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Abstract8

The purpose of this paper is to model the nonlinear dynamical response of the steel frame structures9

subjected to impact loading. A 2D co-rotational rigid beam element with generalized elasto-plastic10

hinges is presented. The main idea is to integrate the concept of the generalized elasto-plastic hinge11

into the standard co-rotational framework by performing a static condensation procedure in order12

to remove the extra internal nodes and their corresponding degrees of freedom. In addition, the13

impact loading is applied through the contact model that is described in the rigorous framework14

of the non-smooth dynamics. In this framework, the equations of motion are derived using a set of15

differential measures and convex analysis tools, whereas Newton’s impact law is imposed by means16

of a restitution coefficient to accommodate energy losses. An energy and momentum conserving17

scheme is adopted to solve the dynamical equations. The main interest of the current model is18

the ability to evaluate the geometrically nonlinear inelastic behaviour of the steel structures with19

semi-rigid connections subjected to impact in a simple and efficient way, using only a few number20

of elements. The accuracy of the proposed formulation is assessed in three numerical applications.21
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1. Introduction24

Steel frame buildings with semi-rigid connections are common in present-day construction. The25

service uses of such buildings might expose them to extreme loading conditions such as impact and26
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explosion, which may cause the structures to undergo large displacement and inelastic deformation.27

In previous decades, the inelastic behaviour of the structures has been statically [1, 2, 3, 4] and28

dynamically [5, 6, 7] studied using finite element models with a distributed plasticity approach.29

Although this distributed plasticity approach can accurately capture the inelastic behaviour of the30

structures, it is inconvenient for practical usage. It requires a large number of stress-strain sampling31

points through the cross-section and along the member length in order to accurately consider the32

plastic effects. As an alternative, the lumped plasticity approach requires fewer discrete elements,33

but the solution is less accurate since the plasticity is lumped at the ends of the element by means34

of zero-length plastic hinges. Enjoying the simplicity benefit of the lumped plasticity approach, the35

plastic hinge concept has been adopted in various settings with different levels of enhancements36

[8, 9, 10, 11, 12]. For instance, Attalla et al [8] developed an element formulation with a non-zero37

quasi-plastic hinge. Their formulation is able to account for gradual plastification of the cross-38

section under combined bending and axial forces based on fitting the nonlinear equations to the39

data obtained from the inelastic and numerical integration of the cross section model along the40

member length. Liew et al [11] introduced a refined plastic hinge formulation that accounts for41

the degradation of the element stiffness in the process where the second-order forces at critical42

locations in the element reach the cross-section plastic strength. On the other hand, we proposed43

in [12] a simplified formulation with generalised elasto-plastic hinges, which assumes both elasticity44

and plasticity at the hinges while the element remains rigid at all time. It is worth to point out45

that sophisticated hinge approaches as described above could have been considered. However,46

since the purpose of this paper is to propose a model for impact analysis where simplicity and47

effectiveness are the most visible characteristics of the model, it was decided to not adopt complex48

approaches and to retain the generalized elasto-plastic hinge model which is briefly described in49

Section 2.2. The plasticity is consistently accounted for by using non-zero length generalised elasto-50

plastic hinges, and the second order effect in plasticity is considered by the M-N interaction with51

superelliptic yield surfaces.52

The co-rotational method has been widely used to derive the formulation of the highly nonlinear53

beam elements for its ability to combine accuracy with numerical efficiency [1, 2, 13, 14, 15, 16].54

The underlying concept of the co-rotational formulation is the decomposition of the motion of the55

element into rigid body part and pure deformational counterpart through the use of a reference56
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system that rotates and translates along with the element. Previously, there have been some57

efforts devoted to applying the lumped plasticity approach to the co-rotational formulation [18, 19].58

However, only static response is investigated, or indeed, only a zero-length plastic hinge that does59

not accurately capture the plasticity through the proper M-N interaction. Alhasawi et al in [20], for60

the first time, developped a super-element that consists of a flexible elastic beam with generalized61

elasto-plastic hinges in the co-rotational framework for a static and cyclic behaviour of frame62

structures.63

In this paper, we present a co-rotational element model for the nonlinear dynamic analysis of64

steel frame structures subjected to impact. The model includes the inelasticity of the structures65

by adopting the generalised elasto-plastic hinge concept that is integrated into the co-rotational66

framework. Hence, the co-rotational element is developed by introducing generalised elasto-plastic67

hinges at both ends of the rigid element. These hinges induce additional degrees of freedom that68

are eliminated by static condensation. The behaviour of the generalized hinges is governed by69

a superelliptic yield criterion, whose shape is controlled by the shape parameters. This type of70

yield criterion can be used to reproduce the behaviour of joints, as will be shown in one numerical71

example. It should be informed that this model is an extension of the model developped in [20] in72

order to have a simpler model and with an application to a dynamical analysis of frame structures73

subjected to impact.74

For the impact, the contact model is developed in a sound and rigorous framework of non-75

smooth dynamics, in which the equations of motion are derived using a set of differential measures76

and convex analysis tools. Velocity jumps at impact instants are considered using Newton’s impact77

law by means of restitution coefficient to account for possible energy losses during the collisions.78

A consistent energy and momentum conserving scheme inherited from the method developed by79

