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We have designed a new meso-alkynyl fluorenyl porphyrin (TAFlP) by introducing in the tetrafluorenyl porphyrin (TFP-Bu) an ethynyl 

spacer at the meso positions. We discuss the effect of this extra extension of the π-manifold on the optical properties.  
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ABSTRACT: To improve conjugation between a central porphyrin core and its peripheral fluorenyl 

antennae, we have introduced in the meso-tetrafluorenyl porphyrin (TFP-Bu) unit an ethynyl spacer 

at the meso positions. By this mean, we have synthesized and characterized a new meso-alkynyl 

fluorenyl porphyrin (TAFlP). We discuss the effect of this extra extension of the π-manifold on the 

optical properties. This enlarged porphyrin core, TAFlP, is foreseen as a key building block for the 

design of new dendrimers for theranostic applications. The constant improvement of porphyrin-based 

dendrimers featuring conjugated fluorenyl dendrons is recalled herein and demonstrates the important 

role of the central core structure in determining linear and nonlinear optical properties. Further 

improvement of these properties seems possible with TAFlP-like structures based on observations 

made for dendrimers recently obtained. This makes the exploration of new molecular architectures 

based on tetrafluorenyl ethynyl porphyrin appealing for PDT and related applications.  
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INTRODUCTION 

There has been great interest in the synthesis of porphyrin systems because the 

peripheral substituent on the macrocyclic core can modulate the physical properties at will. 

Consequently, they present wide potential applications in different fields such as for instance 

light-harvesting, organic light emitting diodes (OLEDs) or switches. Porphyrin-based systems 

are largely present nowadays, in many applied developments encompassing by far the 

numerous bio-related studies in which these macrocycles were initially involved.1a   



 

Stimulated by the fact that the unique photochemical properties of the porphyrin core can be 

fine-tuned by modification of the peripheral substituents, intense research in fields more 

related to photophysics and material sciences has been undertaken these last decades. 

Symmetrical A4 porphyrins type, substituted at the four meso positions, is particularly 

interesting because the molecules are easily accessible with good yields. Very appealing is 

also the synthetic expansion of such structures by introducing dendrons at these positions, and 

the modification of these dendrons for light harvesting. In this respect, many porphyrin-

based dendrimers have been synthesized these last decades. Their light-harvesting properties 

could be optimized by connecting highly absorbing dendrons to the central porphyrin core, 

the former acting as energy donors to the second, overall behaving like an antenna system.1b 

In particular, some porphyrins bearing pendent linear oligofluorene arms have been reported 

in this context,1c and for such assemblies, Fréchet1d demonstrated that the antenna effect was 

facilitated in dendritic architectures versus linear ones. More recently, hyperbranched 

polymers containing porphyrin with fluorenyl arms have also been synthesized for light 

harvesting,1e while the group of Okada and Kozaki investigated the use of series of multi-

porphyrin arrays in conjugated networks as light-harvesting antenna.1f  In this field, we also 

have recently reported efficient light-harvesting systems in which 5,10,15,20-

tetraphenylporphyrin (TPP) was linked, via flexible ether bridges, to fluorenyl donor 

moieties.1g,h  One may wonder why such an interest for the porphyrin-fluorenyl 

combinations. Actually, as we have discovered, in collaboration with J.A.G. Williams, 

5,10,15,20-tetrafluorenylporphyrin (TFP) exhibits a high quantum yield (24%), 

demonstrating the capacity of 2-fluorenyl units to strongly enhance the emission quantum 

yield of the porphyrin core.1i  Our aim was then to exploit further this capacity and a series of 

super porphyrins based on the small TPP-core was targeted. In the first family, the dendrons 

were linked via ether bridges to the central core. Four, eight and sixteen fluorenyl donor 

moieties were included in these dendrons. Then, we wondered about improving the light-

harvesting mechanism by preserving some π-overlap between the peripheral fluorenyl arms 

and the central core.1j  Indeed, porphyrin-based dendrimers containing π-conjugated dendrons 

are expected to present better energy transfer properties than systems for which π-conjugation 

is completely disrupted, as indicated by the work of Burn and Samuel on porphyrin 

dendrimers with stilbene dendrons for instance.1k  The meso-phenyl units of the TPP-core 

molecule have two positions easy to functionalize (para and meta), so the corresponding 

dendrimers were then synthesized.  The optical properties of these porphyrin-based 



