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ABSTRACT  

The structure of bis(2-phenylethylammonium) chromate(VI) (2phCr ) was determined from 
X-ray diffraction data. The compound crystallizes in the monoclinic system (space group 
C2/c) with the lattice parameters: a = 38.136(2) Å, b = 11.2334(6) Å, c = 8.1643(4) Å; β = 
98.480(2) V= 3459.3(3) Å3 and Z = 8. The structure was solved from 3358 independent 
reflections with R = 0.034 and Rw = 0.1089. The structure consists of discrete anions (CrO4

2-) 
stacked in layers parallel to (b, c) plane at x = 1/4 and 3/4. These anions are connected to the 
2-phenylethylammonium cations through N-H…O and C-H…O hydrogen bonds, forming a 
two-dimensional arrangement. Crystal structure and spectroscopic studies are reported for the 
2phCr. In addition, Hirshfeld surfaces and two-dimensional fingerprint plots estimate the 
intermolecular interactions accountable for the generation of crystal packing. Furthermore, the 
title compound was screened for antibacterial activities against five pathogenic strains 
namely: Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028, Staphylococus 
aureus ATCC 6538, Enterococcus feacium ATCC 19434 and Streptocoque B (Sreptococcus 
agalactiae) and antifungal activities against a clinical strain called Candida albicans ATCC 
10231, corroborating significant activity. In silico investigation of bioactivity of 2phCr was 
performed via molecular docking analysis with four types of secreted aspartic proteinases 
(SAP, SAP1, SAP3, and SAP5) from Candida albicans to explore the antifungal properties in 
comparison to behavior of known antifungals used to treat Candida albicans, and with three 
types of β-ketoacyl acyl carrier protein synthase enzymes (KAS I (FabB), KAS II (FabF) and 
KAS III (FabH)) from Escherichia coli in comparison with that of aminothiazole, 
thilactomycin, and cerulerin antimicrobials. In addition, the complete assignments for 2phCr 
are reported considering monodentate coordination for the chromate group.  

Keywords:  Organic-inorganic hybrid material; Chromate(VI); Single crystal X-ray; IR 
Spectroscopy; Antibacterial and anti-fungal activities; Molecular docking. 
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1. Introduction 

The design and synthesis of new solid materials with controlled structure are a recent defy in 

solid state chemistry. Up to date a great number of chromates of organic bases have been 

prepared and used as reagents in mild selective oxidation processes of organic substrates 

[1,2], so as to display some interesting crystal structure and some special properties in 

numerous areas, such as nonlinear optical (NLO), catalysis and biology [3,4]. Knowledge of 

the crystal structures and mechanisms of these associations in hybrid organic-inorganic 

materials can help to recognize their physic-chemical properties.  

A serious medical problem in treatment of infectious organism is the drug resistance. To 

overcome this issue, a promising method is seemed to be the inhibition of fatty acid synthases 

because it is essential to cell viability and its specificity for bacteria type. Fatty acid synthases 

that exist in plants and bacteria is called Type II system. Three types of β-ketoacyl acyl carrier 

protein synthase enzymes (KAS I (FabB), KAS II (FabF) and KAS III (FabH) are known to 

be the most important regulator of the initiation and elongation steps in the pathway [5]. 

Therefore, the inhibition of these enzymes is highly critical in regulation of fatty acid 

synthases in bacteria. Chromium based compounds have their own importance in antibacterial 

activity as suggested by the Ramesh et. al. [6]. Bis(2-phenylethylammonium) chromate(VI) 

(2phCr) can be a promising compound to play a role in inhibition of these enzyme, thus we 

have compared the docking behaviors of 2phCr to that of  aminothiazole, thilactomycin, and 

cerulerin antimicrobials. 

Main purpose of antifungals is to inhibit the related enzymes in target fungi. Antifungals to 

treat C.albicans have been investigated and classified by Moudgal and Sobel [7] as polyenes, 

antimetabolites, azoles, and echinocandins. The first three groups of medicines are available 

for clinical use; therefore we choose ten inhibitors from these groups and their docking 

behaviors have been compared to that of 2phCr. The target for the potent inhibitors were 

chosen as the secreted aspartic proteases (SAPs) from C. albicans because Saps are among the 

most important virulence factors of C. albicans [8,9]. 

On the other hand, 2-phenylethylamine is a neuromodulator of catecholamine 

neurotransmission in the central nervous system [10]. Also, 2-phenylethylamine catabolism 

by Escherichia coli K12 [11]. In the present contribution, we report the synthesis and their 

characterization by using X-ray diffraction, infrared spectroscopy and UV-visible 

Spectroscopy of a novel organic chromate, [C8H12N]2CrO4. 
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2. Experimental details 

2.1. Materials and Physical Measurements 

Infrared (IR) spectrum was recorded at room temperature on a Nicolet IR200 FTIR 

spectrophotometer in the 4000–400 cm-1 region. UV—Vis spectra were recorded on a Perkin 

Elmer Lambda 19 spectrophotometer in the 200 — 800 nm range. The TG–DTA experiments 

were carried out with 4.85 mg. The sample was placed in an open platinum crucible and 

heated, from room temperature to 900 °C an empty crucible was used as reference. Thermal 

analysis was performed using a multimodule 92 Setaram analyzer. 

2.2. Synthesis 

CrO3 (1 mmol) and 2-phenylethylamine (2 mmol) were dissolved in distilled water (20 mL). 

The resulting solution was stirred for 1 hour and then evaporated slowly at room temperature. 

Yellow sticks of the title compound were obtained from the solution after one week. 

Elemental analysis, calc. (found): C, 53.28%(53.32); H, 6.66%(6.68); N, 7.77 %(7.75); Cr, 

14.43% (14.33). 

2.3. X-ray Structure Determination 

X-ray intensity data were collected on an APEXII, Bruker-AXS diffractometer with MoKα 

monochromatic radiation (λ =0.71073 Å). The structure was solved by direct methods with 

SIR97 program [12]. Absorption corrections were performed using the multi-scan technique 

using the SADABS program [13]. The molecular model was refined by full-matrix least-

squares procedure on F2 with SHELXL-97 [14], included in WINGX package [15], assuming 

anisotropic displacement parameters for non-hydrogen atoms. The hydrogen atoms bonded to 

nitrogen atoms were located from a difference map. The rest were determined geometrically 

and refined using the ‘‘riding model’’ with C-H = 0.93 Å for aromatic ring, 0.97 Å for CH2 

group, and Uiso(H) = 1.2Ueq(C)]. A summary of the crystallographic data and the structure 

refinements are given in Table 1. 

3. Quantum chemistry calculations 

The electronic structure and optimized geometry of 2-phenylethylamine chromate and all 

quantum-chemical calculations were computed by the hybrid B3LYP/6-311++G (d,p) method 

with the Gaussian 09 software package [16] and the GaussView molecular visualization 

program [17]. The vibrational wavenumbers, the geometry optimizations, HOMO-LUMO 

energies and atomic charge distribution were calculated by using DFT method. The wave 

function obtained from the optimization was used to calculate the topological parameters at 
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the BCPs using the Bader’s theory of ‘Atoms in Molecules, implemented in AIM 2000 

software [18]. The Reduced density gradient of the title molecule are graphed by Multiwfn 

[19] and plotted by VMD program [20]. In addition, the statistical thermodynamic functions 

(the heat capacity, entropy, and enthalpy) were obtained from the frequency calculations by 

repeating at different temperatures.  