Chhang et al in [17] is employed to solve the equations of motion.80

The outline of the paper is as follows. In section 2, the co-rotational kinematics and the81

formulation of the elasto-plastic hinges are described. The local element formulation is then given82

in detail in Section 3. Section 4 provides the dynamical equations derived from the Hamilton’s83

principle and the energy conserving time integration scheme. The impact loading is addressed in84

Section 5 and numerical examples are presented in Section 6. Finally, conclusions are derived in85

Section 7.86
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2. Co-rotational rigid beam element with generalized hinges87

In the current model, the structural member consists of three subelements: a rigid beam el-88

ement and two generalized elasto-plastic hinges that are modeled by a combination of axial and89

rotational springs, as shown in Fig. 1. The generalized elasto-plastic hinges can be viewed as fi-90

nite elements with zero initial length. Assembling these hinges with the rigid beam element gives a91

two-node superelement that is regarded as an individual element fitted for computational purposes.92

The deformation of the superelement is assumed to be concentrated only at the hinges while the93

beam element remains rigid. In addition, the generalized hinges are able to rotate and to stretch94

according to the elasto-plastic constitutive relationships expressed in the incremental form. The95

yield criterion of the elasto-plastic hinges governs the plastic flow, i.e. the plastic rotation and the96

plastic elongation/shortening, in the stress-resultant space with the normality rule.97

2.1. kinematics98

4 4,M 1 1,M 
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1 1, 0N u  (3)

4 4,N u

4 4,N u

(1)
1 1,M  (1)

2 2, 0M  
(1)
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3 3, 0M   (3)
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Figure 1: Local superelement

The notations used in this section are defined in Figs. 1 and 2. The origin of the co-rotational99

frame is taken at node 1 located at the centroid of the cross-section. The x-axis of the local100

coordinate system is defined by the line connecting node 1 to node 4, see Fig. 2. The y-axis is101

orthogonal to the x-axis so that the result is right-handedly orthogonal coordinate system. The102

motion of the superelement from the original undeformed to the actual deformed configuration can103

thus be separated into two parts. The first part, which corresponds to a rigid motion of the local104

frame, is the translation of node 1 and the rotation α of the x-axis. The second one refers to the105

deformations in the co-rotating superelement frame.106
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The subscript and the superscript denote the node number and the subelement number, re-107

spectively. The coordinates of nodes 1 and 4 in the global coordinate system (X,Y ) are referred to108

by (X1, Y1) and (X4, Y4), respectively. In the deformed configuration (see Fig. 2), the global and109

local nodal rotations of the superelement (nodes 1 and 4) are notated by θ1 and θ4, and θ̄1 and θ̄4,110

respectively.111

The total elongation of the superelement ū is composed of the elongation of the first hinge ū(12)112

and the elongation of the second hinge ū(34), that is113

ū = ū4 = ū(12) + ū(34) (1)

with114

ū(12) = ū2 − ū1

ū(34) = ū4 − ū3

(2)

The global and local displacement vectors are respectively defined by:115

q =
[
u1 v1 θ1 u4 v4 θ4

]T
(3)

116

q̄ =
[

ū θ̄1 θ̄4

]T
(4)

Referring to the definition of the co-rotating frame (see Fig. 2), the components of the local

displacement vector q̄ can be calculated as

ū = l − l0 (5a)

θ̄1 = θ1 − α (5b)

θ̄4 = θ4 − α (5c)

where the initial and final length of the element respectively, defined as l0 and l, are obtained by

l0 =
√

(X4 −X1)2 + (Y4 − Y1)2 (6a)

l =
√

(X4 + u4 −X1 − u1)2 + (Y4 + v4 − Y1 − v1)2 (6b)

With the help of basic geometric considerations, the rigid rotation of the x-axis α, featured in Eqs.

(5b) and (5c), is computed as

sinα = c0 s− s0 c (7a)

cosα = c0 c+ s0 s (7b)
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Figure 2: Superelement kinematic 1

with

c = cosβ =
1

l
(X4 + u4 −X1 − u1) (8a)

c0 = cosβ0 =
1

l0
(X4 −X1) (8b)

s = sinβ =
1

l
(Y4 + v4 − Y1 − v1) (8c)

s0 = sinβ0 =
1

l0
(Y4 − Y1) (8d)

The relationship between the local and global displacements are obtained by the differentiation of117

Eqs. (5). This gives118

δq̄ = B δq (9)

where the transformation matrix, B, is given by119

B =



−c −s 0 c s 0

−s
l

c

l
1

s

l
−c
l

0

−s
l

c

l
0

s

l
−c
l

1


(10)

6



2.2. Generalized elasto-plastic hinges120

The present model assumes that both elasticity and plasticity are lumped into axial and rota-121

tional springs located at the ends of the rigid bar. The elastic stiffness of the hinge is determined122

considering the energy equivalency between the rigid beam with hinges and the actual clamped-123

clamped beam member. The elastic behavior of a generalized hinge is uncoupled whereas axial-124

moment interaction is considered in the plastic range. We adopt the total generalized strain rate125

decomposition into elastic and plastic parts126

Ξ̇ = Ξ̇e + Ξ̇p (11)

where Ξ̇ =
[

˙̄u, ˙̄θ
]T

. For an associated flow rule, the direction of the generalized plastic strain127

rate vector is given by the gradient to the yield function, with its magnitude given by the plastic128

multiplier rate µ̇:129

Ξ̇p = µ̇
∂Φ

∂Σ
(12)

where Σ = [N,M ]T is the generalized stress vector containing the bending and axial forces in the130

hinge. The plastic multiplier µ̇ is determined by the classical complementary conditions:131