 

dendrimers, featuring 2-fluorenyl containing dendrons with extended π-manifolds on these 

positions, were then studied (Fig. 1).  Such systems present increasing numbers of terminal 

fluorenyl units at their periphery, going from 4 to 8 to 16 (TPP1, TPP2 and TPP3, 

respectively).  We have shown that the conjugation between the TPP porphyrin core and the 

unsaturated dendrons is more effective in the para-functionalized systems than in the meta-

ones. This better conjugation improves the photophysical properties of the para-substituted 

compounds (TPP1) over the meta-substituted ones (TPP2, TPP3),1l encouraging us to 

consider, the 2,7-fluorenyl unit as a new spacer, in replacement of the 1,4-phenyl unit. 
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Fig. 1. Molecular structures of TPP-cored porphyrin dendrimers TPP1-TPP3 and their reference TPP 

A series of related compounds in which 2,7-fluorenyl groups was connected directly to 

the meso positions of the central porphyrin core (i.e. a dendritic architecture featuring TFP 

instead of TPP as a central core) and still possessing fully conjugated peripheral arms 

incorporating fluorene units at both terminal and internal positions was then developed. 



 

Fig. 2. TFP-cored porphyrin dendrimers TFP1, TFP2 and TFP3 and the corresponding reference compound 

TFP-Bu 

A versatile synthetic protocol allowed us to easily introduce fluorenyl units as internal 

chromophores (behaving also as antennae). The effect of this structural variation on the 

photophysical properties of the resulting dendrimers was then explored. The dendrimers with 

increasing generations going from 1 to 3, were called TFP1, TFP2 and TFP3, respectively 

(represented in Fig. 2).1m  In terms of photophysical properties, this TFP series exhibit 



 

remarkably high luminescence quantum yields (20-24%) again thanks to a very efficient 

energy transfer (ET) from the peripheral fluorenyl units toward the central porphyrin core. 

This process is plainly apparent for dendrimers TFP1 and TFP2, but contrasts with the dual 

emission (blue and red) observed for the big TFP3 compound featuring the largest dendrons 

at the meso positions. Such a size-limit to the ET was expected considering the tilted 

conformation adopted by the inner meso-fluorenyl groups bearing the peripheral dendrons.  

In spite of that non-optimal π-conjugation, the one-photon brightness of these compounds 

increases almost linearly with the number of fluorenyl groups in the peripheral arms, in line 

with the existence of the antenna effect previously mentioned.1m   To improve further the 

photophysical performance of such dendrimeric systems, with the aryl groups tilted 

conformations should be replaced by another unit permitting to achieve co-planarity between 

the central core and aromatic system of the peripheral dendrons. In particular, this can be done 

by using a meso-substituted tetra alkynyl porphyrin as the central unit. We therefore turned 

our interest toward meso-ethynylporphyrins.  

The first porphyrins of this kind, substituted by one or two alkynyl groups, were 

initially targeted as precursors for the elaboration of conducting polymers,2-3 non-linear 

optical (NLO) materials,4,5  photosynthetic models6,7 and enzyme mimics.8-10   Most of these 

alkynyl-meso substituted porphyrins contained only one or two ethynyl moieties. These 

macrocycles turned out to present a strong bathochromic shift of their first absorptions 

relative to tetraphenylporphyrin.11-15 This is due to the direct conjugation of the 18π-electronic 

system of the macrocycle over the alkynyl group to the terminal aromatic moieties. As a 

result, the Soret (B-) band and Q-bands are significantly altered.11 In consequence, the color 

of these porphyrins in solution turns to a brilliant green departing from the typical red color of 

tetraphenylporphyrin. Hence the trivial name of Chlorphyrins was given for arylethynyl-

