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Highlights 

 Closed-loop step photo-reactor was used for the degradation of antibiotics 

 High degradation of multi-compound antibiotic solution was observed  

 Rate constant of oxolinic and nalidixic acids with hydroxyl radicals was determined 

 The distribution of TiO2 supported on cellulose fibers was investigated with respect to 

SiO2 

 

ABSTRACT 

The present study investigates the photocatalytic degradation of three quinolone antibiotics (i.e., 

Flumequine (FLU), Oxolinic Acid (OA) and Nalidixic Acid (NA)) in mono-, binary and ternary 

compound systems. The closed-loop step photo-reactor and TiO2 impregnated on cellulosic paper 
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as supported photo-catalyst in presence of UV light irradiation were used. The degradation of FLU 

occurred within 4 hours. A 65.4 % mineralization of OA was observed in a mono-compound 

system, due to the fast conversion of these main by-products formed. Besides, the investigation of 

the contribution of free radicals revealed the involvement of hole (h+), O2
, but mainly OH on 

the degradation of OA. The second-order kinetic rate constants calculated relative to the 

contribution of OH radicals on the degradation of OA was 4.03 × 109 M−1s−1, whereas for that of 

NA was 4.42 × 109 M−1s−1, thus underscoring that OH is the primary reactive species implicated 

in the photocatalytic degradation of these compounds on TiO2/cellulosic paper catalysts. The 

mono-compound system shows a higher degradation rate compared to multi-compound system 

(binary and ternary) which explained by the competitive adsorption of antibiotics on the available 

active sites of photocatalyst surface. Overall, the constant photocatalytic rates are higher following 

this order: mono-compound system > ternary mixture > binary mixture. The catalyst was 

characterized by mean of FTIR, HR-TEM and XRD. The SiO2-binder role was discussed in details 

based on the atomic distribution of elements on the cellulose fibers as shown by the EDS atomic 

mapping.  

 

Keywords: Antibiotic mixture, Photocatalytic degradation, mono-compound system, 

Binary/Ternary compounds system, Radical Scavengers, surface characterization.  

 

Introduction 

The growth of agri-business and aquaculture industry has been accompanied with certain practices 

that are potentially harmful for human and animal health. Since a decade, industrial aquaculture 

has quadrupled worldwide, and most of these have been followed by unrestricted use of 

antibiotics, turning these productive activities into a public health problem [1, 2]. Unintentional 

consumption of antibiotics modifies normal flora, contributing to increased susceptibility to 

bacterial infections. Moreover, antibiotics can also cause allergy and toxicity and lead to the 

development of antibiotic-resistant bacteria. Some studies reported that this resistance could be 

transferred to other aquatic or terrestrial bacteria [3, 4]. Thus, several previous works have 

emphasized antibiotics harmful environmental effects [5-8].  

Quinolones such as flumequine, oxolinic acid, and nalidixic acid are commonly used in 

aquaculture. In particular, flumequine is one of the most widely used antibiotics in salmon 

farming, producing adverse environmental consequences due to its persistence in sediments for 

extended periods. Many techniques have been proposed to remove these kinds of pollutants, but 
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mainly wastewater treatment plants. Indeed, urban wastewater treatment plants (UWTPs) have 

proven ineffective for the removal of these pollutants, which remain in the exit effluents and thus 

reach the environment. Likewise, UWTPs effluents are considered to be among the main 

anthropogenic reservoirs where antibiotic-resistant bacteria can develop [9, 10].  

To overcome this bacterial resistance phenomenon and their spread in the environment, advanced 

oxidation processes (AOPs) have been employed for antibiotic degradation. Thus, some authors 

reported amoxicillin degradation using UV-A/TiO2 photocatalysis [11], as well as photo-catalytic 

disinfection (PCD) treatment of antibiotic sensitive (K12) and multi-drug resistant E. coli strains 

[12]. Ben et al. [13] found that quinolone antibiotics could be degraded by Ozone. Other AOPs 

such as electro-Fenton [14], UV photolysis and UV/H2O2 [15] processes were employed to the 

degradation and the mineralization of ciprofloxacin, and the transformation of some antibiotics 

shows different structural classes. Recently, Kamagate et al. [16] reported that some antibiotics 

such as flumequine, norfloxacin and ciprofloxacin could be degraded simultaneously by 

heterogeneous photo-Fenton process using laterite as catalyst. In the case of photocatalysis, most 

of the researchers have assessed the performance of removal within mono-compound systems [17-

19]. Otherwise, a diversity of hazardous pollutants with different concentrations coexists in the 

real effluents. Thus, synergistic or antagonistic effects should be taken into account regarding the 

performance study processes [20, 21]. Few works have been reported until now on the degradation 

of binary and ternary mixture of antibiotics by closed-loop step photo-reactor [22, 23].     