µ̇ ≥ 0, Φ(N,M) ≤ 0, µ̇Φ(N,M) = 0 (13)

Assuming linear elastic behaviour, the generalized stresses are given as:132

Σ = Ce (Ξ−Ξp) (14)

in which the elastic stiffness matrix is given by:133

Ce =

 kū 0

0 kθ̄


For the hinge that forms at the cross-section of the member, the initial axial and rotational stiffness134

are kū = 2
EA

L
and kθ̄ = 6

EI

L
, respectively. E, I, L and A denote the Young modulus, the second135

moment of the cross-section, the length of the element and the area of the cross-section. In this136

paper, we adopt a family of the generalized superelliptic yield shapes , which is governed by137

Φ(M,N) =

(∣∣∣∣ MMp

∣∣∣∣α +

∣∣∣∣ NNp

∣∣∣∣β
) 1

γ

− 1 (15)
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where α, β and γ are the parameters that control the yield shape. For example, the case of α = 1,138

β = 2 and γ = 1 corresponds to the yield shape of a rectangular cross-section. The readers are139

referred to [12] for the detail of the discrete time integration of the equation of the elasto-plastic140

hinges.141

3. Local element formulation142

This section will be devoted to the elaboration of the local stiffness matrix. Illustrated by Fig.143

1, the superelement is composed of three sub-elements: a rigid beam element and two generalized144

elasto-plastic hinges. The introduction of the generalised hinges at the rigid beam element’s ends145

increases the number of degrees of freedom exceeding the original ones in the standard co-rotational146

formulation. By the definition of the co-rotational framework, the displacement of node 1 is zero147

(ū1 = 0) in the local coordinate. The elongation/shortening or relative axial displacement of each148

hinge are denoted by ū(ij) = ūj − ūi (Eqs. (2)).149

The subelement 1, i.e. an elasto-plastic hinge, has an axial elongation ū(12) and a rotation150

θ̄(12) = θ̄2 − θ̄1. Because the beam element is rigid, its local rotation at node 2 and 3 are zero151

(θ̄2 = 0, θ̄3 = 0). The incremental relation between the stress-resultants and their conjugates can152

be formally written as153  ∆N
(1)
2

∆M
(1)
2

 =

C(1)
11 C

(1)
12

C
(1)
21 C

(1)
22

 ∆ū(12)

∆θ̄(12)

 =

C(1)
11 −C(1)

12

C
(1)
21 −C(1)

22

 ∆ū2

∆θ̄1

 (16)

where the tangent operator matrix C is defined by154

Cn+ 1
2

=

C11 C12

C21 C22

 (17)

The reader is referred to [12] for detailed information on how to compute this tangent matrix for155

various shapes of the yield criterion of the elasto-plastic hinges.156

In addition, the incremental equilibrium of the first subelement imposes that157

∆M
(1)
1 + ∆M

(1)
2 = 0 (18)

Combining Eqs. (16) and (18) gives158  ∆M
(1)
1

∆N
(1)
2

 =

 C
(1)
22 −C(1)

21

−C(1)
12 C

(1)
11

 ∆θ̄1

∆ū2

 (19)

8



On the other hand, the subelement 3, which is also an elasto-plastic hinge, has an axial elongation159

ū(34) and a rotation θ̄(34) = θ̄3 − θ̄4. For this subelement, the incremental relation between the160

stress-resultants and their conjugates can be formally written as161  ∆N
(3)
4

∆M
(3)
4

 =

C(3)
11 C

(3)
12

C
(3)
21 C

(3)
22

 ∆ū(34)

∆θ̄(34)

 =

C(3)
11 C

(3)
12

C
(3)
21 C

(3)
22

 ū4 − ū3

∆θ̄4

 (20)

Furthermore, the incremental equilibrium of subelement 3 requires that162

∆N
(3)
3 + ∆N

(3)
4 = 0 (21)

Combining Eqs. (20) and (21) obtains163 
∆N

(3)
3

∆N
(3)
4

∆M
(3)
4

 =


C

(3)
11 −C(3)

11 −C(3)
12

−C(3)
11 C

(3)
11 C

(3)
12

−C(3)
21 C

(3)
21 C

(3)
22




∆ū3

∆ū4

∆θ̄4

 (22)

Last, the subelement 2 is a rigid element. Since the rigid element does not bend or elongate, writing

the bending equilibrium equations of nodes 2 and 3 as well as of the rigid element is unnecessary.

The axial equilibrium is, however, important for the condensation process. Based on Fig. 1, the

axial equilibrium can be written as

∆N
(1)
2 + ∆N

(3)
3 = 0 (23)

The local displacements of all the points on the rigid beam element are the same. This provides164

ū3 = ū2 (24)

The above equilibrium equations (Eqs. (19) and (22)) pertain to the end nodes (nodes 1 and 4) at165

the superelement level by166

∆M1 = ∆M
(1)
1

∆N4 = ∆N
(3)
4

∆M4 = ∆M
(3)
4

(25)

The assembling of the three subelements is accomplished by combining Eqs. (19), (22), (23), and167

(24). Introducing Eqs. (25) to the outcome gives168 

∆M1

0

∆N4

∆M4


=


C

(1)
22 −C(1)

21 0 0

−C(1)
12 C

(1)
11 + C

(3)
11 −C(3)