meso-substituted porphyrins.12-15  In the tetralkynyl series, in 1992, Anderson reported a tetra-

substituted derivative: 5,10,15,20-tetra-trimethylsilylethynyl-porphyrin (H21) (see Fig. 3) 

which was isolated in moderate yield (14%).11  The same year, Hevesi obtained a closely 

related compound (H22), but with methyl endgroups substituent rather than TMS ones. This 

new tetra-alkynylporphyrin was isolated with an even low yield (around 1%).16  Finally, the 

corresponding aryl-ethynyl derivative  (5,10,15,20-tetra-phenylethynyl)-porphyrin (H23-R) 

was also reported the same year, with a yield of 2%.16   Subsequently, Milgrom reported the 

synthesis of related compounds with octyl or nonyloxy chains appended in the para positions 

of the four phenyl groups (H23-R) to increase the solubility of these compounds.12 These last 



 

porphyrins (H22 and H23-R) were synthesized with the aim of developing highly conjugated 

porphyrin polymers and arrays by assembling these building blocks together.12,16     

 

Fig. 3. Molecular structures of reported meso-alkynyl porphyrins (H21, H22 and H23-R) 
 

Based on these tetra-alkynyl meso-substituted precursors, we believe that the related 

meso-tetra-alkynyl fluorenyl porphyrin (TAFlP) composed of one central porphyrin 

substituted at its meso positions by four alkynylfluorenyl units could constitute an interesting 

platform for designing new dendrimers for theranostics (Fig. 4).  Indeed expending the π-

manifold should increase the 2PA and bring about a red shift in emission and absorption. We 

have therefore synthesized TAFlP porphyrin as a model compound to study its optical 

properties and compare them to those of TFP-Bu taken as reference. TAFlP porphyrin will 

also be compared to the known tetraalkynyl porphyrins H21, H22 and H23-R (R = H, C8H17, 

OC9H19). This molecular assembly might (i) possess the remarkable fluorescence yield and 

brightness of TFP
1i precursor, (ii) present a fully conjugated and extended π-manifold which 

will favour the 2PA and also redshift the 2PA and the emission.  As usual (see Fig. 1, 2) butyl 

chains will be connected to the peripheral fluorenyl units (in the 9 position) to improve the 

solubility of the compound in organic solvents.  



 

 

Fig. 4. a) Structure of reference compound TFP-Bu and corresponding TFP based dendrimers; b) 
target compound: new meso-alkynyl fluorenyl porphyrin TAFlP allowing the design of new TAFlP-

based dendrimers 

 

RESULTS AND DISCUSSION 

Synthesis and characterization 

To synthesize TAFlP, two different ways were tested. A first trial at isolating this 

molecule was done via H21.2a As shown in Scheme 1: one equivalent of the commercial 3-

(trimethylsilyl)-2-propynal and pyrrole were dissolved in distilled CHCl3 under argon. The 

reaction was conducted by adapting the reaction protocol given by Anderson in the literature 



 

for H21,11 and it allowed the isolation of H21 with a low yield (14%).11 Considering the large 

quantity of H21 required for the next step and also the high price of the starting material (3-

(trimethylsilyl)-2-propynal); this approach was eventually not pursued, and a second approach 

was tested.   

 

Scheme 1. Syntheses of intermediate H21, following Anderson’s work up11 

 

In the second approach, 9,9-dibutyl-fluorenyl-2-propiolaldehyde 3 was synthesised 

first as a precursor and then assembled to obtain the desired TAFlP under Lindsey’s 

conditions (Scheme 2). The intermediate alkyne 2 was prepared in three steps as described 

earlier,1l giving the precursor 3 by exchange of the terminal proton and carboxylation.17  The 

desired new meso-alkynyl fluorenyl porphyrin TAFlP was finally isolated albeit with a low 

yield (3%). This second synthetic approach (Scheme 2), using for each step well known 

reactions and leading to isolation of the precursor 3 in good yields was eventually selected, in 

spite of its comparatively final low yield, mostly for practical and cost-related reasons.  