Photocatalysis is known as AOP, which applied in both air and water purification, mainly in the 

case of persistent pollutants [24]. This process implies the excitation of electrons of valence band 

to move into the conduction band, leaving behind a positive hole (h+). When the latter react with 

the water molecules adsorbed on the catalyst surface, they generate hydroxyl radicals (•OH). The 

electron combines with oxygen to form the couple hydroperoxide and superoxide anions (HO2
• 

/O2
• ) [25, 26]. These free radicals will react with the pollutants leading to its degradation and/or 

mineralization [27]. 
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In this study, the simultaneous degradation of binary and ternary mixtures of antibiotics in a 

continuous flow reactor, as well as the mineralization and the contribution of different reactive 

oxygen species (ROS) are investigated at neutral pH in order to mimic the decontamination in real 

environment. Before, the photocatalytic degradation efficiency of each antibiotic was studied by 

mean of TiO2 impregnated on cellulosic fibers under UV-A light (λmax = 365 nm), which normally 

exist in solar spectrum reaching the earth. Likewise, the mineralization of these compounds was 

followed. Finally, the photodegradation effect of TiO2-supported on cellulosic paper has been 

followed by the Infra-Red spectra and X-ray diffraction (XRD) at time of exposure to light.  

2. Experimental 

2.1. Materials 

Carbon tetrachloride (purity > 99.8 %, R.P. Normapur), Ethylenediaminetetra-acetic acid (purity 

> 99 wt. %, Prolabo), Chloroform (99.97 %, Acros-Organics) were used. Flumequine (FLU), 

Oxolinic Acid (OA) and Nalidixic Acid (NA), Hydrochloric acid (HCl, 37 % v/v), 2-Propanol 

(purity > 99.5 %), Sodium hydroxide (NaOH, 98 % purity) were purchased from Sigma–Aldrich 

in France.  Stock solutions were prepared with high-purity water obtained from a Millipore Milli-

Q system with a resistivity of 18.2 MΩ cm2. Physico-chemical properties of antibiotics and its 

structures are shown in Table 1.   

 

2.2. Characterization of the catalyst 

Titanium dioxide (PC-500, 85% Anatase, crystallites mean size = 5 -10 nm) was coated using of 

a binder on non-woven paper formed by natural cellulose fibers (2 mm thick). The used binder 

was an aqueous dispersion of colloidal SiO2. The coating of the cellulose fibers consists of a 

mixture of TiO2 and SiO2 nanoparticles (mass ratio = 1) with average size distribution of 25 nm. 

A careful washing of the coating was carried after the deposition in order to remove the unbounded 

or weakly bonded TiO2. The remaining TiO2 load on the surface was 25 g/m2. In the next sections 
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of the study, the combined system: TiO2 + SiO2 + the cellulose fibers will be referred to as the 

photocatalyst [28]. 

To understand whether the TiO2-supporting cellulose fibers remained unchanged after treatment 

in case of long-time exposure to light, attenuated total reflectance-Fourier transform infrared 

(ATR-FTIR) spectra were carried out between in the 650-4000 cm-1 region on an IS50 Nicolet 

spectrometer equipped with a KBr beam splitter and a TCD detector. A nine-reflection diamond 

ATR accessory (DurasamplIR ™, SensIR Technologies) was used for acquiring spectra of wet 

samples. The resolution of the single beam spectra was 4 cm-1. 

X-ray diffractograms (XRD) have been also performed using a Philips PW1830X-ray 

diffractometer in a Bragg Brentano configuration to identify the crystal phase and structure. The 

observed patterns have been determined using Philips X’Pert High Score software and compared 

with standard patterns of International Center of Diffraction Data (ICDD) databases.  

For TEM analysis, the coated cellulosic fibers were embedded in epoxy then cut with ultra-

microtome into thin layers with thickness of 80-100 nm. These layers were placed on TEM holey 

carbon grid. FEI Osiris microscope was used for imaging and operated at 200 kV, with spot size 

of 5, dwell time 50 µs and real time 600s.  