Protein structures of secreted aspartic proteinases SAP (pdb:1ZAP) [8], SAP1 (pdb:2QZW) 

[21], SAP3 (pdb: 2H6S) [22], and SAP5 (pdb:2QZX) [21] and of β-ketoacyl acyl carrier 

protein synthase enzymesFabB (pdb:2VB9) [23], FabF(pdb:4LS5) [24], and FabH(pdb:3iL9) 

[25] were obtained from the Research Collaboratory for Structural Bioinformatics (RCSB) 

Protein Data Bank. The structures are cleared from water molecules and preexisting ligands. 

The hydrogens and Kollman partial charges corresponding electrostatic potential using 

quantum mechanics are added in AutoDockTools [26] to assign appropriate ionization states 

for the amino acid residues. Docking calculations and post screening analysis of ligand-

enzyme interactions are performed using iGEMDOCK [27]on the basis of GEMDOCK 

(Generic Evolutionary Method for DOCKing Molecules) scoring  function [28]. Molecular 

docking studies were carried out in iGEMDOCK with the accurate docking settings suggested 

by the program with the following setting; population size is 800, number of generations is 

80, and number of solutions is 10. During the calculations, the ligand intramolecular energies 

are excluded from total energy calculation. The visual representations of ligands in docked 

state are obtained via PyMol (Schrödinger, LLC, Cambridge, MA, USA) [29] interface. 

4. Antibacterial activity determination 

The antibacterial activity of this compound was evaluated against gram-negative (Escherichia 

coli ATCC 8739 G(-), Salmonella typhimurium ATCC 14028 G(-)) and gram-positive 

(Staphylococusaureus ATCC 6538 G(+), Enterococcus feacium ATCC 19434G(+), 

Streptocoque B (Streptococcus agalactiae) G(+)) pathogenic bacteria at different  

concentrations of 100, 150, 200 and 250µg/mL by the modified agar diffusion method [30–

32]. A suspension of the tested microorganisms was spread on the appropriate solid media 

plates and incubated overnight at 37°C. After 1 day, 4-5 loops of pure colonies were 

transferred to saline solution in a test tube for each bacterial strain and adjusted to the 0.5 

McFarland turbidity standards (~108 cells/mL). Sterile cotton dipped into the bacterial 

suspension and the agar plates were streaked three times, each time turning the plate at a 60° 

angle and finally rubbing the swab through the edge of the plate. Sterile paper discs (Glass 

Microfibre filters, Whatman; 6 mm in diameter) were placed onto inoculated plates and 
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impregnated with the diluted solutions in sterile water. The discs were carefully transferred 

onto the seeded agar plates. Filter paper disc treated with DMSO served as control and 

Ampicilline (10 mg/mL) was used as a standard drug. After 24 h of incubation, the results 

were recorded by measuring the zones of growth inhibition surrounding the disc. Clear 

inhibition zones around the discs indicated the presence of antimicrobial activity. All 

determinations were made in duplicate for each of the compound. 

The antifungal activity of this compound and the reacting agents were tested againstthe fungi, 

Candida albicans ATCC 10231 at three concentrations of 100, 150, 200 and 

250µg/mL.Nystatin was used as standard fungicide and DMSO served as a resource of 

control. The antifungal activities were estimated based on the size of inhibition zone in the 

discs [33]. 

5. Results and discussion 

5.1. Structure description 

The asymmetric unit of the crystal structure of (C8H12N)2CrO4, depicted in an ORTEP 

drawing Fig.1, consists of two crystallographically independent monoprotonated 2-

phenylethylammonium cations and one chromate dianion. The structure of this compound can 

be described as a two-dimensional arrangement of inorganic and organic entities parallel to 

the plane (b, c) at x = 1/4 and 3/4. Chromate anions and 2-phenylethylammonium cations are 

linked together by N–H…O and weaks C—H···O hydrogen bonds (Fig.2). Interatomic bond 

lengths and angles of the nitrate anions spread respectively within the ranges 1.6196(13) – 

1.6774(13) Å and 107.55(6) – 112.38(6)°. The distance Cr—O1 is notably the shortest 

(1.6196 (13) Å) because O1 is applied in weak hydrogen bonds (Table S1) at the same time as 

Cr—O4 distance is the longest (1.6774 (13) Å) because O4 is applied in three hydrogen 

bonds. These geometrical features have also been noticed in other related crystal structures 

[34]. 

For each phenylethylammonium group there are six coplanar atoms forming the mean planes 

C3C4C5C6C7C8 and C11C12C13C14C15C16 their deviation from the mean plans is 

±0,0023 Å, with a dihedral angle between the two planes of 71,27°. Examination of the 2-

phenylethylammonium cation shows that the bond distances and angles show no significant 

difference from those obtained in other simple salts involving the same organic groups 

namely, 2-phenylethylammonium p-hydroxybenzoate [35], bis(2-phenylethylammonium) 

hexachloridostannate(IV) [36] and Bis(2-phenylethylammonium) tetrachloridocobaltate(II) 

[37]. The C–N bond lengths are 1.472(3) and 1.476(3) Å, while the C–C bond lengths vary 
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from 1.370(3) to 1.520(3) Å. The N-C-C and C-C-C angles spread in the range 109.93(15) to 

121.58(18)°. In the crystal packing of this compound, extensive hydrogen bonding 

interactions are observed as listed in table 2. The established weak H-bonds [38,39] of types 

N—H…O and C—H…O involve oxygen atoms of the chromate anions as acceptors, and the 

protonated nitrogen atoms and carbon atoms of 2-phenylethylammonium as donors. 

5.2. Geometrical parameters 

The optimization of the molecular structure was carried out using the Gaussian program, 

calculated by B3LYP/6-311++G(d,p) level. The geometric parameters of the crystal structure 

are used to optimize the compound; the optimized geometry is shown in Fig. S1. Table 3 

gives a comparison between the optimized geometric parameters and the experimental X-ray 

crystallographic parameters. From this table, the linkage lengths of the methyl groups bound 

to N are, N6-C14 = 1.478 and N10-C31 = 1.474, are very close to the normal C-N bond 

length of about 1.48 [40]. The aromatic ring of the crystal structure is somewhat irregular; the 

variation in the C-C bond length is from 1.394 to 1.400 which is compatible with other 

aromatic rings [41]. As regards the anionic group, we have observed that the optimized bond 

lengths are slightly different at experimental bond lengths, because theoretical calculations 

refer to molecules isolated in the gas phase, but the experimental results represent molecules 

at solid state. Finally, it can be noted the despite the differences between the experimental 

parameters and the optimal parameters, the latter represent a good approximation. 