 

 



 

 

Scheme 2. Synthesis of the new 9,9-dibutyl-fluorenyl-2-propiolaldehyde 3 and of meso-alkynyl 
fluorenyl porphyrin TAFlP 

 

The new compounds were characterized by usual methods. The 1H NMR spectra of 

the known 9,9-dibutyl-fluorenyl-2-carboxaldehyde and of the new (9,9-dibutyl-fluorenyl)-2-

propiolaldehyde (3) are shown in Fig. 5.  We observe that the aldehyde proton of new 

compound 3, at 9.46 ppm, is shifted to higher field (+0.62 ppm) upon the introduction of the 

alkynyl function. The multiplets corresponding to aromatic, as well as n-butyl protons, present 

similar shifts for 3 compared to 9,9-dibutyl-fluorenyl-2-carbaldehyde, but of lower 

magnitude. 



 

Fig. 5. Comparison of complete 1H NMR spectra of 9,9-dibutyl-fluorenyl-2-carbaldehyde and new 

(9,9-dibutyl-fluorenyl)-2-propiolaldehyde (3) 

 

The corresponding meso-alkynyl fluorenyl porphyrin (TAFlP) was also characterized by 
1H NMR. The partial spectrum is compared to reference TFP-Bu in CD2Cl2 (Fig. 6). As 

shown, the singlet at 9.69 ppm, corresponding to eight β-pyrrolic protons is shifted to lower 

field compared to the corresponding signal of TFP-Bu at 8.92 ppm. This can be because these 

β-pyrrolic protons are further removed from ring currents field of the aromatic units in the 

arms. An alternative explanation is that they experience a smaller ring current from the 

porphyrin cycle. The second explanation is also supported by the fact that the singlet at -1.36 

ppm of NH protons is strongly shifted to lower field compared to that at -2.57 ppm for TFP-

Bu. Thus it seems that the combination of the alkynyl bridges and fluorenyl units also causes 

a decreased electron density at the porphyrin ring. On the contrary, the electron density of 

fluorenyl arms seems to be partially increased, leading to signals for aromatic protons (H1-5) 

at higher field for TAFlP than for TFP-Bu. 



 

 

Fig. 6.  The partial 1H NMR spectra of new meso-alkynyl fluorenyl porphyrin TAFlP compared to 

reference TFP-Bu 

 

           UV-visible absorption and emission spectra were next recorded for the new porphyrin 

(TAFlP) in CH2Cl2 solution (HPLC level) at room temperature. Molecules with similar 

structures, such as H21, H22 and H23-R reported previously (Fig. 3)9,11-16  and TPP, TFP-Bu 

were chosen as references to analyze the influence of the triple bond introduction on the 

optical properties. When compared to meso-tetra-alkynylporphyrins, the fluorenyl rings of 

TAFlP extend the π-manifold of the chromophore, resulting in a bathochromic shift of all the 

absorption bands compared to H21, H22 and H23-R, but also compared to TFP-Bu. TAFlP 

has several characteristic features in the UV-visible region (Fig. 7): (i) an intense Soret-band 

around 479 nm with a shoulder at 486 nm and two red shifted Q-bands at 661 and 748 nm, 

characteristic of the porphyrin macrocycle, and (ii) an extra absorption due to 

alkynylfluorenyl antennae (AFl), around 250-400 nm (λDendron 
= 319 nm) which corresponds 

to a π*← π transition of the conjugated dendron. This strong absorption, largely fluorenyl-

based, is absent for reference TFP-Bu, suggesting that the unconjugated meso-fluorenyl 

groups of TFP-Bu absorb above 270 nm,1m whereas those of TAFlP, conjugate with the 

porphyrin core appear strongly red shifted and show up more intense. 