11 −C(3)
12

0 −C(3)
11 C

(3)
11 C

(3)
12

0 −C(3)
21 C

(3)
21 C

(3)
22





∆θ̄1

∆ū2

∆ū4

∆θ̄4


(26)

9



The local internal force vector fl associated with the local displacement vector q̄ (Eq. 4) is defined169

as170

fl =
{
N4 M1 M4

}T
(27)

By using the static condensation of Eq. (26), the local tangent stiffness matrix kl defined by171

∆fl = [kl] ∆q̄ (28)

and the local displacement ∆ū2 can be easily obtained, respectively as

kl,11 =
C

(1)
11 C

(3)
11

C
(1)
11 + C

(3)
11

; kl,12 = kl,21 = − C
(3)
11 C

(1)
12

C
(1)
11 + C

(3)
11

(29)

kl,13 = kl,31 =
C

(1)
11 C

(3)
12

C
(1)
11 + C

(3)
11

; kl,23 = kl,32 = − C
(1)
12 C

(3)
12

C
(1)
11 + C

(3)
11

(30)

kl,22 = C
(1)
22 −

(
C

(1)
12

)2

C
(1)
11 + C

(3)
11

; kl,33 = C
(3)
22 −

(
C

(3)
12

)2

C
(1)
11 + C

(3)
11

(31)

and172

∆ū2 =
C

(3)
11 ū+ C

(1)
12 θ̄1 + C

(3)
12 θ̄4

C
(1)
11 + C

(3)
11

(32)

4. Dynamic equations and time integration scheme173

An energy momentum integration scheme based on the midpoint rule is combined to the co-174

rotational framework in order to derive the dynamic equations. One interesting feature of this175

approach, see [17], is that the total energy of the system is conserved for elastic problems and that176

the linear and angular momenta remain constants in absence of external load. Another interesting177

aspect in the present context is that the contact equations can be introduced in the scheme in a178

rather simple way.179

4.1. Hamilton’s principle180

Hamilton’s principle states that the integral of the Lagrangian between two specified time181

instances t1 and t2 of a conservative mechanical system is stationary:182

δ

∫ t2

t1

L dt =

∫ t2

t1

(δK − δUint − δUext) dt = 0 (33)
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where K, Uint and Uext denote the kinetic energy, the internal and the external potentials, respec-183

tively. The total kinetic energy is the sum of the translational and rotational kinetic energies:184

δK =

∫
l0

ρA u̇G δu̇Gdx+

∫
l0

ρA v̇G δv̇Gdx+

∫
l0

ρI θ̇G δθ̇Gdx (34)

A is the area of the cross-section, ρ is the density of the material. Since the subelement between the

hinges is considered rigid, the displacements (uG, vG) and rotation θG of the cross-section centroid

G are given by

uG =

(
1− x

l0

)
u1 +

x

l0
u4 (35)

vG =

(
1− x

l0

)
v1 +

x

l0
v4 (36)

θG = α (37)

In addition, the internal potential is defined in the local coordinate system by185

δUint = N4 δū4 +M1 δθ̄1 +M4 δθ̄4 = δq̄T fl (38)

whereas the external potential has the following form:186

δUext = −δqTP (39)

P is the external force vector of concentrated forces and moments at the nodes. Combining Eqs.

(34), (38) and (39) with Eq. (33) and using integral by part, the expression of Hamilton’s principle

can be reformulated as:∫ t2

t1

(∫
l0

ρA üGδu̇G dx+

∫
l0

ρA v̈Gδv̇G dx+

∫
l0

ρI θ̈Gδθ̇G dx

)
dt+

∫ t2

t1

δq̄T fl dt

−
∫ t2

t1

δqTPdt = 0 (40)

4.2. Dynamic equations187

In the present context of the co-rotational formulation, the midpoint time integration scheme188

is defined by:189 ∫ t2

t1

q (t) dt = q
(
tn+ 1

2

)
∆t = qn+ 1

2
∆t

qn+ 1
2

=
qn+1 + qn

2
= qn +

1

2
∆q

q̇n+ 1
2

=
q̇n+1 + q̇n

2
=

qn+1 − qn
∆t

=
∆q

∆t

q̈n+ 1
2

=
q̈n+1 + q̈n

2
=

q̇n+1 − q̇n
∆t

=
2

∆t2
∆q − 2

∆t
q̇n

(41)
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Applying Eqs. (41) to Hamilton’s principle Eq. (40) gives

δqT

[∫
l0

ρA üG,n+ 1
2

(
∂uG,n+ 1

2

∂qn+ 1
2

)T

dx+

∫
l0

ρA v̈G

(
∂vG,n+ 1

2

∂qn+ 1
2

)T

dx

+

∫
l0

ρI θ̈G,n+ 1
2

(
∂θG,n+ 1

2

∂qn+ 1
2

)T

dx+

(
∂q̄n+ 1

2

∂qn+ 1
2

)T

fl,n+ 1
2
− P n+ 1

2

]
= 0 (42)

In Eq. (42), the variation δq is arbitrary. The global displacements (u̇G,n and u̇G,n) at time tn are

related to q̇n at time tn from Eqs. (35) and (36) as

u̇G,n = fT
1 q̇n (43)

v̇G,n = fT
2 q̇n (44)