2.3. Photocatalytic experiments 

The photocatalytic degradation of the mono-, bi and tri-compound systems were carried out in a 

closed-loop step photo-reactor. The photo-reactor includes three lamps Philips Bulb lamp emitting 

a UV-A light (24 W UVA; λmax = 365 nm), a Gear Pump Drive 75211-15 operating at a flow rate 

of 125 L h-1, a tank of 2 L capacity with magnetic stirrer, and the TiO2 impregnated on cellulosic 

fibers as photo-catalyst (Fig.1). For the experiment, 1.5 L of each solution (FLU, NA and OA) of 

known concentration (i.e., 5 mg L-1) was prepared and recirculated. The pH of the solution was 

adjusted by HCl and NaOH (0.01M). The solution was recirculated in the dark for 45 min to reach 
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adsorption equilibrium before irradiation. At time intervals, 5 mL of the solution was collected 

and analyzed.  

2.4. Sample analysis 

Aqueous concentrations of FLU, NA, and OA were determined using a high-performance liquid 

chromatography (Waters 600 Controller) equipped with a reversed-phase C18 column (250 

mm×4.6 mm i.d.,5 μm) and UV detector (Waters 2489). The detector was set to 246, 258, 268 nm 

for FLU, NA, and OA, respectively. The mobile phase was a mixture of acetonitrile/water (40/60 

v/v) with 0.1 % formic acid. The flow rate was set at 1 mL min-1 in isocratic mode. Under these 

conditions, the retention times of FLU, NA, and OA were 6.5, 5.8 and 5 min, respectively. Total 

Organic Carbon (TOC) was determined using a TOC-meter (Shimadzu TOC-VCSH). The 

scavenging experiments were performed using 5 mg L-1 of; Isopropanol, carbon tetrachloride or 

chloroform and EDTA to determine the contributions of O2
•–, hole (h+) and •OH within the 

degradation of these three antibiotics, respectively. The degradation efficiency (%) was estimated 

using Eq 1. 

𝜂(%) = (
𝐶0−𝐶𝑡

𝐶0
) × 100                                                                                                          (1) 

where, C0 and Ct are the initial concentration and the concentration at time t of antibiotic, 

respectively. 

Then, the mineralization yield was calculated according to the Eq 2.  

𝑀𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑦𝑖𝑒𝑙𝑑 (%) = (
𝑇𝑂𝐶0−𝑇𝑂𝐶𝑡

𝑇𝑂𝐶0
) × 100                                                                         (2)  

where, TOC0 and TOCt are the initial Total Organic Carbon and the Total Organic Carbon at time 

t, respectively. 

2.5. Determination of second-order rate constant of some compounds reacting with •OH 

radicals 

The second-order rate constant between •OH radicals and some compounds (i.e., oxolinic acid 

(OA) and nalidixic acid (NA)) reaction was determined by Parker et al. [29] and Boreen et al. [30] 
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methods. Flumequine (FLU) with a known •OH rate constant (k•OH, FLU = 8.26 × 109 M−1s−1) [31], 

was used as the reference compound (R) in this study. 

3. Results and discussion 

3.1. Degradation efficiency of closed-loop step photo-reactor 

Figure 2 shows the degradation efficiencies of FLU, OA and NA versus time. In fact, a complete 

degradation was obtained for all the compounds within 240 min. It is worthy to note that the 

degradation of FLU was much faster, followed by that of NA, while OA degradation was the 

slowest. This result can be explained by the fact that OA has a major hemolytic effect and is more 

photo-stable than FLU and NA [32, 33]. Hidalgo et al. [32] reported on the photostability of some 

pharmaceutical compounds, which decreased in the order: oxolinic acid (OA) > rosoxacin (RS) > 

M-193324 > nalidixic acid (NA) > pipemidic acid (PA) > norfloxacin (NF) > ciprofloxacin (CP). 

This study showed that nalidixic acid (NA) is less photo-stable compared to oxolinic acid (OA), 

which can justify the faster degradation of NA. Regarding FLU, Sirtori et al. [34] found the same 

degradation trend with NA during 25 min of illumination in presence of TiO2-P25 (Degussa) in 

suspension.  