5.3. Hirshfeld Surface Analysis 

Intermolecular interactions in the crystal state can be investigated by the use of Hirshfeld 

surface analysis [42] and their associated finger print plots [43] which are a visual manner for 

the study of the different types of interactions present within a crystal structure. From the 

view of the Hirshfeld surface mapped over dnorm, Fig. 3, the red regions on the dnorm surface 

illustrate the significant N-H…O and C-H…O hydrogen bonding between ammonium group 

and chromate anion. The above analysis Fig. 4 can be done by quantitative calculation of 2D 

fingerprint polts through the Crystal Explorer program [44]. The H…H interactions appear as 

the largest region of the fingerprint plot with a high concentration in the middle region, shown 

in light blue, at de = di~1.2 Å Fig. 4.a with overall Hirshfeld surfaces of 48.8%. The 

contribution from the O…H/H…O contacts, corresponding to N—H…O and C—H…O 

interactions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond 

interaction having almost the same de + di~1.65 Å (Fig. 4.b). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 
 

The distinct pair of wings corresponding to C…H/H…C contacts, Fig. 4.c, at de + di~2.8 Å 

due to short interatomic C…H/H…C contacts although C-H…π  interactions are not evident 

in the structure within the sum of their van der Waals radii. The 1% contribution from O…O 

contacts to the Hirshfeld surface. 

The enrichment ratio (ER), based on Hirshfeld surface analysis, gives further description of 

intermolecular interactions operating in a crystal [45]. The ER values are summarized in 

Table S2. The ER value close to but slightly less than unity, 0.90, for H…H contacts is in 

accord with Jelsch expectation [45]. The ER value of 1.28 corresponding to O…H/H…O 

contacts clearly provides evidence for the formation of N-H…O and C—H…O interactions.  

The ER relates to the contacts of O...O and C...H/H...C are of low meaning as they are derived 

from less important interactions with small contributions in the all parts Hirshfeld surface. 

5.4.Vibrational spectral analysis 

This analysis was performed taking into account monodentate coordinations between the 

[C8H12N]2 and CrO4 groups and where each NH3
+ group has C3v symmetry while the CrO4

2- 

group present a tetrahedral environmental with C2v symmetry. Hence, a total of 135 vibration 

normal modes are expected for this compound. The scaled quantum mechanical force field 

(SQMFF) methodology was used [46] together with the Molvib program [47]. The internal 

normal coordinates used were those reported for compounds with similar groups [48-50] 

while the scale factors used were those reported by Rauhut, P. Pulay [46]. Here, only those 

potential energy distribution (PED) contributions ≥ 10 % were considered to perform the 

complete vibrational assignments. The experimental FT-IR spectrum and the calculated 

spectrum by the B3LYP/6-311 ++ G (d, p) method in the 4000-400 cm-1 range are shown in 

Fig. S2, and their assignments using the PED are given in the table S3. This table shows that 

there is a slight difference between the experimental values and the calculated frequencies, 

these small differences are due, in the experimental process we recorded spectra is the solid 

phase sample where the crystalline packing were not considered while the DFT calculations 

were carried out with an isolated molecule and in the gas phase. Note that the two very strong 

observed in the experimental IR spectrum at 2685 and 2637 cm-1, predicted by the 

calculations at 2797 and 2729 cm-1, respectively can be easily assigned to the O5---H13 and 

O4---H7 stretching modes belonging to the monodentate coordination between the NH3
+ and 

CrO4
2- groups. On the other hand, the predicted Raman spectrum expressed in activities is 

presented in Fig. S3 and compared with the corresponding one converted to Raman intensities 

by using standard equations [51,52]. We can observe the decrease and increase in the bands 
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intensities located in the 4000-2000 and 2000-0 cm-1 regions, respectively when the spectrum 

is expressed in intensities. Brief discussions on the assignments for some important groups are 

presented below. 

NH3 
+groups. The NH3

+ groups have C3v symmetries and, for this reason, three N-H 

stretching modes are expected for each group where two of them are antisymmetric modes 

and the other one is a symmetric mode and, where specifically the N6---H7 and N10---H13 

bonds have monodentate coordinated with the cromate group. Hence, these modes are 

predicted in the same region observed for these groups in p-xylylenediaminium bis(nitrate) 

[48]. Therefore, the band and shoulder at 3166 and 3125 cm-1, respectively are assigned to the 

antisymmetric and symmetric modes. Note that the other antisymmetric modes of each group 

are predicted by the SQM calculations coupled with other modes in the lower wavenumber 

region because these are coordinated bonds but, they are predicted with higher PED 

contribution at 207 and 162 cm-1 and, for these reasons, they could be easily assigned in these 

regions. The corresponding deformation modes of these groups are predicted at 1587, 1583, 

424 and 404 cm-1, as indicated in Table S3. Hence, the shoulders at 1587 and 419 cm-1 are 

clearly associated to these vibration modes. One of the two rocking modes expected for these 

groups are predicted between 1240 and 1052 cm-1 mixed with the rocking modes 

corresponding to the CH2 groups while the remain modes belong to the coordinate bonds of 

both groups are predicted with higher PED contributions at 126 and 41 cm-1. Thus, these 

modes could not be assigned because there are not observed IR bands in this region. The 

expected twisting modes are predicted by SQM calculations with higher PED contributions at 

80 and 24 cm-1 for which they can be assigned in these regions. 

CrO4
2- groups. The vibration modes corresponding to this group were assigned taking into 

account a monodentate coordination which implies that its structure present a tetrahedral 

environmental with C2v symmetry. Hence, there are expected two Cr=O and Cr-O 

antisymmetric and symmetric stretching modes in the complex. Obviously, the two Cr=O 

stretching modes are predicted by the SQM calculations at higher wavenumbers than the other 

ones, therefore, the double bonds are predicted at 1028 and 999 cm-1, as in chromyl 

compounds [53,54] while the other ones are predicted at 774 and 746 cm-1. The O=Cr=O and 

O-Cr-O deformation modes are predicted at 392 and 283 cm-1 and, for this reason, these 

modes could not be assigned in this work. The wagging, rocking and twisting modes expected 

for the CrO4
2- group are predicted in the lower wavenumbers region, these are between 346 

and 302 cm-1 and, hence, these modes can be assigned in this region, as indicate in Table 2.  
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CH2 modes. In the complex, there are four CH2 groups, for which bands associated to the four 

antisymmetric and symmetric stretching modes are expected in the IR spectrum. Hence, the 

calculations predicted these vibration modes between 2964 and 2877 cm-1, as in p-

xylylenediaminium bis(nitrate) [48], as can be seen in Table S3. The corresponding 

deformation, wagging, rocking and twisting modes are predicted in the regions 1437/1421, 

1396/1299, 1346/1281 and 893/691 cm-1, and, for these reason, they were assigned in 

accordance to the calculations and, as assigned for p-xylylenediaminium bis(nitrate) [48].  

C–C vibrations 

The C=C stretching vibration of the aromatic nucleus and the C-C vibration generally are 

assigned in the regions between 1600-1400 cm-1 and 1200-1070 cm-1 respectively [55]. The 

phenyl ring C=C vibrations stretching can be assigned to the observed bands and shoulders at 

1613, 1587 and 1541 cm-1 in the FT-IR spectrum because these modes are predicted in the 

1591-1569 cm-1 region. The bands for C–C stretching vibrations are associated with the 

observed bands and shoulders at 1283, 1179, 1097, 1012, 986, 901 and 792 cm-1. The 

vibration frequencies corresponding to the C-C stretching modes in the calculated spectrum 

are predicted at 1294, 1189, 1187, 1070, 1020, 995, 902 and 808 cm-1 while in the terakis(2,6-

dimethylpiperazine-1,4-diium) tetrakis(sulfate) dihydrate[56] these modes are occur 

experimentally to a weak bands at 1135 and 1065 cm-1 and predicted at 1089 and 1065 cm-1. 

