H. Abida, L. Dolch, C. Meï, V. Villanova, M. Conte et al., Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum, Plant Physiol, vol.167, pp.118-136, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01141164

J. N. Bach and M. Bramkamp, Flotillins functionally organize the bacterial membrane, Mol. Microbiol, vol.88, pp.1205-1217, 2013.

L. A. Bagatolli and O. G. Mouritsen, Is the fluid mosaic (and the accompanying raft hypothesis) a suitable model to describe fundamental features of biological membranes? What may be missing? Front, Plant Sci, vol.4, p.457, 2013.

I. Barák and K. Muchová, The role of lipid domains in bacterial cell processes, Int. J. Mol. Sci, vol.14, pp.4050-4065, 2013.

T. Baumgart, S. T. Hess, and W. W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, vol.425, pp.821-824, 2003.

J. Bonnet, C. Durmort, M. Jacq, I. Mortier-barrière, N. Campo et al., Peptidoglycan O-acetylation is functionally related to cell wall biosynthesis and cell division in Streptococcus pneumoniae: role of peptidoglycan O-acetylation in Streptococcus pneumoniae, Mol. Microbiol, vol.106, pp.832-846, 2017.

D. E. Brundish, N. Shaw, and J. Baddiley, The phospholipids of Pneumococcus I-192R, A.T.C.C. 12213. Some structural rearrangements occurring under mild conditions, Biochem. J, vol.104, pp.205-211, 1967.

A. Chugunov, D. Pyrkova, D. Nolde, A. Polyansky, V. Pentkovsky et al., Lipid-II forms potential "landing terrain" for lantibiotics in simulated bacterial membrane, Sci. Rep, vol.3, p.1678, 2013.

A. Fleurie, C. Lesterlin, S. Manuse, C. Zhao, C. Cluzel et al., MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae, Nature, vol.516, pp.259-262, 2014.

D. N. Ganchev, H. E. Hasper, E. Breukink, and B. De-kruijff, Size and orientation of the Lipid II headgroup as revealed by AFM imaging, Biochemistry, vol.45, pp.6195-6202, 2006.

P. S. Garcia, J. Simorre, C. Brochier-armanet, and C. Grangeasse, Cell division of Streptococcus pneumoniae: think positive!, Curr. Opin. Microbiol, vol.34, pp.18-23, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02012367

V. Gros, J. , and J. , Quantitative assessment of the chloroplast lipidome, Methods Mol. Biol, vol.1829, pp.241-252, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02190360

D. P. Haeusser and W. Margolin, Splitsville: structural and functional insights into the dynamic bacterial Z ring, Nat. Rev. Microbiol, vol.14, pp.305-319, 2016.

M. Jacq, V. Adam, D. Bourgeois, C. Moriscot, A. D. Guilmi et al., Remodeling of the Z-ring nanostructure during the Streptococcus pneumoniae cell cycle revealed by photoactivated localization microscopy, MBio, vol.6, pp.1108-1115, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01199165

F. Kawai, M. Shoda, R. Harashima, Y. Sadaie, H. Hara et al., Cardiolipin domains in Bacillus subtilis marburg membranes, J. Bacteriol, vol.186, pp.1475-1483, 2004.

N. E. Kramer, E. J. Smid, J. Kok, B. Kruijff, O. P. Kuipers et al., Resistance of gram-positive bacteria to nisin is not determined by Lipid II levels, FEMS Microbiol. Lett, vol.239, pp.157-161, 2004.

S. Kretschmer and P. Schwille, Pattern formation on membranes and its role in bacterial cell division, Curr. Opin. Cell Biol, vol.38, pp.52-59, 2016.

S. Lacks and R. D. Hotchkiss, A study of the genetic material determining an enzyme in Pneumococcus, Biochim. Biophys. Acta, vol.39, pp.90205-90210, 1960.

R. J. Malott, B. R. Steen-kinnaird, T. D. Lee, and D. P. Speert, Identification of hopanoid biosynthesis genes involved in polymyxin resistance in Burkholderia multivorans, Antimicrob. Agents Chemother, vol.56, pp.464-471, 2012.