When using TiO2 in suspension, separation and filtration of the catalyst at the end of the process 

is necessary for the catalyst reuse. For this reason, our study focuses on the degradation of 

pollutants on supported TiO2 on cellulosic paper. Herrington and Midmore, 1984, were the first 

to report that the primary origin of the charge on cellulose fibers is the dissociation of carboxylic 

acid groups on their surface [35]. Two main acid groups with pK values of 4.0 and 9.2 were 

reported for cellulose fibers. The former was concluded to be a C6 carboxy-group as oxycellulose; 

the latter pK was thought to be ammonia as an impurity, especially existing on natural cellulosic 

fibers. This confers polar groups COO- and OH+ able to bind TiO2 with its different polarities. In 

principle, equilibrium of the acid/base groups on the TiO2 interface may be assumed even if the 

crystal structure is not stable. During the photocatalytic degradation of the mono-, bi- or tri-
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compound system, the TiO2/wastewater solution interface is dominated by the properties of 

≡TiOH1/3¯ and ≡OH1/3+ surface groups [36]. The acid–base character of these polar sites is 

represented by the two interfacial equilibria shown in eq.3 and eq. 4 below: 

≡ 𝑇𝑖𝑂𝐻2
2 /3+

↔ ≡ 𝑇𝑖𝑂𝐻1 /3− + 𝐻+                                                                                (3) 

≡ 𝑂2 / 3− + 𝐻+ ↔ ≡ 𝑂𝐻1 / 3+                                                                                         (4) 

 The rapid degradation of FLU at the beginning reaction can be due to the supported catalyst used 

in this study showing polar groups able to facilitate the contact with the pollutant. Vaizoğullar 

[37] tested several catalysts and showed that the supported catalysts improved the FLU 

degradation.   

The pKa of flumequine is higher than typical carboxylic acids (6.27). This because of the 

stabilization proton by hydrogen bonding to the adjacent =O group. This allows polarity of the 

TiO2-cellulosic paper catalyst interacting with the surrounding FLU (or other pollutant) molecules 

leading to their adsorption and thus their oxidation.  

3.2. Mineralization of mono-compound systems  

With the aim, TOC measurements were performed to follow the mineralization of each antibiotic 

during photo-catalytic treatment. As it is readily seen in Fig.3a, a progressive increase of the 

pollutants mineralization and consequently a progressive TOC reduction over time were observed. 

We noted 65.4 % of OA mineralization, whereas those of FLU and NA achieved 57.3 % and 43.4 

% after 6 h on the supported TiO2 under light, respectively. This fast OA mineralization suggests 

that photocatalysis with TiO2 is efficient in rapidly converting this antibiotic into non-toxic by-

products [38, 39]. Indeed, Giraldo et al. [38] showed that the aromatic intermediates were formed 

within the 45 min of treatment. Unlike OA, FLU mineralization occurred after its degradation 

within 180 min of UV illumination, while the mineralization of NA began after 60 min (before 

total degradation). The same trends were obtained by Sirtori et al. [34], following FLU and NA 

mineralization by TiO2 suspensions. Indeed, the generated reactive oxygen species (ROS) could 
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be firstly consumed by the fragments of FLU, and then broken down into by-products, and finally 

CO2 and H2O and other minerals. Otherwise, the mineralization of OA and NA was occurred 

simultaneously with their degradation, thus showing that the generated ROS were consumed 

directly by their fragments as well as by-products leading to mineralization. However, the 

mineralization of OA, NA, and FLU in individually solutions could be described by Pseudo-first-

order kinetics [40]. A good linear correlation between ln (TOC0/TOC) versus time according to 

the regression coefficient (R2 ) (i.e., 0.998, 0.979 and 0.939 for OA, NA and FLU, respectively) 

was observed. The comparison between Pseudo-first-order constant (k’) of mineralization rate for 

different antibiotics in mono-component system is presented in Fig.3b. The mineralization rate 

(k’) of OA (28.8.10- 4 ± 10-4 min-1) is higher than those of FLU (17.4.10- 4 ± 10-5 min-1) and NA 

(13.7.10- 4 ± 10-5 min-1). 

3.3. Effect of different scavengers on OA degradation 

The photocatalytic reaction starts by absorbing UV photons with the formation of electron-hole 

pairs (e-/h+) on the surface of TiO2 by following equation 5 [26].  

𝑇𝑖𝑂2 + ℎ   𝑇𝑖𝑂2 (ℎ + 𝑒−)                                                                                     (5) 

Moreover, H2O and O2 molecules could transfer electrons from holes valence band towards 

conduction band to produce OH by following these chain reactions [41]. Then, these different 

radicals would react with OA. 