• C–H vibrations 

The vibrational study show that the aromatic C–H stretching vibrations are predicted in the 

3057–3022 cm−1 wavenumbers region [57] and, for this reason, these modes can be assigned 

to the FT-IR bands between 3080 and 3022 cm-1. On the other hand, the aromatic C–H in-

plane deformation modes are predicted in the region 1300–1148 cm-1 while the corresponding 

out-of-plane deformation modes are predicted in the region 991–748 cm-1. These modes are 

assigned to bands observed in the regions predicted by SQM calculations. 

• C–N vibrations 

In this complex, the two C-N stretching modes are expected at 1043 and 1028 cm-1 while in 

the p-xylylenediaminium bis(nitrate) [48] these modes are assigned to the bands at 1005 and 

990 cm-1. The shifting of the stretching and bending vibrations of the NH3 group from the free 

state value confirms the formation of hydrogen bonds of varying strengths in the crystal. 

5.5. UV absorption of (C8H12N)2CrO 4 
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The optical transmittance spectra of this compound samples was recorded in the range of 

200–800 nm. The recorded spectra of the grown crystals are shown in Fig. 5.a. The UV-

Visible spectrum reveals three bands at 292 nm, 351 nm and 439 nm, the first frequency one 

being the most intense. This behavior is typical for dichromate [58]. The first and second 

bands correspond respectively to the n → σ* and n → π* transitions of the chromate CrO4
2- 

anion. In addition, the third band corresponds to the chromium yellow color. The electronic 

spectrum of the compound provided by using the Tauc model [59], so this latter was 

estimated by plotting (αhν)2 vs. hν as shown in the inset of Fig. 5.b. and extrapolating the 

linear portion near the onset of absorption edge to the energy axis. The optical band gaps of 

2.98 eV, suggesting that the material is a wide-band-gap of dielectric material. 

5.6. UV–Visible spectroscopy 

To highlight electronic transitions, electronic excitation energies and oscillating resistance, we 

have characterized our compound by UV-Visible spectrophotometry. The UV-visible 

spectrum of the compound was studied by TD-DFT using the B3LYP method. The 

experimental and theoretical electronic spectra of compound in DMSO are shown in Fig. S4. 

The experimental UV-Visible spectrum reveals three bands at 292 nm, 351 nm and 439 nm, 

the first frequency one being the most intense. This behavior is typical for chromate [58]. The 

first and second bands correspond respectively to the n → σ∗ and n → π* transitions of the 

chromate CrO4
2- anion. In addition, the third band and the less intense band centered at 439 

corresponds to d-d transition. These bands are observed in the calculated electronic spectra 

spectrum at 310 nm, 348 nm and 409 nm, the most intense band arising due to electronic 

transition from HOMO-6 → LUMO+1 (64%) molecular orbitals, the absorption band at 348 

nm arising due to electronic transition from HOMO-5 → LUMO (32%) molecular orbitals, 

while the absorption band at 409 nm arising due to electronic transition from HOMO → 

LUMO+1 (90%) molecular orbitals. The absorption band at 262 nm is not observed in 

experimental spectrum of compound in same solvent. 

The TD-DFT calculation shows that the maximum value of the oscillator strength is reached 

for the wavelength 310 nm (f= 0.0415a.u) and the low value of the oscillator strength 

correspond to the first band calculated at 262 nm (f = 0.0053 a.u). The calculated electronic 

transitions of high oscillatory strength, along with electronic excitation energies in solvent 

DMSO are presented in Table 4. 

5.7. Frontier molecular orbitals 
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To explain several types of reactions such as their chemical behavior and the stability of the 

molecular system, we used the study of Frontier molecular orbital. The pictorial 

representation of the HOMO and the LUMO of our compound is given in Fig. 6. This figure 

shows that the highest occupied molecular orbital HOMO that could act as electron donor is 

delocalized over the organic cation, the lowest unoccupied molecular orbital LUMO that 

could act as electron acceptor is delocalized over the anionic group [59].  

The energy values of the HOMO-LUMO molecular orbitals are summarized in Table S4, this 

table shows that these energies are all negative, so can be concluded the crystal structure is 

stable [60]. Likewise the space of energy, calculates -3.3982 eV is relatively high, is an index 

of high stability and reflects the chemical stability of the molecule. By using the calculated 

energy values, can be determined the global chemical reactivity descriptors of the molecule 

[61], which are Ionization potential (I), Electron affinity (A), Electrophilicity (ω), Chemical 

potential (µ), Electronegativity (χ), Hardness (ɳ), and Softness (S). 

I = -EHOMO, A = -ELUMO,       µ=    ,     ɳ = χ=      S=  

Parr et al. [62] have defined the global electrophilicity (ω) ω= . The quantum chemical 

parameters of the molecule are summarized in Table S5. 

5.8. Thermal behavior 

The two curves corresponding to differential and thermogravimetric analysis (DTA/TG) 

under argon flow are given in the Fig. 7. The DTA curve shows that the title compound is 

stable until 100°C, where it undergoes a melting transformation at 133 °C, indeed, this 

phenomenon is further confirmed by the heating of this compound on a Kofler bench which 

makes it possible to estimate their melting temperature. This temperature is very close to that 

observed on the DTA curve. At the same time, the material begins to undergo a continuous 

decomposition in a wide temperature range [100–900 °C], from which an important weight 

loss is observed on the TG. A black residue is obtained revealing the presence of residual 

organic species mixed with chromium. 

5.9. AIM calculation: Topological parameters at bond critical points (BCP) 

The AIM approach consists of defining the various properties of any chemical bond including 

hydrogen bonds. For this purpose the critical point (BCP) is used for the identification of the 

chemical bonds between the atoms and the interatomic interaction. Geometrical and 

topological parameters are a useful tool to characterize the strength and nature of the H-bond. 
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But these criteria for the existence of hydrogen bond are frequently considered as insufficient, 

so one must be based on Koch and Popelier [63] criteria to confirm the existence of hydrogen 

bond. These criteria are (i) the existence of bond critical point for the proton (H)-acceptor (A) 

contact as a confirmation of the existence of hydrogen bonding interaction, (ii) the value of 

electron density ρ(H…A) should be within the range of 0.002–0.040 a.u, (iii) The 

corresponding Laplacian2∇ ρBCP should be within the range of 0.024–0.139 a.u. according to 

Rozas et al. [64], the interactions may be classified as follows: 

(i) Strong H-bonds are characterized by 2∇ ρ(BCP)< 0 ; H(BCP)< 0 ; EHB > 24.0 kcal/mol and 

their covalent character is established (ii) medium H-bonds are characterized by 2∇ ρ(BCP)> 0; 

H(BCP)< 0; 12.0 < EHB < 24.0 kcal/mol and their partially covalent character is established (iii) 

weak H-bonds are characterized 2∇ ρ(BCP)> 0 ; H(BCP) > 0 ; EHB < 12.0 kcal/mol and they 

are mainly electrostatic and the distance between interacting atoms is greater than the sum of 

van der Waal’s radii of these atoms. 

