angelis, S. Fantacci, A. Sgamellotti, A. Macchioni, D. Zuccaccia, Chem. Eur. J. 2010, 16, 48144825: c) H. Guo, J. Zhao, Z. Tian, Y. Wu, B. Liu, F. Dang, X. Yang, G. Zhou, Z. Wu, W.-Y. Wong, J. Mater. Chem. C 2017, 5, 208-219; d) T. Zhou, B. Peters, M. F. Maldonado, T. Govender, P. G. Andersson, J. Am. Chem. Soc. 2012, 134, 13592-13595; e) B. K. Peters, T. Zhou, J. Rujirawanich, A. Cadu, T. Singh, W. Rabten, S. Kerdphon, P. G. Andersson, J. Am. Chem. Soc. 2014, 136, 16557-16562; f) J.-Q. Li, J. Liu, S. Krajangsri, N. Chumnanvej, T. Singh, P. G. Andersson, ACS Catalysis 2016, 6, 83428349.
[2] For reviews on metal-catalyzed C-H bond functionalization: a) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174-238; b) L. Ackermann, R. Vicente, A. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792-9826; c) N. Kuhl, M. N. Hopkinson, J. WencelDelord, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 10236-10254; d) R. Rossi, F. Bellina, M. Lessi, C. Manzini, Adv. Synth. Catal. 2014, 356, 17-117; e) C. B. Bheeter, L. Chen, J.-F. Soulé, H. Doucet, Catal. Sci. Technol. 2016, 6, 2005-2049.
[3] L. Ackermann, Modern arylation methods, (Eds.: Wiley Online Library, 2009.
[4] a) S. Oi, S. Fukita, N. Hirata, N. Watanuki, S. Miyano, Y. Inoue, Org. Lett. 2001, 3, 2579-2581; b) L. Ackermann, Org. Lett. 2005, 7, 3123-3125; c) N. Luo, Z. Yu, Chem. Eur. J. 2010, 16, 787-791; d) C. G. Ravikiran, M. Jeganmohan, Chem. Commun. 2014, 50, 2442-2444; e) L. Jian, H.-Y. He, J. Huang, Q.-H. Wu, M.-L. Yuan, H.-Y. Fu, X.-L. Zheng, H. Chen, R.-X. Li, RSC Adv. 2017, 7, 23515-23522; For a review: f) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879-5918.
[5] For selected examples of intermolecular Ru-catalyzed direct arylations of N arylpyrazoles: a) L. Ackermann, A. Althammer, R. Born, Angew. Chemie, Int. Ed. 2006, 45, 2619-2622; b) L. Ackermann, A. Althammer, R. Born, Tetrahedron 2008, 64, 61156124; c) P. Arockiam, V. Poirier, C. Fischmeister, C. Bruneau, P. H. Dixneuf, Green Chem. 2009, 11, 1871-1875; d) N. Luo, Z. Yu, Chem. Eur. J. 2010, 16, 787-791; e) L. Ackermann, R. Vicente, H. K. Potukuchi, V. Pirovano, Org. Lett. 2010, 12, 5032-5035; f) H. Li, W. Wei, Y. Xu, C. Zhang, X. Wan, Chem. Commun. 2011, 47, 1497-1499; g) L. Ackermann, J. Pospech, H. K. Potukuchi, Org. Lett. 2012, 14, 2146-2149.
[6] For selected examples of intermolecular Ru-catalyzed direct arylations of 2aryl(poly)azoles: a) S. Oi, H. Sasamoto, R. Funayama, Y. Inoue, Chem. Lett. 2008, 37, 994-995; b) W. Li, P. B. Arockiam, C. Fischmeister, C. Bruneau, P. H. Dixneuf, Green Chem. 2011, 13, 2315-2319; c) M. Seki, ACS Catal. 2011, 1, 607-610; d) E. Diers, K. N. Y. Phani, T. Mejuch, I. Marek, L. Ackermann, Tetrahedron 2013, 69, 4445-4453; e) Y. Kobayashi, M. Kashiwa, M. Sonoda, M. Kirihata, S. Tanimori, Synthesis 2014, 46, 31853190; f) D. Zell, S. Warratz, D. Gelman, S. J. Garden, L. Ackermann, Chem. Eur. J. 2016, 22, 1248-1252.
[7] For examples of intermolecular Ru-catalyzed direct arylations of 4-aryltriazoles: a) L. Ackermann, P. Novak, R. Vicente, V. Pirovano, H. K. Potukuchi, Synthesis 2010, 22452253; b) L. Ackermann, R. Jeyachandran, H. K. Potukuchi, P. Novak, L. Buttner, Org. Lett. 2010, 12, 2056-2059.
[8] For the synthesis of thiazoles bearing a C4-biphenyl substituent via Suzuki coupling: a) J. Xiao, J. J. Marugan, W. Zheng, S. Titus, N. Southall, J. J. Cherry, M. Evans, E. J. Androphy, C. P. Austin, J. Med. Chem. 2011, 54, 6215-6233; b) S. Annadurai, R. Martinez, D. J. Canney, T. Eidem, P. M. Dunman, M. Abou-Gharbia, Bioorg. Med. Chem. Lett. 2012, 22, 7719-7725.
[9] T. Yan, L. Chen, C. Bruneau, P. H. Dixneuf, H. Doucet, J. Org. Chem. 2013, 78, 41774183.
[10] a) S. I. Gorelsky, D. Lapointe, K. Fagnou, J. Org. Chem. 2012, 77, 658-668; b) S. I. Gorelsky, Coord. Chem. Rev. 2013, 257, 153-164.
[11] a) D. L. Davies, S. M. A. Donald, S. A. Macgregor, J. Am. Chem. Soc. 2005, 127, 1375413755; b) M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 16496-16497; c) D. Lapointe, K. Fagnou, Chem. Lett. 2010, 39, 1118-1126.
[12] Y. Ma, M. Na, Y. Gu, G. Huang, X. Li, Y. Chen, Appl. Organomet. Chem. 2015, 29, 165-169.
[13] S. K. Kim, J.-H. Kim, Y. C. Park, J. W. Kim, E. K. Yum, Tetrahedron 2013, 69, 1099010995.
[14] J.-S. Ouyang, Y.-F. Li, D.-S. Shen, Z. Ke, F.-S. Liu, Dalton Trans. 2016, 45, 1491914927.
[15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Revision A.03, 2016, Gaussian Inc. Wallingford CT.
[16]C. Adamo, V. Barone, J. Chem. Phys. 1998, 108, 664-675.
[17] S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem. 2011, 32, 1456-1465.
[18] A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899-926.