𝐻2𝑂 + ℎ+    𝐻+ + 𝐻𝑂                                                                                                (6) 

𝐻2𝑂 + 𝑒−    𝐻− +  𝐻𝑂                                                                                                (7) 

𝐻2𝑂 + 𝑒−    2𝑒−+ 𝐻2𝑂+                                                                                             (8) 

𝐻2𝑂+ + 𝐻2𝑂    𝐻3𝑂+ + 𝐻𝑂                                                                                      (9)  

𝑒− + 𝑂2   + 𝑂2
 −                                                                                                          (10) 

𝐻2𝑂 + 𝑂   2𝑂𝐻                                                                                                         (11)  
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To understand the involvement of these active radicals upon the photocatalysis process, EDTA, 

isopropyl alcohol and chloroform (CHCl3) were used as scavengers of hole (h+), OH and O2
  , 

respectively [42- 45]. It is worth to mention at this stage that At pH ~6, the photocatalytic 

degradation and/or mineralization of OA would preferentially proceed via the predominant O2
  

species over HO2
  . The effect of these different radical acceptors on the OA degradation and 

their constant rate were shown in Fig.4. In the presence of iso-propanol, the degradation efficiency 

of OA markedly dropped from 100 % to 25 % (i.e., 75 % of OA degradation was inhibited) with 

a constant rate of 0.0012 min-1, thus underscoring that OH radicals were mainly implicated in OA 

degradation. Indeed, Iso-Pro has been reported as one of the best •OH radical scavengers due to 

its high rate constant (k Iso-pro, •OH = 1.9 x 109 M-1s-1) [43] by abstraction of the H-atom attached to 

the tertiary carbon of Iso-Pro as shown in equation 12 below [46,47].  

(𝐶𝐻3)2𝐶𝐻𝑂𝐻 + 𝐻𝑂• → (𝐶𝐻3)2𝐶  •𝑂𝐻 + 𝐻2𝑂                                                           (12) 

 

When the same concentration of EDTA was added, OA degradation efficiency inhibition was low 

(~25 %) leading to 65% OA degradation inhibition with a constant rate of 0.0036 min-1, whereas 

when adding CHCl3, 40 % of inhibition (i.e., from 100 % to 60 % of degradation) was obtained 

with a constant rate of 0.0024 min-1, suggesting a minor contribution of the photo-generated holes 

in the process of pollutant degradation conversely O2
  . In conclusion, the order of implication 

of each photo-generated active species can be as follow: hole (h+) followed by a low contribution 

of O2
  and the main contribution is attributed to OH for the OA degradation in the mono-

compound system.   

3.4. Estimation of the second-order rate constants between organic compounds and the 

photo-generated •OH radicals 

The reaction between •OH radicals and organic ligand (S) follows a second order kinetic. This 

decay rate can be expressed by the following equation: 

−(𝑑[𝑆])/𝑑𝑡 = [𝑘OH,   S][OH][S]                                                                                       (13) 
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Where [k •OH, S] is the second order constant rate for the reaction between S and •OH. Indeed, the 

reaction of hydroxyl radicals generation represents the limiting step in the oxidation of most 

organic compounds, due to the slower rate of this reaction compared to the consumption of •OH 

radicals by organic compounds and the formation of the by-products [48,49]. By assuming 

constant the OH radical’s concentration in the solution, the rate of the reaction can be described 

by pseudo-first-order model relative to the concentration of organic compounds:  

−(𝑑[𝑂𝐻])/𝑑𝑡 = 0                                                                                                      (14) 

−(𝑑[𝑆])/𝑑𝑡 = 𝑘𝑎𝑝𝑝[𝑆]                                                                                                 (15) 

This can be ascribed as:  

ln (
𝑆𝑡

𝑆0
) = −𝑘𝑎𝑝𝑝. 𝑡                                                                                                        (16) 

with 𝑘𝑎𝑝𝑝 = [𝑘OH,   S][OH]                                                                                        (17) 

Experimentally, monitoring of the organic compound (S) decay versus time allows estimating the 

apparent rate constant of the reaction according to pseudo-first-order model. Then, the rate 

constant absolute of second-order of the reaction between •OH radicals and organic compounds 

can be determined by the competitive kinetic methods, by setting competition constant ks of the 

substrate (S) determined with a reference compound (R) whose kinetic constant is known [29,30]. 