Molecular graph of crystalline structure using AIM program at B3LYP/6-311G(d,p) level is 

shown in Fig. 8. Geometrical and topological parameters for bonds of interacting atoms in 

phenylethylammonium chromate crystal are given in Table 5. On the basis of these 

parameters of this table O46...H2, O46...H31, O46...H23, H31...H5, H31...H8, H11...C32, 

H11...C41 are weak hydrogen bonds. The various type of interactions visualized in molecular 

graph are classified on the basis of geometrical, topological and energetic parameters. In this 

article, the Bader’s theory application is used to estimate hydrogen bond energy (E). Espinosa 

[65] proposed proportionality between hydrogen bond energy (E) and potential energy density 

(VBCP) at H…O contact: E = (VBCP). According to this equation the energy of these hydrogen 

bonds between -2.0123 and -37.5714 (kJ/mol). In order to investigate the effect of π-electron 

delocalization in bonds associated with N and O atoms of N-H· · ·O, the analysis of the bond 

ellipticity is performed. The ellipticities (εεεε) of bond of aromatic ring at BCP are in range of 

0.0281-5.1480. The ε values confirm the presence of resonance assisted intermolecular 

hydrogen bonds. 

5.10.Thermodynamic properties 

Thermodynamics is defined as the science of all phenomena which depends from temperature 

and its changes. Thermodynamic properties are characteristics used to describe a physical 

system. On the basis of the vibration analysis at B3LYP / 6-311 ++G (d, p) level Fig. S5, the 

standard static thermodynamic functions: heat capacity (Cp), entropy (S) and enthalpy change 
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(H) for the crystal structure were obtained from the theoretical harmonic frequencies are 

reported in Table S6. From this table, it can be seen that these thermodynamic functions are 

increasing with temperature ranging from 100 to 1000 k. This is due to the fact that the 

molecular vibratory intensities increase with increasing temperature [66]. The correlation 

equations between heat capacities, entropies, enthalpy changes and temperatures were fitted 

by quadratic formulas, and the corresponding fitting factors (R2) for these thermodynamic 

properties are 0.99916, 0.9992 and 0.99992, respectively. The equations of adjustment and the 

figure of thermodynamic properties are as follows: 

Cp,m
o = 38.75607+1.38804T -5.56858 × 10-4 T2 (R2= 0.99916) 

Sm
o = 379.97352+ 1.57392T -3.69488 × 10-4 T2 (R2= 0.99992) 

Hm
o = -14.85397+0.17999T+3.90745 × 10-4 T2 (R2= 0.99992) 

From these thermodynamic data we can calculate other thermodynamic energies and also we 

can estimate the directions of chemical reactions according to the second law of 

thermodynamics in the thermo-chemical field [67]. These equations above will be helpful for 

deepened studies of the title compound. We note that all thermodynamic calculations were 

done in the gas phase and could not be used in solution. 

5.11. Reduced density gradient (RDG) analysis 

To study non-covalent interactions Johnson et al. [68] developed an approach based on the 

electronic density and its derivatives named RDG. The RDG were defined using the following 

equation. 

RDG(r) =  

The dispersion diagram, RDG with respect to the electronic density ρ multiplied by the sign 

of λ2, shows RDG peaks and these spikes corresponding to the hydrogen bonding interactions, 

the van der Waals interactions and the steric effect Fig. 9.a. Low density values appear to be 

an indicator of stronger attractive interactions. The bluer means the stronger interactive 

interaction; the green can be identified as van der Waals interaction region and the red show a 

strong steric effect Fig. 9.b. The RDG peak toward -0.22 corresponds a strong interaction 

between oxygen and hydrogen which also confirmed by the color blue in the color scaling. 

The area surrounded by a green circle can be identified as van der Waals interaction region 

and the regions in the center of rings and the others show strong steric effect. These results are 

comparable to those found in the AIM calculation 
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5.12. Analysis of Molecular Electrostatic Potential Surface (MEP)  

The molecular electrostatic potential (MEP) is related to the electron density, it is very useful 

to explain the effects of polarization and charge transfer in the molecule. The MEP has been 

widely used as a molecular descriptor in determination the sites for electrophilic and 

nucleophilic reactions as well as hydrogen bonding interactions [69,70]. The molecular 

electrostatic potential V(r), at a given point, is created in space in the vicinity of a molecule by 

molecular electrons of the nuclei and a positive test charge. The MEP values were defined 

using the following equation [71]. 

V(r)=  - dr´ 

In which ρ(r´) is the electron density function of the molecule, ZA is the charge of nucleus 

allocated at RA and r´ is the dummy integration variable. The different values of the 

electrostatic potential at the surface are represented by different colors, red represents the 

region of the  electronegative electrostatic potential, (electron rich), blue represents the region 

of the most positive electrostatic potential (electron deficient), yellow represents the region of 

electrostatic potential slightly electron deficient  and green represents the region of the neutral 

potential. Potential increase in order red < orange < yellow < green < blue [72]. The 

electrostatic potential correlates with the dipole moment, electronegativity, partial charges and 

site of chemical reactivity of the molecule. To study the chemical reactivity of the molecule, 

the electron density and surface area of the electrostatic potential are plotted using B3LYP/6-

311++G(d,p). The total electron density mapped with electrostatic potential surface of 

crystalline structure is shown in Fig.10. From this figure, it is clear that the region around the 

anionic group represents the most negative potential region (red, oxygen atoms) are regarded 

as electrophilic regions due to the strong intermolecular hydrogen bond and the positive 

potential sites are around the nitrogen atoms nucleophilic regions. The MEP surface provides 

the necessary information for the most reactive site for both electrophilic and nucleophilic 

attack. 

6. Biological activity  

6.1. Antibacterial activity 
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The antibacterial activity of phenylethylammonium chromate(VI) was tested against five 

pathogenic organismsnamed Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 

14028, Staphylococusaureus ATCC 6538, Enterococcus feacium ATCC 19434  and 

Streptocoque B. Fig. S6.a shows bar diagrams of the inhibition zone growth diameter (IZD) 

under three different concentrations (100, 150, 200 and 250 µg/mL).This study reveals that 

our compound is active against five bacteria with varying but significant degrees of inhibition. 

This inhibitory power in the process of multiplication of these microbes is probably due to 

blockages of the active sites of these microbes. This biological activity in this compound can 

be acquired by means of the hydrogen bonds network. 

Evaluation of anti-Candida activities of the compound was carried out on a clinical strain 

called Candida albicans ATCC 10231(Fig. S6.b).The results of these tests show clearly an 

annihilation of the yeast growth process which is much more promising in the compound 

synthesized with zones of inhibition ranging from 7 to 11.5 mm. Similarly, we note the 

antifungal effect is an increasing function of the concentration. Indeed the increase of the 

concentration improves the antifungal power. 

6.2. In silico evaluation of antifungal characteristics of 2phCr 

Antifungal test of 2phCr was performed in comparison to ten clinically used antifungals 

among polyenes, azoles, and antimetabolite groups and binding energies that are calculated as 

the sum of the H-bond, van der Waals, and electronic interaction energies are summarized in 

Table 6. Polyenes bind to enzymes most strongly, the flucytosine is the weakest binding 

inhibitor, and azole group compounds binding energies are at moderate level. Ligand-enzyme 

interactions for the compounds studied here are mostly H-bond and van der Waals type. Only 

polyenes rarely show some electronic interactions. 2phCr is a relatively weakly binding 

compound with the exception in the case of SAP3. The compound interacts with this enzyme 

even better than some azole compounds. 