H. Marrakchi, K. Choi, and C. O. Rock, A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae, J. Biol. Chem, vol.277, pp.44809-44816, 2002.

O. Massidda, L. Nováková, and W. Vollmer, From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division?, Environ. Microbiol, vol.15, pp.3133-3157, 2013.

E. Mileykovskaya and W. Dowhan, Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange, J. Bacteriol, vol.182, pp.1172-1175, 2000.

E. Mileykovskaya and W. Dowhan, Role of membrane lipids in bacterial division-site selection, Curr. Opin. Microbiol, vol.8, pp.135-142, 2005.

L. G. Monahan, A. T. Liew, A. L. Bottomley, and E. J. Harry, Division site positioning in bacteria: one size does not fit all, Front. Microbiol, vol.5, p.19, 2014.

E. Oldfield and D. Chapman, Dynamics of lipids in membranes: heterogeneity and the role of cholesterol, FEBS Lett, vol.23, pp.80300-80304, 1972.

P. M. Oliver, J. A. Crooks, M. Leidl, E. J. Yoon, A. Saghatelian et al., Localization of anionic phospholipids in Escherichia coli cells, J. Bacteriol, vol.196, pp.3386-3398, 2014.

A. Paintdakhi, B. Parry, M. Campos, I. Irnov, J. Elf et al., Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis, Mol. Microbiol, vol.99, pp.767-777, 2016.

S. Pichoff and J. Lutkenhaus, Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA: membrane tethering of Z ring by FtsA, Mol. Microbiol, vol.55, pp.1722-1734, 2005.

S. Sato, J. Kawamoto, S. B. Sato, B. Watanabe, J. Hiratake et al., Occurrence of a bacterial membrane microdomain at the cell division site enriched in phospholipids with polyunsaturated hydrocarbon chains, J. Biol. Chem, vol.287, pp.24113-24121, 2012.

E. Sezgin, D. Waithe, . Bernardino-de-la, J. Serna, and C. Eggeling, Spectral imaging to measure heterogeneity in membrane lipid packing, Chem. Phys. Chem, vol.16, pp.1387-1394, 2015.

C. Sohlenkamp and O. Geiger, Bacterial membrane lipids: diversity in structures and pathways, FEMS Microbiol. Rev, vol.40, pp.133-159, 2016.

J. Stricker, P. Maddox, E. D. Salmon, and H. P. Erickson, Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.3171-3175, 2002.

C. K. Sung, H. Li, J. P. Claverys, and D. A. Morrison, An rpsL cassette, Janus, for gene replacement through negative selection in Streptococcus pneumoniae, Appl. Environ. Microbiol, vol.67, pp.5190-5196, 2001.

D. Y. Takamoto, M. M. Lipp, A. Von-nahmen, K. Y. Lee, A. J. Waring et al., Interaction of lung surfactant proteins with anionic phospholipids, Biophys. J, vol.81, pp.153-169, 2001.

M. C. Trombe, M. A. Lanéelle, and G. Lanéelle, Lipid composition of aminopterin-resistant and sensitive strains of Streptococcus pneumoniae. Effect of aminopterin inhibition, Biochim. Biophys. Acta, vol.574, pp.90010-90019, 1979.

H. T. Tsui, M. J. Boersma, S. A. Vella, O. Kocaoglu, E. Kuru et al., Pbp2x localizes separately from Pbp2b and other peptidoglycan synthesis proteins during later stages of cell division of Streptococcus pneumoniae D39, Mol. Microbiol, vol.94, 2014.

V. Van-dam, R. Sijbrandi, M. Kol, E. Swiezewska, B. De-kruijff et al., Transmembrane transport of peptidoglycan precursors across model and bacterial membranes, Mol. Microbiol, vol.64, pp.1105-1114, 2007.

A. Zapun, T. Vernet, and M. G. Pinho, The different shapes of cocci, FEMS Microbiol. Rev, vol.32, pp.345-360, 2008.

Y. P. Zhang, R. N. Lewis, and R. N. Mcelhaney, Calorimetric and spectroscopic studies of the thermotropic phase behavior of the n-saturated 1,2-diacylphosphatidylglycerols, Biophys. J, vol.72, issue.97, pp.78712-78717, 1997.