Therefore, the different concentrations over time are given by: 

−(𝑑[𝑅])/𝑑𝑡 = [𝑘OH,   R][OH][R]                                                                                      (18) 

Then, the equations (13) and (18) allow for writing those from below: 

𝑙𝑛([𝑆]0/[𝑆]𝑡) = 𝑘(OH,   S)/𝑘(OH,   R) × 𝑙𝑛([𝑅]0/[𝑅]𝑡)                                                     (19) 

This method is used in this study to estimate the second-order reaction of oxolinic acid (OA) and 

nalidixic acid (NA) reacting with •OH using flumequine (FLU) as a reference compound (k•OH, FLU 

= 8.26 × 109 M−1s−1). Thus, equation 19 leads to equation 20 below:  

𝑙𝑛([𝑂𝐴 𝑜𝑟 𝑁𝐴]0/[𝑂𝐴 𝑜𝑟 𝑁𝐴]𝑡) = 𝑘(OH,   𝑂𝐴 𝑜𝑟 𝑁𝐴)/𝑘(OH,   FLU) × 𝑙𝑛([𝐹𝐿𝑈]0/[𝐹𝐿𝑈]𝑡)      (20)   
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The reaction rate constants were estimated by plotting ln([OA or NA]0/[OA or NA]t) versus 

ln([FLU]0/[FLU]t) as shown in Fig. 5. The results obtained for OA (i.e., k•OH, OA) was 4.03 × 109 

M−1s−1, whereas of that of NA (i.e., k•OH, NA) was 4.42 × 109 M−1s−1. These high values for the 

second-order kinetic rate constant confirms that •OH is the primary reactive species involved in 

the photocatalytic degradation of these compounds on TiO2/cellulosic fiber catalysts. 

3.5. Degradation efficiencies in binary and ternary systems 

Figure 6 shows the simultaneous degradation efficiencies of FLU, OA and NA versus time. For 

the simultaneous degradation of FLU with OA or NA, we noted higher degradation efficiencies 

regarding FLU relatively to both during the photocatalysis process. These results could be 

explained by the fact that •OH radicals were strongly involved within degradation of these 

compounds, and that the second order rate constant of FLU with •OH was higher than those of 

both OA and NA as estimated above in Fig.5. According to Santoke et al. [31], the second order 

rate constant of FLU with •OH is k•OH, FLU = 8.26 × 109 M−1s−1, whereas those of OA and NA were 

4.03 × 109 M−1s−1 and 4.42 × 109 M−1s−1, respectively. On the other hand, a high degradation 

efficiency of NA versus OA during their simultaneous degradation could be due to a high second 

order rate constant of NA, unlike OA. Despite the high mineralization rate of OA in the mono-

compound system, it holds that the degradation efficiency in binary system confirms those of 

mono-compound systems, which is lower than those of NA and FLU. Hidalgo et al. [32] 

investigated also the photodegradable behavior of some quinolones and found that OA was very 

photo-stable. Otherwise, in the ternary system, we noted firstly high degradation percentages of 

NA at the beginning of the reaction (i.e., from 30 to 90 min), then, this degradation percentage 

became similar at those of FLU until 240 min and decreased after 300 min under light. Similar 

trend was observed by Sirtori et al. [34], which could be attributed of a competition of the by-

products formed during FLU or NA decomposition and these mother compounds on the TiO2 

surface (in mono-compound systems). In our study, the competition is stronger since it lies 

between the supported TiO2 surface and the 3 mother compounds associated with their by-
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products, which makes the system more complex mimicking a hospital wastewater effluent. In a 

real set, the competitive interaction of TiO2 surface and the existing compounds can be influenced 

by: (i) the pH of the media and its evolution during the photocatalytic process (ii) the 

charge/polarity of the compounds, and (iii) the differences of concentration of each compound 

leading to different by-products concentrations.  

3.6. Degradation rates and radicals contribution percentages of multi-compound in different 

systems  

The photocatalytic degradation of FLU, OA and NA antibiotics could be described by the pseudo-

first-order kinetics following the slope of the straight-line plot of ln(C0/C) versus time (min): 

𝐿𝑛 (
𝐶0

𝐶𝑡
) = 𝑘. 𝑡                                                                                                                          (21) 

where, C0 and Ct are the initial and residual concentrations (mg L-1) of the treated solution at the 

instant t of photocatalytic reaction, respectively. 