Another important characteristic in these analyses is the similarity in interactions that is 

mostly depends on the binding site where the compounds reside. Localizations of compounds 

at the binding sites and cluster representation of ligand-enzyme interactions are given in Table 

7. Cluster representation is presented as green-black pictorials where the green color marks 

the interacting residues with each ligand in their docked geometry. Similarity in green mark 

pattern is directly related to positioning and interactional behaviors of ligands. This figure 

provides clear evidence on enzyme type dependency of inhibitory behaviors of compounds. 

The last raw in the table is the H-bond interacting residues and their interaction strengths in 
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kcal/mol for only 2phCr. In the case of SAP, all compounds reside at the same binding site 

except flucytosine which resides at the outer surface of the enzyme. According to the cluster 

representation 2phCr behaves most likely albaconazole but with 15.1 kcal/mol weaker 

binding energy. For the SAP1, the docking sites for ligands vary more than that of 

SAP.Posaconazole (at middle of protein), and Amphotericin B and Flucytosine at bottom 

resides at different sites than the rest of the compounds. 2phCr is localized at where the most 

of the ligands are docked and shows nearly same interaction profile with itraconazole but has 

24.4 kcal/mol weaker interaction energy. Interactions of the 2phCr with SAP3 and SAP5 are 

actually not highly correlated with the other compounds. Although the 2phCr goes into the 

same binding site with six other known inhibitors in SAP3, the interaction profile is not 

desirably similar, but still can be considered under the same tree. Finally, the docking of 

2phCr to SAP5 is totally at different binding site than the other compounds. This indicates 

that the antifungal effect of our compound depends on the type of SAP enzyme.  

6.3. In silico evaluation of antibacterial characteristics of 2phCr 

In silico antibacterial test for the 2phCr compound is performed in comparison to the 

aminothiazole, cerulerin, and thilactomycin antimicrobials of E.coli. β-ketoacyl acyl carrier 

protein synthase enzymes from E.coli were chosen to be the target structure because the 

inhibition of these enzymes is highly critical in regulation of fatty acid synthases in bacteria. 

Table 8 gives the summary of energetic results of the docking analysis. Excitingly, 2phCr 

results in tightest docking in FabF and FabH enzymes, and just below the aminothiazole in 

FabB. This result implies that 2phCr can be a strong antibacterial agent for the E.coli if it also 

shows similar interaction profile with known inhibitors.   

Localizations of antibacterial agents and 2phCr at the binding sites and cluster representation 

of ligand-enzyme interactions are given in Table S7. For the FabB, amonothiazole and 2phCr 

reside at the same binding site and results in greatly similar interaction profile. The other 

compounds are localized at different binding sites. Thus, we can say that 2phCr can be 

considered as a compatible inhibitor of FabB as good as aminothiazole. The situation is totally 

alters for the other two enzymes: all compounds reside at different sites in FabF and the 

interaction profile of our compound is quite different than that of the other inhibitors, even 

though the compounds all localize at the same binding site in FabH, interactions of 2phCr 

differs significantly. 

7. Conclusion 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 
 

In this work, the newly-prepared organic-inorganic 2phCr compound was found to crystallize 

at room temperature in the monoclinic system (C2/c space group). The crystal structure can be 

described by two-dimensional arrangement of inorganic and organic entities parallel to the 

plane (b, c) at x = 1/4 and 3/4.  The crystal packing is stabilized by involved hydrogen-

bonding such as N–H...O and C–H...O bonds among [C8H12N]+ entities and the [CrO4]
2- 

anions. The Hirshfeld surface analysis reveals the percentage of intermolecular contacts of the 

title compound. The compound was characterized by using the FTIR and UV-visible 

spectroscopies. Their structural and vibrational spectra calculated by DFT/B3LYP method are 

in good agreement with the experimental results. The (TG/DTA) thermal analysis was 

performed to establish the thermal stability of the crystal. The later analysis show that the 

(C8H12N)2CrO4 crystal is stable until 100°C. To study reactivity given that an approaching 

electrophile will be attracted to negative regions, where the electron distribution effect is 

dominant, the MEP also given. The UV–Vis spectral analysis of the title molecule was 

presented both experimentally and theoretically. AIM topological analysis has been presented 

to study the formation of the intermolecular hydrogen bond and the sign of the second 

Hessian eigenvalue were used to give the type of interaction, and its strength can be derived 

from the density on the noncovalent interaction surface. Our study showed that 2phCr can be 

considered as a relatively weakly binding potent antifungal for C.albican and the antifungal 

effect of our compound depends on the type of SAP enzyme. Antibacterial properties of 

2phCr are highly strong but show significant differences from the selected antibacterial 

compounds studied here. Additionally, the assignments of the 135 vibration normal modes for 

2phCr are reported considering monodentate coordination for the chromate group. 
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Table 1. Crystal data and experimental parameters used for the intensity data collection 
strategy and final results of the structure determination. 

Table 2. Hydrogen-bonds geometry (Å, °) in (C8H12N)2CrO4 

Table 3. Optimized structural parameters for the (C8H12N)2CrO4 calculated by B3LYP with 6-
311++G(d- p). 
 
Table 4. Calculated absorption wavelength λ, excitation energies E and oscillator strengths f for the 

[C8H12N]2CrO 4 using TD–DFT/B3LYP/6–311++G(d,p) method in DMSO solvent.  

Table 5. AIM Analysis of the bond critical points (BCP) for [C8H12N]2CrO 4 compound. 

 Table 6. Binding energies (kcal/mol) of known antifungals and 2PhCr to SAPs from Candida 

albican. 

Table 7. Molecular docking situation of 2phCr to SAPs fromC. albican along with that of 

selected antifungals of C. albican. Enzymes are represented as electrostatic potential surface, 

known antifungals are shown as lines and the 2phCr is shown as sphere in the first raw. 

Cluster representation of ligand-enzyme interactions are represented with green color in the 

second raw. High energetic interactions above 3.5 kcal/mol are assigned as hydrogen bonding 

interactions and listed in third raw only for 2phCr.  

Table 8. Binding energies (kcal/mol) of known antibacterial agents and 2PhCr to KAS 

enzymes from E. coli. 
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Table 1. Crystal data and experimental parameters used for the intensity data collection 
strategy and final results of the structure determination. 