 

Table 1. Photophysical data of new meso-alkynyl fluorenyl porphyrin TAFlP and reported H21, H22 

and H23-R and references TFP-Bu, TPP 

 
UV-visible absorption /nm 

  λSoret                      λQ-bands                    

TPP 

TFP-Bu 

419 

426 

 515, 548, 592, 647,        ,    

 520, 557, 593, 650,        ,   

H21
a
 451 567, 606, 646, 710 

H22
 a
 446 517, 563, 602, 647, 708,     

H23H
 a
 463        621,       , 717 

H23C8H17
 
 466                 599, 642,   673, 737 

H23OC9H19
 
 472               600, 653,        , 744 

TAFlP 
479 

(486) 
                       661,        , 748 

a data from lit. [11-16] 

  

When going from reference TFP-Bu to new porphyrin TAFlP, a strong red shift (∆λ 

= 53 nm) can be clearly observed on the normalized absorption spectra for the porphyrin 

based bands due to the alkynyl bridges (Soret-band and Q-bands in Figure 7). It should also 

be noticed that generally, free based porphyrins have four obvious Q-bands, but for TAFlP, 

only two coalesced Q-bands with and hyperchromic effect are observed in the visible region. 

In addition, there is a marked increase in the main Q band absorption (661 nm) relative to that 

of the B band (479 nm), and the second Q band (748 nm) appears as a smaller band on the 

right-side of this main Q band absorption.     

We can notice that the derivative H23-H, which possess similar ethynylaryl structures 

than TAFlP, presents similar spectral profiles and show only two Q-band absorptions. In 

contrast, the para octyl substituted derivate of H23-R presents four Q-bands but very strongly 

red shifted and in this case, this red shift is even larger, going up to ∆λ = 79 nm.  The 

porphyrin H22 also presents four classical Q-bands in the visible region.12,16  Likewise, the aryl 

rings of the tetra-phenylethynylporphyrin (H23-H) by extending the porphyrin chromophore 

  
Emission /nm 

Φfl
 / % τ /ns   excited at λSoret 

  Q (0,0) Q (0,1) 

TPP 653 721 11 8,6 

TFP 663 730     24 8,0 

TFP-Bu 660 724 20 8.2 

TAFlP 760 - - - 

 



 

result in a bathochromic shift for the B- and Q- absorption bands compared to those of 

porphyrin.  Thus, compared to short tetra-phenylporphyrin (TPP), the B band of porphyrin 

H21 is red-shifted to 451 nm.  Also, by replacing TMS groups of H21 with aryl groups (H23-

R), increases the B- and Q- band red shifts even further. 

          

Fig. 7. Normalized absorption UV-visible spectra of TAFlP and reference TFF-Bu in CH2Cl2 (HPLC 

grade) at room temperature. 

 

         The emission spectra of TAFlP and the reference compound TFP-Bu were measured in 

CH2Cl2 (HPLC grade) at room temperature. Upon excitation in their Soret-band, they both 

exhibit the characteristic porphyrin emission peaks Q(0,0) (Fig. 8).  The lowest energy Q-

band absorption is at 748 nm, while the corresponding fluorescence band appears at 760 nm. 

The new tetra-fluorenylethynylporphyrin spectra are also characterized by small Stokes shifts 

(∼12 nm) but slightly larger than for TFP-Bu derivatives (∼10 nm)19 similar to the shift 

reported in 1998, for 5,10,15,20 tetra-arylethynyIporphyrinato zinc(II) complexes (13 nm).18  

The proximity of these two bands indicates that the nuclear configurations of the ground and 

excited states of TAFlP are nearly similar.  Whereas reference TFP-Bu emits a typical red 

luminescence, with two Q bands (660 and 724 nm), for new TAFlP only a strong single band 

Q(0,0) could be detected in the visible region with a maximum at 760 nm with a large red 

shift (∆λ = 100 nm) compared to TFP-Bu. This intense Q(0,0) emission band has a part of its 

emission located in near infrared region (shadowed on Fig. 8). Thus, as for absorption, the 

TAFlP 

TFP-Bu 



 

presence of the four ethynyl groups results in a significant red shift in the fluorescence peak 

maxima relative to TPP and TFP-Bu derivatives, resulting in emission located partly in the 

near infra-red region of the spectrum. The detector of the Edinburgh FS920 Fluorimeter 