By using Eqs. (8c) and (37), the global rotation θ̇G,n is updated by190

θ̇G,n+1 = 2 θ̇G,n+ 1
2
− θ̇G,n = 2fT

3,n+ 1
2

∆q

∆t
− θ̇G,n (45)

with

f1 =

[
1− x

l0
0 0

x

l0
0 0

]T

(46)

f2 =

[
0 1− x

l0
0 0

x

l0
0

]T

(47)

f3,n+ 1
2

=
zn+ 1

2

ln+ 1
2

(48)

zn+ 1
2

=
[
sn+ 1

2
−cn+ 1

2
0 −sn+ 1

2
cn+ 1

2
0
]T

(49)

With the help of Eqs. (41) and (43)-(45), the accelerations at time tn+ 1
2

are obtained as

üG,n+ 1
2

=
2

∆t2
∆uG −

2

∆t
u̇G,n =

2

∆t2
fT

1 ∆q − 2

∆t
fT

1 q̇n (50)

v̈G,n+ 1
2

=
2

∆t2
∆vG −

2

∆t
v̇G,n =

2

∆t2
fT

2 ∆q − 2

∆t
fT

2 q̇n (51)

θ̈G,n+ 1
2

=
2

∆t2
∆θG −

2

∆t
θ̇G,n =

2

∆t2
fT

3,n+ 1
2

∆q − 2

∆t
θ̇G,n (52)

The equations of the motion at time tn+ 1
2

are obtained from Eqs. (42) as

fk,n+ 1
2

+ fg,n+ 1
2
− f ext,n+ 1

2
= 0 (53)
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in which fk,n+ 1
2

is the inertia force vector, fg,n+ 1
2

is the elastic force vector and f ext,n+ 1
2

is the

external load vector. The following expression for the inertia force vector fk,n+ 1
2

at midpoint is

obtained as:

fk,n+ 1
2

=
2

∆t2

∫
l0

[
ρA

(
f1f

T
1 + f2f

T
2

)
+ ρI f3,n+ 1

2
fT

3,n+ 1
2

]
∆q dx

− 2

∆t

∫
l0

[
ρA

(
f1f

T
1 + f2f

T
2

)
q̇n + ρI θ̇G,n f3,n+ 1

2

]
dx

=
2mq

∆ t

(
∆q

∆t
− q̇n

)
+

2ρI l0
∆t

(
f3,n+ 1

2
fT

3,n+ 1
2

∆q

∆t
− θ̇G,n f3,n+ 1

2

)
(54)

in which

mq =

∫
l0

ρA
(
f1f

T
1 + f2f

T
2

)
dx = ρA l0



1
3 0 0 1

6 0 0

0 1
3 0 0 1

6 0

0 0 0 0 0 0

1
6 0 0 1

3 0 0

0 1
6 0 0 1

3 0

0 0 0 0 0 0


(55)

The internal force vector takes the form of191

fg,n+ 1
2

=

(
∂q̄n+ 1

2

∂qn+ 1
2

)T

fl,n+ 1
2

= BT
n+ 1

2

fl,n+ 1
2

(56)

The components of the deformation vectors at time tn+ 1
2

are obtained by using Eqs. (5), (6b),(8a)

and (8c) as

ūn+ 1
2

= ūn +
1

2
∆ū = ūn +

1

2
rT
n+ 1

2

∆q (57)

θ̄1,n+ 1
2

= θ̄1,n +
1

2
∆θ̄1 = θ̄1,n +

1

2
bT

1,n+ 1
2

∆q (58)

θ̄4,n+ 1
2

= θ̄4,n +
1

2
∆θ̄4 = θ̄4,n +

1

2
bT

2,n+ 1
2

∆q (59)

where

rn+ 1
2

=
[
−cn+ 1

2
−sn+ 1

2
0 cn+ 1

2
sn+ 1

2
0
]T

(60)

b1,n+ 1
2

=
[

0 0 1 0 0 0
]T
−

zn+ 1
2

ln+ 1
2

(61)

b2,n+ 1
2

=
[

0 0 0 0 0 1
]T
−

zn+ 1
2

ln+ 1
2

(62)
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Last, the external force vector is defined by192

f ext,n+ 1
2

= P n+ 1
2

(63)

4.3. Tangent matrices193

The tangent dynamic and stiffness matrices are obtained through the derivation of Eq. (54)

and (56). They are obtained as

Kk,n+ 1
2

=
∂fk,n+ 1

2

∂ (∆q)
=

2mq

∆t2
+

2 ρIl0
∆t2

f3,n+ 1
2
fT

3,n+ 1
2

− 1

2 l2
n+ 1

2

fT
3,n+ 1

2

∆q
(
rn+ 1

2
zT
n+ 1

2

+ zn+ 1
2
rT
n+ 1

2

)
− 1

2 l2
n+ 1

2

f3,n+ 1
2
∆qT

(
rn+ 1

2
zT
n+ 1

2

+ zn+ 1
2
rT
n+ 1

2

)
+
ρIl0 θ̇G,n
∆t l2

n+ 1
2

(
rn+ 1

2
zT
n+ 1

2

+ zn+ 1
2
rT
n+ 1

2

)
(64)