The Pseudo-first-order rate constant values decreased in the mono-component system following 

this order: k FLU ˃ k NA ˃ k OA. The k FLU value was 0.017 min-1 in mono-compound system, which 

dropped nearly 3-fold in binary systems (i.e., k = 0.0055 min-1) and 2-fold in ternary systems (i.e., 

k = 0.009 min-1); whereas those of OA decreased just about 2-fold in both system (i.e., k = 0.0035 

min-1 in binary system and 0.0045 min-1 in ternary). In the case of NA, the decrease of k values 

from mono-compound system to multi-compound system depended on the combination of the 

molecules and the systems. We observed a decrease of about 2-fold and 3-fold in presence of OA 

and FLU, respectively, while that in ternary was 1.4-fold (i.e., NA/FLU/OA system). This 

inhibition could be due to the competitive adsorption of two antibiotics and their by-products on 

the available active sites of the catalyst surface where the molecule size and functional groups 

play a crucial role [34]. Likewise, a slight increase of k in the ternary system compared to the 

binary system for all the three antibiotics was observed, but the degradation efficiencies remained 

less than those of binary system. It is worthy to note that radicals contribution determined varied 
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versus the different compound systems. Indeed, high contribution of O2
 − was observed upon FLU 

degradation, while for AO and NA, •OH contribution was higher in the mono-compound system. 

In the binary system as well as in the ternary system, O2
 −and •OH contributed widely, except in 

the system OA + NA, where •OH dominated. 

3.7. Characterization of the photocatalytic surface: 

3.7.1. TEM imaging and elements distribution/mapping 

Figure 8a shows the HAADF distribution of the TiO2/SiO2 coating on the fibrous cellulose fabrics. 

It is readily seen from Figure 8a that the coating is well distributed along the cellulose fibers with 

respect to the Ti/Si ratio of 1 as reported in the experimental section. Figure 8b shows that the 

SiO2 binder plays a role for the distribution of TiO2 leading to enhanced adhesion to the cellulose 

substrate. The SiO2 binder tightly bonds the particles leading to the formation of the compact layer 

as shown in Figure 8a. In addition to the bridging role, the binder may serve to alleviate the stresses 

of Ti nanoparticles resulting from the volume change during the catalyst preparation. The SiO2 

encompass TiO2 leading to the formation of TiO2-ilands. Figure 8b shows the anastomosing 

behavior of SiO2 forming micro-sized aggregates of TiO2 on the cellulose fiber surface.  

3.7.2. FTIR spectra  

To study the stability of the supported catalyst after the antibiotics degradation, IR spectra of the 

TiO2-supporting cellulosic fibers before and after the photocatalytic treatment were carried out 

and the results are shown in Figure 9. As shown in the Figure 9, the spectrum of the virgin 

TiO2/cellulose catalyst is characterized by an intense and broad band in the 3600 –3100 cm−1 range, 

associated with inter- and intra-chain OH–O groups of the interacting chains, and a peak at 1700 

-1600 cm−1 is also indicative of the presence of interstitial or adsorbed water [50, 51]. Thus, a 

strong broad band at 691 cm−1 was attributed to the stretching vibration of Ti–O–Ti for TiO2 

samples [52, 53]. We also noted the adsorption of quinolone between 1100-1000 cm−1 and 1600-

1700 cm-1 compared to the virgin TiO2/cellulose catalyst. A higher intensity at 1638 cm−1 and 

1073 cm−1 was observed for ternary compound system photodegradation. This peak can be 
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attributed to the further –C=O and –C–O stretching vibration of antibiotics [54, 55]. These 

findings proved that a high adsorption of antibiotics onto the surface of the photocatalyst would 

be beneficial for the photodegradation. 

3.7.3. XRD patterns 

Figure 10 shows the XRD patterns of TiO2/cellulose catalyst in presence of FLU, FLU + NA and 

FLU + NA + OA. The peaks at 20.3 and 21.8° are corresponding to the (110) and (200) planes of 

crystalline cellulose, respectively. It is noted that in addition to the peaks of cellulose, the TiO2 

crystalline peaks such as anatase and rutile crystalline disappeared in the TiO2/cellulose composite 

fiber. This can be attributed to the high intensity of the peaks attributed to the cellulose 

predominating the peaks assigned to TiO2 crystalline structures.  