(Xe900) can only collect the signal at the maximum wavelength of 900 nm, so for the moment 

eventually weaker emission band Q(0,1) could not be detected and in consequence, the 

quantum yield of this new porphyrin TAFlP is calculated but maybe under evaluate.  The 

fluorescence quantum yields, measured in CH2Cl2 for this new porphyrin TAFlP is found to 

be 24% albeit similar to TFP (24%), and higher then TFP-Bu (20%). In agreement with what 

had already been noted earlier about fluorescence. Indeed it was proofed that fluorescence 

quantum yield values are significantly higher for the arylethynyl derivatives (ϕfl > 20%) and 

are among the highest values observed for porphyrinic species.19  So measurement must be 

repeated on a fluorimeter allowing detection further in the near IR range. 

 

Fig. 8. Comparison of emission spectra of TAFlP and reference TFP-Bu in the visible region, upon 

excitation in their Soret-band 

 

EXPERIMENTAL  

Materials  

        Unless otherwise stated, all solvents used in reactions were distilled using common 

TAFlP 

TFP-Bu 



 

purification protocols,20  except DMF and iPr2NH, which were dried on molecular sieves (3 

Å). Compounds were purified by chromatography on silica gel using different mixtures of 

eluents as specified.  1H and 13C NMR spectra were recorded on BRUKER Ascend 400 and 

500 at 298 K. The chemical shifts are referenced to internal tetramethylsilane. High-resolution 

mass spectra were recorded on different spectrometers:  a Bruker MicrOTOF-Q II, a Thermo 

Fisher Scientific Q-Exactive in ESI positive mode and a Bruker Ultraflex III MALDI 

Spectrometer at CRMPO (centre regional de mesures physiques de l’Ouest)  in Rennes. 

Reagents were purchased from commercial suppliers and used as received. Compounds 9,9-

dibutyl-7-((trimethylsilyl)ethynyl)-fluorene-2-carboxaldehyde and 2-ethynyl-9,9-dibutyl-

fluorene (2), were synthesized as described earlier.1l,1m 

Spectroscopic Measurements 

 All photophysical properties have been performed with freshly-prepared air-

equilibrated solutions at room temperature (298 K). UV-Vis absorption spectra were recorded 

on a BIO-TEK instrument UVIKON XL spectrometer or on a Jasco V-570 

spectrophotometer. Steady-state fluorescence measurements were performed on dilute 

solutions (ca. 10−6 M, optical density < 0.1) contained in standard 1 cm quartz cuvettes using 

an Edinburgh Instrument (FLS920) spectrometer in photon-counting mode. Fully corrected 

emission spectra were obtained, for each compound, after excitation at the wavelength of the 

absorption maximum, with Aλεx < 0.1 to minimize internal absorption.  

Synthesis 
 

            9,9-dibutyl-fluorenyl-2-propargylaldehyde (3): In a Schlenk tube, a mixture of 9,9-

dibutyl-2-ethynyl-fluorene (2) (1.03 g, 3.41 mmol, 1 equiv) was dissolved in dried THF (10 

mL). The reaction medium was degassed by freeze-pump-thaw for three times and cooled to  

-78 oC in a liquid nitrogen-acetone bath. At -78 °C, n-BuLi (2.60 mL, 4.09 mmol, 1.2 equiv) 

was injected dropwise to the previous mixture over 30 min. Then the system was kept stirring 

at -78 oC for more than 3 h. Subsequently dry DMF (0.53 mL) was injected in the medium 

and the reaction was maintained under stirring at -78 oC for another hour. The reaction was 

then taken away from cooling bath and stirred overnight at room temperature. At last, 

saturated NH4Cl (aq.) was injected (for quenching the reaction). The mixture was extracted 

with ethyl acetate/water mixtures. After evaporation of the volatiles, the residue was purified 

by silica chromatography using heptane/CH2Cl2 (5:1) as eluent. The desired compound 9,9-

dibutyl-fluorenyl-2-propiolaldehyde (3) was isolated as a white powder (623 mg, 55% yield). 