Kg,n+ 1
2

=
∂fg,n+ 1

2

∂ (∆q)
=

1

2
BT
n+ 1

2

kl,n+ 1
2

(
Bn+ 1

2
+ B0,n+ 1

2

)
+

1

2
N4,n+ 1

2

zn+ 1
2
zT
n+ 1

2

ln+ 1
2


+

1

2

(
M1,n+ 1

2
+M4,n+ 1

2

)rn+ 1
2
zT
n+ 1

2

+ zn+ 1
2
rT
n+ 1

2

l2
n+ 1

2

 (65)

where

B0,n+ 1
2

=



∆qT

zn+ 1
2
zT
n+ 1

2

ln+ 1
2


∆qT

zn+ 1
2
rT
n+ 1

2

+ rn+ 1
2
zT
n+ 1

2

l2
n+ 1

2


∆qT

zn+ 1
2
rT
n+ 1

2

+ rn+ 1
2
zT
n+ 1

2

l2
n+ 1

2




(66)

4.4. Simplification of the kinetic term194

It should be noted that the kinetic expression in Eq. (54) is nonlinear due to the term that

corresponds to the rigid rotation, i.e. the second term on the right side of Eq. (54). Since the

purpose of this paper is to present a simple model in the co-rotational framework, an alternative

option is to neglect the nonlinear term. The influence of this consideration will be illustrated in

the numerical examples. In this case, the expression in Eq. (54) becomes

fk,n+ 1
2

=
2mq

∆ t

(
∆q

∆t
− q̇n

)
(67)
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5. Non-smooth dynamic: impact loading195

5.1. Contact model196

It is assumed in this paper that the structure is impacted at only one of its nodes in a direction197

denoted by q(i) (Fig. 3). As a result, the model considers the unilateral collision between a198

rigid point mass mc and a nodal mass of the structure. The motions of the impacted masses are199

constrained by the contact conditions, which include the non-penetration and the non-adhesion200

conditions. These conditions at position level may be summarized by the so-called Signorini’s force201

law:202

gN ≥ 0 , λN ≥ 0 , gN λN = 0 (68)

where the gap gN = q(i) − xc. xc is the position of the mass mc. λN corresponds to the force203

exerted by the nodal mass on mass mc: Fi→c. According to the principle of action-reaction, the204

force exerted by mass mc on the nodal mass (Fc→i) is −λN .

Figure 3: Contact model

205

The non-smoothness of the impact involves the discontinuity of the velocities; to be physically206

consistent, the unilateral constraints should be discretized at velocity level and incorporated with207

Newton’s impact law. This combined law is described by208

ξN ≥ 0 , −ΛN ≤ 0 , ξNΛN = 0 (69)
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where the relative velocity γN = q̇(i) − ẋc and ΛN is the the percussion force. ξN = γ+
N + εγ−N ,209

in which ε denotes the coefficient of restitution. The superscript (−) and (+) are referred to the210

state before and after impact respectively. The contact model in this paper encounters only one211

constraint (one impact point). This one constraint problem allows us to determine the contact212

force directly from the equations of motion combining with the constraint equations, as will be213

shown in the next section.214

5.2. Equation of motion215

The motions of the other non-impacted masses are continuous and governed by Eqs. (53). On216

the other hand, the motions of the impacted masses can be non-smooth and cannot be expressed217

only by Eqs. (53). It is necessary to write two separate sets of equations depending on the value218

of the gap gN if the motion occurs during the closed contact (gN = 0) or during open contact219

(gN > 0).220

For an open contact motion, the contact force disappears, and the motion is smooth. Applying

the mid-point rule (Eqs. (41)), the discrete equations of the open-contact motion of the impacted

masses are obtained as

mc ẍc,n+ 1
2

= 0 (70)

fk,n+ 1
2

+ fg,n+ 1
2
− f ext,n+ 1

2
= 0 (71)

gN > 0 (72)

where fk,n+ 1
2
, fg,n+ 1

2
and f ext,n+ 1

2
are defined in Eqs. (54), (56) and (63), respectively.221

On the other hand, the impact may occur during the closed contact motion and cause the

velocity jumps at specific time instants. At those time instances, the velocity of the impacted

masses are not differentiable and the contact force is impulsive. The equations of the closed-contact

motion are best described by an equality of the differential measures so that the combined equations

of motion are obtained to describe both the smooth and the non-smooth parts of the closed contact

motion, as suggested by Moreau [21]. By applying the mid-point rule to the differential measure
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equations and integrating them over time increment [tn, tn+1], it is obtained

mc (ẋc,n+1 − ẋc,n) = −PN (73)

mq

(
q̇n+1 − q̇n

)
+ 2ρI l0

(
f3,n+ 1

2
fT

3,n+ 1
2

∆q

∆t
− θ̇G,n f3,n+ 1

2

)
(74)

+ fg,n+ 1
2
∆t− f ext,n+ 1

2
∆t = PNIi

gN = 0 (75)

ξN = γN,n+1 + εγN,n ≥ 0 (76)

where Ii is a unit vector corresponding to the impacting direction q(i). PN is the percussion force

resulting from the integration of the differential measure of the contact force∫ tn+1

tn

[
λN dt+

(
Λ+
N − Λ−N

)
dη
]

= PN (77)

In order to solve Eqs. (73)-(76), the following methodology is presented. First, the percussion

force PN is assumed to be zero, and Eqs. (73) and (74) are solved for the displacements of the

masses using mid-point scheme (Eqs. (41)). ξN is then computed using Eq. (76). If ξN > 0, the

prediction of no percussion force is true. Otherwise, if ξN < 0, the percussion force PN exists and

has a positive value. In such case, the following equations are solved to calculate the velocities and

the displacements of the masses as well as the percussion force:

mc (ẋc,n+1 − ẋc,n) = −PN (78)

mq

(
q̇n+1 − q̇n

)
+ 2ρI l0

(
f3,n+ 1

2
fT

3,n+ 1
2

∆q

∆t
− θ̇G,n f3,n+ 1

2

)
(79)