 

4. Conclusion 

In the current study, the photocatalytic degradation of three antibiotics (i.e., FLU, OA, and NA) 

was successfully performed using closed-loop step photo-reactor including TiO2 impregnated on 

cellulosic paper under UV irradiation. We noted a rapid degradation of FLU and a high 

mineralization of OA with 65.4 % in the mono-compound system. This was attributed to the fast 

conversion of OA into the two major by-products easily oxidized. Besides, the investigation of 

the contribution of the photo-generated free radicals revealed the involvement of the hole (h+), 

and O2
.-, but mainly •OH on OA degradation. The second-order kinetic rate constants relative to 

the photo-generated •OH were determined for OA at 4.03 × 109 M−1s−1, whereas that of NA was 

4.42 × 109 M−1s−1. These high values confirm that •OH is the primary reactive species involved in 

the photocatalytic degradation of these antibiotics on TiO2/cellulosic fiber catalysts. The mono-

compound system shows a higher degradation rate compared to multi-compound systems (binary 

and ternary) which was explained by the competitive adsorption of antibiotics on the available 

active sites of photocatalyst surface. TEM imaging and atomic mapping showed that the coating 

is well distributed on the cellulosic fibers. The SiO2 binder played a role in the distribution of TiO2 
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and enhanced its adhesion to the substrate leading to tightly bonded particles. The stretching 

vibration bonds of Ti–O–Ti were observed by FTIR. XRD results showed the presence of Anatase 

TiO2, but the peaks of the cellulosic substrate were predominant. Finally, TiO2 impregnated on 

cellulosic paper under UV irradiation could be an alternative solution to antibiotic multi-

compound degradation in real hospital wastewater effluents. The catalyst surface was 

characterized by the mean of HR-TEM, FTIR and XRD.  
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Figure 1. Experiment tool composition: pump, UV lamp, photocatalyst. The dark arrow denotes 

the water circulation.  

 

Figure 2. Individual degradation efficiency of FLU, OA, and NA with 5 mg L-1 initial 

concentration and 2.6 g L-1 catalyst dosage at pH = 7 ± 0.1. 
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Figure 3. Mineralization yield (a) and pseudo-first-order rate constant (k’, min–1) (b) of FLU, OA 

and NA during 360 min of reaction at pH = 7 ± 0.1 with 5 mg L-1 as initial concentration and 2.6 

g L-1 catalyst dosage. 

 

Figure 4. Effect of Isopropyl, EDTA and CHCl3 on OA removal efficiency (b) and constant rate 

(a) using 2.6 g L-1 of TiO2/cellulosic paper catalysts under UV light at pH = 7 ± 0.1: [OA] = [Iso-

Pro] = [EDTA] = [CHCl3] = 5 mg L-1. 
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Figure 5. Determination method of second-order rate constant of (a) OA and (b) NA (b) reacting 

with •OH radicals.  

 

Figure 6. Photocatalytic degradation of FLU, OA and NA in binary and ternary systems with 5 

mg L-1 as initial concentration of each antibiotic and 2.6 g L-1 catalyst dosage at pH = 7 ± 0.1. 
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Figure 7. Pseudo-first-order rate constant and radicals implication percentages in mono-, binary- 

and ternary-compound systems with 5 mg L-1 as initial concentration of each antibiotic and 2.6 g 

L-1 catalyst dosage at pH = 7 ± 0.1 in 300 min. 

 

Figure 8. (a) HAADF coating distribution on the cellulose fiber fabrics. (b) HAADF distribution 

of elements and SiO2 binder role.  ACCEPTED M
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Figure 9. FTIR spectra before and after treatment of OA, NA, and FLU using mono-, binary- and 

ternary-compound(s) systems with 5 mg L-1 as initial concentration of each antibiotic and 2.6 g L-

1 catalyst dosage at pH = 7 ± 0.1 in 300 min. 

 

Figure 10. XRD patterns before  and after treatment of OA, NA, and FLU using mono-, binary-  

and ternary-compound(s) systems with 5 mg L-1 as initial concentration of each antibiotic and 2.6 

g L-1 catalyst dosage at pH = 7 ± 0.1 in 300 min. 
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Table 1: Physico-chemical properties and structure of antibiotics. 

 FLU OA NA 

Chemical formula C14H12FNO3 C13H11NO5 C12H12N2O3 

MW (g mol-1) 261.25 261.23 232.24 

λmax (nm) 246 268 258 

 

Chemical structure 
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