CCDC       1527549 

Temperature     150K 

Empirical formula    (C8H12N)2CrO4 

Formula weight (g mol-1)    360.37 

Crystal system     monoclinic 

Space group     C2/c 

a      38.136(2) Å 

b      11.2334(6) Å 

c      8.1643(4) Å 

β      98.480(2) ° 

Z      8 

V      3459.3(3) Å3 

F(000)      1520 

(Mo K)     0.682 mm−1 

Index ranges     -49 ≤ h ≤ 34, -14 ≤ k ≤ 14, -9 ≤ l ≤ 10 

Reflections collected    14269 

Independent reflections    3965    

Reflections with I ˃  2(I)    3358 

Rint      0.0263 

Absorption correction: multi-scan    Tmin= 0.709 ,Tmax= 0.921 

Refined parameters     232 

R[F2 ˃ 2σ(F2]     0.0338 

wR(F2)      0.0894 

Goodness of fit     1.056 

∆ρmax = 0.651 e Å−3    ∆ρmin= -0.318 e Å−3  
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Table 2. Hydrogen-bonds geometry (Å, °) in (C8H12N)2CrO4 

 
D—H…A D—H (Å) H…A (Å) D…A (Å) D—H…A (°) 

N1—H1N1…O3i 0.85(2)  1.94(2) 2.757(2) 161(2) 

N1—H2N1…O4 ii 0.84(2)  1.95(3) 2.771(2) 163(2) 

N1—H3N1…O4 iii  0.86(3)  1.90(3) 2.743(2) 167(2) 

N2—H1N2…O4 iv 0.83(3)  2.36(2) 3.012(2) 136(2) 

N2—H1N2…O3 iv 0.83(3)  2.40(2) 2.921(2) 122(2) 

N2—H1N2…O2 v 0.83(3)  2.43(2) 2.992(2) 126(2) 

N2—H2N2…O2 0.93(3)  1.86(3) 2.776(2) 167(2) 

N2—H3N2…O3 i 0.80(3)  1.93(3) 2.726(2) 174(2) 

C10—H10A…O1 0.97 2.54 3382(2) 145.8 

Symmetry code :(i) −x+1/2, −y+1/2, −z; (ii) x, −y+1, z−1/2; (iii) x, y, z−1; (iv) −x+1/2, y−1/2, −z+1/2; (v) x, −y, 
z−1/2. 
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Table 3. Optimized structural parameters for the (C8H12N)2CrO4 calculated by B3LYP with 6-
311++G(d- p). 
 

Parameters   Exp. 

Bond length (Å) 

Cr1-O2 1.577  1.6477(12) 
Cr1-O3 1.576  1.6774(13) 
Cr1-O4 1.732  1.6196(13) 
Cr1-O5 1.732  1.6591(12) 
N6-C14 1.478  1.472(2) 
N10-C31 1.474  1.476(2) 
C14-C17 1.536  1.520(3) 
C17-C20 1.513  1.503(3) 
C20-C21 1.400  1.390(3) 
C20-C29 1.399  1.388(3) 
C21-C23 1.394  1.385(3) 
C23-C25 1.394  1.370(3) 
C25-C27 1.394  1.384(3) 
C27-C29 1.394  1.382(3) 
C31-C34 1.541  1.520(3) 
C34-C37 1.512  1.507(3) 
C37-C38 1.400  1.390(3) 
C37-C46 1.399  1.387(3) 
C38-C40 1.393  1.389(3) 
C40-C42 1.394  1.379(3) 
C42-C44 1.394  1.372(4) 
C44-C46 1.394  1.387(3) 

RMSD 0.0406   

Bond angle (°) 

O2- Cr1-O3 111.978  109.41(6) 
O2- Cr1-O4 109.808  110.12(7) 
O2- Cr1-O5 107.501  112.38(6) 
O2- Cr1-13 84.431   
O3- Cr1-O4 107.656  108.79(7) 
O3- Cr1-O5 109.767  107.55(6) 
O4- Cr1-O5 110.140  108.50(7) 
Cr1-O4-N10 44.071  82.39 
Cr1-O5-N10 108.495  24.36 
O4-N10-O5 33.386  28.45 
O4-N10-C31 96.574  98.56 
O5-N10-C31 115.000  97.35 
N6-C14-C17 110.846  111.56(15) 
C14-C17-C20 112.049  111.27(16) 
C17-C20-C21 120.621  120.56(19) 
C17-C20-C29 121.008  121.40(18) 
C21-C20-C29 118.355  118.01(19) 
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C20-C21-C23 120.925  120.9(2) 
C21-C23-C25 120.127  120.4(2) 
C23-C25-C27 119.542  119.5(2) 
C25-C27-C29 120.116  120.3(2) 
C20-C29-C27 120.935  120.9(2) 
N10-C31-C34 114.668  109.93(15) 
C31-C34-C37 112.494  114.03(16) 
C34-C37-C38 120.720  121.58(18) 
C34-C37-C46 120.889  120.22(18) 
C38-C37-C46 118.363  118.19(19) 
C37-C38-C40 120.908  120.7(2) 
C38-C40-C42 120.139  120.1(2) 
C40-C42-C44 119.546  119.7(2) 
C42-C44-C46 120.113  120.2(2) 
C37-C46-C44 120.932  121.0(2) 

RMSD 16.995   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Table 4. Calculated absorption wavelength λ, excitation energies E and oscillator strengths f for the 

[C8H12N]2CrO 4 using TD–DFT/B3LYP/6–311++G(d,p) method in DMSO solvent. 

 Theoretical 
Experimental λ (nm) E(eV) f(a.u) Major contribution 

439 423.2 2.93 0.0077 HOMO →LUMO(90%) 

 409.4 3.03 0.0109 HOMO  → LUMO+1(90%) 

 406.8 3.05 0.0002 HOMO-1 → LUMO(97%) 

 394.1 3.15 0.0009 HOMO-1→  LUMO+1(98%) 

 381.1 3.25 0.0025 HOMO-2→  LUMO(74%) 
HOMO-4  →LUMO(20%) 

 373.1 3.32 0.00 HOMO-3  →LUMO (100%) 

 370.3 3.35 0.0011 HOMO-2 → LUMO+1(58%) 

 366.8 3.38 0.0070 HOMO-4 → LUMO(51%) 
HOMO-2 → LUMO+1(22%) 

 363.1 3.42 0.00 HOMO-3  →LUMO+1 (100%) 

 360.2 3.44 0.0020 HOMO-6 → LUMO(29%) 
HOMO-4 → LUMO+1(20%) 

351 351.7 3.53 0.0071 HOMO-5 → LUMO(38%) 
HOMO-4 → LUMO+1(35%) 

 348.2 3.56 0.0170 HOMO-5 → LUMO(32%) 
HOMO-4 → LUMO+1(20%) 

 338.1 3.67 0.0137 HOMO-5 → LUMO+1(65%) 

 327.5 3.79 0.0008 HOMO-7 → LUMO+1(60%) 
HOMO-6 → LUMO(20%) 

 310.9 3.99 0.0415 HOMO-6 → LUMO+1(64%) 

 304.1 4.08 0.0129 HOMO-7 → LUMO(71%) 

 298.4 4.16 0.0140 HOMO → LUMO+2(90%) 

292 292.3 4.24 0.0003 HOMO-8 → LUMO(86%) 

 290.3 4.27 0.0007 HOMO-1 → LUMO+2(98%) 

 277.2 4.47 0.0051 HOMO-2 → LUMO+2(54%), 
HOMO-8 → LUMO+1(19%) 

 276.0 4.49 0.0025 HOMO-8 → LUMO+1(49%) 
HOMO-2 → LUMO+2(27%) 

 272.8 4.55 0.0001 HOMO-3 → LUMO+2(100%) 

 269.2 4.61 0.0131 HOMO-4 → LUMO+2(72%) 
HOMO-2 → LUMO+2(19%) 

 262.7 4.72 0.0053 HOMO-6 → LUMO+2(45%), 
HOMO-5 → LUMO+2(20%) 

 260.8 4.75 0.0008 HOMO-14 → LUMO+1(44%) 
HOMO-6 → LUMO+2(33%) 

 260.2 4.76 0.0091 HOMO-5 → LUMO+2(59%) 

 256.4 4.84 0.0100 HOMO-13 → LUMO(35%) 
HOMO-13 → LUMO+1(24%) 

 251.6 4.93 0.0018 HOMO → LUMO+3(77%) 

 250.4 4.95 0.0045 HOMO-7 → LUMO+2(42%) 
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Table 5. AIM Analysis of the bond critical points (BCP) for [C8H12N]2CrO 4 compound. 