 

1H NMR (400 MHz; CDCl3) : δH, ppm 9.44 (s, 1H, HCHO), 7.77-7.75 (m, 2H, H1,3), 7.64-7.62 

(m, 2H, H4, 5), 7.41-7.35 (m, 3H, H6, 7, 8), 2.03-1.99 (m, 4H, Ha), 1.13-1.04 (m, 4H, Hc), 0.67 

(t, J = 7.2 Hz, 6H, Hd), 0.60-0.52 (m, 4H, Hb). 
13C{1H}NMR (400 MHz, CD2Cl2, ppm): δ = 

176.6 (CHO), 151.5, 151.1, 144.6, 139.7, 132.5, 128.5, 127.9, 127.1, 123.1, 120.5, 119.9, 

117.2, 96.3, 88.8, 55.2, 39.9, 25.9, 23.0, 13.5. HRMS-ESI for C24H27O: m/z = 331.2060 [M]+ 

(calcd: 331.20619); for C24H26O: m/z = 330.1990 [M]+ (calcd: 330.19837). 

Meso-alkynyl fluorenyl porphyrin (TAFlP): In a two-neck flask, a mixture of 9,9-dibutyl-

fluorenyl-2-propiolaldehyde (3) (300 mg, 0.91 mmol, 1 equiv) and distilled pyrrole (0.06 mL, 

0.91 mmol, 1 equiv) were dissolved in dried chloroform (60 mL) under argon. After 

degassing the mixture with argon bubbling for 30 min, BF3.OEt2 (0.02 mL, 0.16 mmol, 0.25 

equiv) was injected and the reaction was stirred in dark for 1 h under argon at -30 °C. Then p-

chloranil (315 mg, 1.28 mmol, 0.75 equiv) was added as oxidant, and the reaction was 

continued at room temperature. for another hour. At last, NEt3 (2 mL) was injected, and the 

reaction medium was kept stirring for several minutes. After evaporation of the volatiles, 

purification of the residual solid was done by silica chromatography using THF/heptane 

(1:10) mixtures as eluents. TAFlP was collected as green powder (10 mg, 3% yield).  
1H NMR (400 MHz; CDCl3) : δH, ppm 9.69 (s, 8H, Hβ-pyrrolic), 8.11 (d, 8H, J = 10.5 Hz,H1,3), 

7.96 (d, 4H, J = 7.6 Hz, H4), 7.88-7.85 (m, 4H, H5), 7.51-7.43 (m, 12H, H6,7,8), 2.30-2.15 (m, 

16H, Ha), 1.25-1.17 (m, 16H, Hc), 0.78 (t, 24H, J = 7.3 Hz Hd), 0.75-0.62 (m, 16H, Hb), -1.36 

(s, 2H, NH). 13C{1H}NMR (400 MHz, CD2Cl2, ppm): δ = 151.3, 151.2, 142.4, 140.5, 131.1, 

127.9, 127.0, 126.1, 123.1, 121.7, 120.1, 103.1, 55.4, 40.3, 29.7, 26.2, 23.2, 13.7. UV-vis 

(λmax, CH2Cl2, nm): 319, 479, 661, 748. HRMS-ESI for C112H111N4: m/z = 1511.8797 [M+H]+ 

(calcd: 1511.88033). 

 

CONCLUSIONS  

We have successfully synthesized and characterized the new meso tetra-

fluorenylethynylporphyrin derivative (TAFlP). Linear optical measurements reveal better 

conjugation between the porphyrin core and the peripheral fluorenyl-containing antennae, 

than in the TFP-Bu core.  This results from the presence of an yne linkage at the meso 

positions which allows more planar conformations. We now look forward to use similar 

central platforms for the design of new families of dendrimers. We hope that the extended and 



 

more conjugated π-manifold, besides providing a desirable red-shift for theranostic and high 

fluorescence for imaging will also enhance the 2PA of the central core allowing for more 

efficient photosensitizers to be accessed. For the moment, extensive studies of the NLO 

properties of TAFlP are in progress to verify this point.  
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