+ fg,n+ 1
2
∆t− f ext,n+ 1

2
∆t = PNIi

ξN = γN,n+1 + εγN,n = 0 (80)

6. Numerical examples222

In this section, three numerical examples are provided. The purpose of these examples is to223

assess and validate the dynamic performance of the proposed planar co-rotational rigid beam ele-224

ment with generalized elasto-plastic hinges in modeling the behaviour of the steel frame structure225

subjected to impact loading. The results are validated against a reference solution obtained by226

performing a simulation with a commercial finite element program (Abaqus/Explicit v6.14). In227
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these analyses, 2D Timoshenko beam elements (B21) and a default Hilber-Hughes-Taylor time228

integrator are used. Furthermore, the surface-to-surface contact interaction with a kinematic con-229

tact method is adopted for the contact model. In order to ensure the convergence of the reference230

solution, different mesh densities are tested.231

6.1. Example 1232

Consider a T-frame structure collided by a rigid point mass mc = 1500 kg with an initial233

velocity of vc,0 = 50 m/s. The dimension of the structure, the position of the impact, and the234

cross-section of the members are illustrated in Fig. 4. For all the members in the structure, the235

following parameters are considered:236

– The cross-section depth and width: a = e = 0.2 m237

– The elastic modulus: E = 210 GPa238

– The mass per unit volume: ρ = 7850 kg/m3
239

– The elastic limit: σy = 355 MPa240

(a) (b)

Figure 4: Example 1: (a) geometry. (b) cross-section.

In the new rigid element formulation, 4 elements are used: one element for one member except the241

impacted column that requires two elements. The time step size ∆t = 10−4 s and the coefficient242

of restitution ε = 0 are chosen. On the other hand, the FE simulation requires 200 elements (the243

size of the element equals 50 mm) in order to have a converged solution.244
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Figure 5: Example 1: Evolution of displacement

Fig. 5(a) and 5(b) show the evolution of the displacement of point 1 in horizontal direction245

and of point 2 in vertical direction, respectively. It can be observed from Fig. 5(a) and 5(b) that246

the proposed formulation gives results that agree remarkably well with reference solution. From247

Fig. 5(a), the difference in the maximum displacement of point 1 in horizontal direction between248

the proposed formulation and the reference FE simulation is about 1 percent. From Fig. 5(b),249

the difference in the maximum displacement of point 2 in vertical direction between the proposed250

formulation and the reference FE simulation is approximately 1 percent. Besides, it can be noted251
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that the same results are obtained with the linear and nonlinear inertial expressions.
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Figure 6: Example 1: Elastic response with ε = 1

252

In order to show the conservation of energy in the case of elastic behaviour, this example is253

now run by considering elastic material and the restitution coefficient ε = 1. The results, depicted254

in Figs. 6(a) and 6(b), show that the total energy of the system is conserved during and after the255

contact.256
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6.2. Example 2257

This example presents a steel frame structure with five spans and two storeys, the dimension of258

which is illustrated in Fig. 7(a). The structure is impacted at the middle column by a rigid point

3 m 3 m 3 m3 m

0.8 m

3.2 m

4 m

1

2

mc, vc,0

0.2 m

(a) (b)

Figure 7: Example 2: (a) geometry. (b) cross-section.

259

mass mc = 1500 kg with an initial velocity of vc,0 = 50 m/s. The rest of the parameters are kept260

the same as Example 1.261

For this example, 19 elements are used: one element for one member except for the impacted262

column that requires two elements. For the FE simulation, 1280 elements (element size = 50 mm)263

are needed to obtain a converged solution.264

Fig. 8(a) and 8(b) show the evolution of the displacement of point 1 in the horizontal direction265

and of point 2 in the vertical direction, respectively. As can be seen from both figures, the proposed266

formulation gives results that are in good agreement with the reference solution. From Fig. 8(a),267

the difference in the maximum displacement of point 1 in horizontal direction between the proposed268

formulation and the reference FE simulation is around 0.5 percent. From Fig. 8(b), the difference269

in the maximum displacement of point 2 in vertical direction between the proposed formulation270

and the reference FE simulation is about 8.5 percent. It can also be observed that the same results271

are obtained with linear and nonlinear inertial expressions.272
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Figure 8: Example 2: Evolution of displacement

6.3. Example 3273

The purpose of this example is to show the ability of the proposed formulation in capturing274

the main features of the inelastic behaviour of the steel frame structure and its connections under275

impact loading. This example considers a steel frame structure with five beam spans and two276

storeys, as depicted in Fig. 9. The cross-section types of the columns and of the beams are HEB277

240 and IPE 240, respectively. The structure is impacted at the middle column by a rigid point278

mass mc = 1500 kg with an initial velocity of vc,0 = 20 m/s. The properties of the cross-section of279

22



3 m 3 m 3 m3 m

0.8 m

3.2 m

4 m

1

2

mc, vc,0

0.2 m

IPE 240 IPE 240 IPE 240 IPE 240

IPE 240 IPE 240 IPE 240 IPE 240

Figure 9: Example 3: geometry and location of joint

the structure members are defined in Table 1.280

The configuration of the beam-to-column joint is illustrated in Fig. 10(a). The IPE-240 beam281

is welded to an end plate with dimensions of 364 mm × 160 mm × 15 mm, and the end plate is282

connected to the column’s flange by eight 10.9 graded M20 bolts. The yield strength and the283