 

 O46...H2 O46...H31 O46...H23 H31...H5 H31...H8 H11...C32 H11...C41 

Density of all electrons 

ρρρρ(r) 
0.0216 0.0055 0.0226 0.0026 0.0022 0.0046 0.0045 

Laplacian of electron 

density 2∇ ρ(r) 
0.1457 0.0198 0.1555 0.0114 0.0099 0.0149 0.0152 

Lagrangian kinetic 

energy G(r)  
0.0318 0.0044 0.0339 0.0023 0.0020 0.0031 0.0032 

Energy density H(r)  0.0046 0.0005 0.0050 0.0006 0.0005 0.0006 0.0006 

Potential energy 

density V(r) 
-0.0271 -0.0039 -0.0289 -0.0017 -0.0015 -0.0026 -0.0026 

Bond energy EHB 

(kJ/mol) 
-35.2815 -5.0455 -37.5714 -2.1792 -2.0123 -3.3166 -3.3784 

Electron localization 

function (ELF) 
0.0223 0.0125 0.0228 0.0037 0.0026 0.0129 0.0122 

Localized orbital 

locator (LOL) 
0.1312 0.1014 0.1326 0.0573 0.0492 0.1030 0.1005 

Ellipticity( εεεε) 0.0352 0.5085 0.0281 0.5553 1.2675 2.0233 5.1480 

Eta index (ξ)(ξ)(ξ)(ξ) 0.1362 0.1470 0.1365 0.1408 0.1376 0.1483 0.1531 
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Table 6. Binding energies (kcal/mol) of known antifungals and 2PhCr to SAPs from Candida 

albican. 

 

Antifungal Group Inhibitor 
1ZAP 

SAP 
2QZW 
SAP1 

2H6S 
SAP3 

2QZX 
SAP5 

Polyenes 
Nystatin -139.9 -151.3 -140.1 -146.1 

Amphotericin B -126.7 -125.5 -125.8 -133.6 

Azoles 

Posaconazole -118.1 -119.2 -122.6 -128.1 
Itraconazole -113.8 -111.1 -114 -116.7 
Ravuconazole -102.8 -104.6 -100.9 -117.6 
Isavuconazole -102.8 -105.2 -105 -106.6 
Albaconazole -100.4 -94.3 -101.9 -97.8 
Voriconazole -95.6 -87.6 -92.2 -107.3 
Fluconazole -88.4 -92.3 -89.7 -101.2 

Title molecule 2PhCr -85.3 -86.7 -95.7 -89.4 

Antimetabolites Flucytosine -63.4 -70.2 -75.5 -74.2 
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Table 7. Molecular docking situation of 2phCr to SAPs fromC. albican along with that of selected antifungals of C. albican. Enzymes are 

represented as electrostatic potential surface, known antifungals are shown as lines and the 2phCr is shown as sphere in the first raw. Cluster 

representation of ligand-enzyme interactions are represented with green color in the second raw. High energetic interactions above 3.5 kcal/mol 

are assigned as hydrogen bonding interactions and listed in third raw only for 2phCr.  

SAP 

 

SAP1 

 

SAP3 

 

SAP5 

 

    
H-S-ASP-32 (-9.0), H-S-ASP-218 (-

6.5), H-M-GLY-220 (-3.5), V-M-

GLY-34 (-3.6), V-M-GLY-83 (-3.5), 

V-S-TYR-84 (-11.8), V-S-ASP-86 (-

4.8), V-S-ASN-131 (-3.9) 

H-M VAL12 (-3.5), H-M THR222 (-

3.5), H-S THR (-6.7), H-S TYR (-6). 

H-M-SER-36 (-6.7), H-S-SER-36 (-

4.9), H-M-ASP-37 (-3.5), H-S-ASP-

37 (-8.4), V-S-SER-35 (-3.9), V-S-

TRP-39 (-5.6), V-S-ILE-82(-4.0), V-

S-ASN-192 (-5.3), V-S-GLU-193 (-

5.9) 

H-S-ASN-202 (-3.5), V-M-GLY-260 

(7.1), V-M-SER-180 (-4.2), V-M-

GLY-181(-4.2), V-S-PRO-329 (-4.3) 
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Table 8. Binding energies (kcal/mol) of known antibacterial agents and 2PhCr to KAS 

enzymes from E. coli. 

 

Compounds 
2VB9 
FabB 
 

4LS5 
FabF 
 

3iL9 
FabH 
 

2PhCr -92.8 -88.4 -101 

Aminothiazole -99.9 -83 -99.8 

Cerulerin -91.2 -81.8 -85.1 

Thilactomycin -78.1 -67.7 -71.4 
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Figure captions 

 

Figure 1. ORTEP drawing of (C8H12N)2CrO4 with the atom-labeling scheme. Displacement 

ellipsoids are drawn at the 45 % probability level. H atoms are represented as small spheres of 

arbitrary radii. 

Figure 2. Projection of (C8H12N)2CrO4 structure along the b axis.  

Figure 3. Hirshfeld surfaces mapped with dnorm. 

Figure 4. Two-dimensional fingerprint plots of O…H, H…O, O…O, C…H, H…C and H…H 

intermolecular. 

Figure 5.  Solution state UV/vis spectra of (C8H12N)2CrO4 (a) and determination of the 

energy gap (b) according to the Tauc model. 

Figure 6. The frontier molecular orbitals of (C8H12N)2CrO4 computed with TD-

DFT(B3LYP)/6-311++G(d,p) in gas phase. 

Figure 7. DTA and TG curves of (C8H12N)2CrO4 at rising temperature. 

Figure 8. AIM molecular graph showing the different bond critical points (BCPs) of 

(C8H12N)2CrO4 calculated with B3LYP/6- 311++G(d,p) level. The BCPs are denoted as red 

smaller balls. 

Figure 9. Plots of the RDG versus the electron density ρ multiplied by the sign of λ2 for 

(C8H12N)2CrO4 structure (a), Color scaling of weak interactions. The surfaces are colored on 

a blue–green–red scale according to values of sign λ2. Blue indicates strong attractive 

interactions and red indicates strong non-bonded overlap (b). 

Figure 10. The total electron density mapped with electrostatic potential surface of 

(C8H12N)2CrO4 calculated at B3LYP/6-311++G(d,p) level. 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

 

 

 Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

 

 

 

 

 

Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

 

 

 

Figure 3 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

Figure 4 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

 

 

Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
   
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
 

 
 
 
 

HOMO 
 
 
 
 
 
 

 

 
 

 
  
 
 
 
 
 
 
 
 
 
 

 
. 

Figure 6 

3.5663eV 

3.3982eV 

LUMO 

LUMO+1 

HOMO-1                                      



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

 

Figure 8 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

Figure 9 
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Figure 10 
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Highlights 

• A new organic-inorganic complex was prepared at room temperature. 
 

• The atomic arrangement of the synthesized compound shows 2D network. 
 

•  The intermolecular interactions were analyzed by Hirshfeld surfaces. 

•  Antibacterial activities against 5 pathogenic and antifungal activities are presented. 
 

 

 