Young modulus of the components in the joint are 355 MPa and 210 000 MPa, respectively.284

To assess the properties of the joint, the component method proposed in Eurocode 3 [22] is285

adopted. The component method corresponds to the simplified mechanical model that is composed286

of extensional springs and rigid links. More precisely, the mechanical model, described in Fig.287

10(b), is composed of a column web’s center line (first rigid link) connected to the beam end288

(second rigid link) by a number of effective springs. Working only in tension, spring T1 combines289

the stiffness of the column’s web in tension action, the column’s flange in bending action and a290

bolt in tension action. Like spring T1 that works only in tension, spring T3 combines the stiffness291

of the column’s web in tension action, the column’s flange in bending action, the beam’s web292

in tension and a bolt in tension. On the other hand, the spring T2 works only in compression293

and corresponds to the combined effect of the column’s web in compression, the beam’s web and294

flange in compression and the column’s web panel in shear. The rotational stiffness of the joint is295

determined according to Eurocode 3 [22], and the obtained value is kθ̄,j = 1.2× 107 Nm/rad with296

the stiffness ratio µ = 2. Since Eurocode 3 does not mention any method to determine the axial297

stiffness of the joint, we decide to choose the axial stiffness of the joint by considering that the298

joint is under pure compression. The value of the axial stiffness obtained is kū,j = 1.5× 109 N/m.299
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Table 1: Properties of the cross-section of the structure members

Type Symbol Beam IPE 240 Column HEB 240

Young modulus [MPa] E 210 000

Yield strength [MPa] σy 355

Nominal weight [GPa] ml 30.7 83.2

Section area [cm2] A 39.1 106

Second moment of area [cm4] I 3892 11260

Axial resistance [N] Np 1388050 3763000

Bending resistance [Nm] Mp 130285 373815

Yield function Φ =

∣∣∣∣ MMp

∣∣∣∣+

∣∣∣∣ NNp

∣∣∣∣1.3 − 1

Furthermore, the M-N interaction curve of the beam-to-column joint is determined by the method300

proposed by Cerfontaine [23]. The result is given in Fig. 11. This nonlinear M-N interaction is301

approximated by the authors in this paper using a linear M-N interaction.302
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Figure 10: (a) Configuration of the beam-to-column joint. (b) Mechanical model
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Figure 11: M-N interaction of the beam-to-column joint

The configuration of the column base joint is shown in Fig. 12 where the properties and303

dimensions of each component are given. In this joint, the column is welded to a base plate with304

the dimension of 470mm×330mm×25mm that is bolted to the foundation concrete block by eight305

embedded M24 anchor bolts with a steel grade of 10.9. The concrete type used for the concrete306

block is C30/37. The same concept of the mechanical model is also applied to the column base307

joint to find both the stiffness and the M-N interaction of the joint. The M-N interaction curve of308

the column base joint is presented in Fig. 13. With the same procedure as the beam-to-column309

joint, the axial and rotational stiffness of the column base are obtained as kū,j = 1.8 × 109N/m310

and kθ̄,j = 0.84× 107 Nm/rad, respectively. Two cases are studied. In the first one, without joints,311

rigid connections between the beams and the columns as well as between the column bases and312

the ground are assumed. In the second one, with joints, semi-rigid connections as defined in Figs.313

10 and 12 are considered.314

The evolutions of the horizontal displacement of point 1 and the vertical displacement of point 2315

are depicted in Figs. 14(a) and 14(b), respectively. Significant differences between the two studied316

cases can be observed. This example shows that the response of the structure is considerably317

influenced by the inelastic behaviour of the joints and that the proposed formulation can include318

the effect of the semi-rigid joints.319
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Figure 12: Configuration of column base joint

-200 -100 100 200

Bending moment [kNm]

-2500

-2000

-1500

-1000

-500

500

1000

1500

N
or

m
al

 fo
rc

e 
[k

N
]

Cerfontaine's approach
Current assumed yield function

Figure 13: M-N interaction of the column-base joint
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Figure 14: Example 3: Evolution of displacement
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7. Conclusion320

In the this paper, a 2D rigid beam element with generalized elasto-plastic hinges has been321

presented. The purpose of the formulation is to analyse the inelastic dynamical behaviour of steel322

frame buildings subjected to impact loading. The main features of the current model are the323

following. Firstly, the model is simple, efficient and accurate. The model is well integrated into the324

co-rotational framework and is able to accurately reproduce the geometrically nonlinear inelastic325

behaviour of the steel frame structures with a considerably smaller number of elements compared326

to the plastic zone approach. Secondly, the present model has the ability to capture the inelastic327

behaviour of the semi-rigid connections by the means of the generalized elasto-plastic hinges that328

are governed by the so-called superelliptic yield surfaces. Third, the equations of motion are written329

and solved using a consistent energy and momentum conserving scheme. Finally, the nonsmooth330

dynamics of the impact is treated in a rigorous framework, in which the equations of motion are331

derived using a set of differential measures and with the help of convex analysis tools. The velocity332

jump is described by the Newton’s impact law using a restitution coefficient to accommodate333

possible energy losses at the contact. The present formulation could be potentially extended to 3D334

beams without any major difficulty.335
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