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Abstract 

Glyphosate is the most widely used herbicide in the world. Several studies have investigated the 

effects of glyphosate and glyphosate-based-herbicides (GBHs) on male reproduction, but there is 

still little and conflicting evidence for its toxicity. In this study, we analyzed the effects of 

glyphosate, alone or in formula, on the male reproductive system. Pregnant mice were treated 

from E10.5 to 20 days postpartum (dpp) by adding glyphosate or a GBH (Roundup® 3 Plus) to 

their drinking water at 0.5 (the acceptable daily intake, ADI dose), 5 and 50 mg/kg/day. Male 

offspring derived from treated mice were sacrificed at 5, 20 and 35 days-old (d.o.) and 8 months-

old (m.o.) for analysis. Our result showed that exposure to glyphosate, but not GBH, affect testis 

morphology in 20 d.o. and decrease serum testosterone concentrations in 35 d.o. males. We 

identified that the spermatozoa number decreased by 89% and 84% in 0.5 and 5 mg/kg/day of 

GBH and glyphosate groups, respectively. Moreover, the undifferentiated spermatogonia 

numbers were decreased by 60% in 5 mg/kg/day glyphosate group, which could be due to the 

alterations in the expression of genes involved in germ cell differentiation such as Sall4 and 

Nano3 and apoptosis as Bax and Bcl2. In 8 m.o. animals, a decreased testosterone level was 

observed in GBH groups. Our data demonstrate that glyphosate and GBHs could cause 

endocrine-disrupting effects on male reproduction at low doses. As glyphosate has effects at the 

ADI level, our data suggests that the current ADI for glyphosate could be overestimated.
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Introduction 

Spermatogenesis is a complex and finely regulated cell differentiation process, taking place in the 

seminiferous epithelium of the testis and leading to spermatozoa production from stem cells. 

Spermatogonia, known as A single (As) spermatogonia, are considered to be the stem cells in 

mouse. By mitosis, As spermatogonia give rise to two paired then chain of aligned (Aal) 

spermatogonia referred to be “undifferentiated spermatogonia” because they all retain the stem 

cell properties. Subsequently Aal cells differentiate into A1 spermatogonia, which are irreversibly 

committed toward gamete production (Raverdeau et al. 2012). After meiosis, the specialized cell 

division process for the production of haploid gametes, and spermiogenesis, a morphological 

transformation of round spermatids, the elongated spermatids are released in the lumen of 

seminiferous epithelium. The spermatogenesis process needs functional interactions between 

germ cells and somatic cells, notably Sertoli cells, involving a complex assortment of endocrine, 

paracrine and autocrine signaling pathways (Jégou 1993). It is suggested that spermatogenesis is 

a vulnerable process which can be affected by numerous environmental toxicants (Pryor et al. 

2000; Albert and Jégou 2014; Jenardhanan et al. 2016; Gely-Pernot et al. 2018).

Glyphosate (or N-(phosphonomethyl)glycine) so-called glyphosate acid,  is a phosphonic acid 

which is an active ingredient of widely used herbicides. This compound inhibits the 5-

enolpyruvyl-shikimate-3-phosphate synthase enzyme that is essential for the synthesis of 

aromatic amino acids in plants (Steinrücken and Amrhein 1980). In 1974, glyphosate was 

marketed in the United States by Monsanto under the trade name Roundup® (Duke and Powles 

2008). Roundup® as well as others glyphosate-based-herbicides (GBHs) contain glyphosate in 

salt form (to increase the solubility of glyphosate in water), surfactants, adjuvants and water 

(Mesnage et al. 2015; Myers et al. 2016). Nowadays, GBHs are the most widely used herbicides 
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in the world (Benbrook 2016; Myers et al. 2016) and their use may result in exposure of the 

general public as well as of applicators (Solomon 2016). Glyphosate was detected in urine 

samples of farmers (Jayasumana et al. 2015), amenity horticulturists (Connolly et al. 2017) as 

well as in samples of the general public (Conrad et al. 2017; Connolly et al. 2018). In March 

2015, glyphosate was classified as a "probable carcinogen for humans" (group 2A) by the 

International Agency for Research on Cancer (IARC) of the World Health Organization (WHO) 

(Guyton et al. 2015). However, in November 2015, the European Food Safety Authority (EFSA) 

did not categorize glyphosate as a carcinogen (European Food Safety Authority (EFSA) 2015) 

and concluded in 2017 that glyphosate was likely not an endocrine disruptor chemical (EDC) 

(European Food Safety Authority (EFSA) 2017). Until now, debates about the toxicity of 

glyphosate are continuing, with a lot of contradictory evidences (Tarazona et al. 2017; Andreotti 

et al. 2018; Tarone 2018). Therefore, more research studies on the toxicity of glyphosate are 

urgent and indispensable.

Previous studies suggest that GBHs are EDCs (Richard et al. 2005; Benachour et al. 2007; 

Mesnage et al. 2015; de Souza et al. 2017). Disturbances in hormonal regulation during prenatal 

and neonatal periods may induce adverse effects on the male reproductive system (Palanza et al. 

2016). In fact, exposure of rats to 50 to 450 mg/kg/day of GBH (Roundup®) during pregnancy 

and lactation affects serum testosterone levels and spermatozoa parameters (Dallegrave et al. 

2007; Romano et al. 2012) and causes changes in sexual behavior in the male offspring (Romano 

et al. 2012). Exposure to GBH during puberty in rats, a known window of vulnerability, induces 

changes in the progression of puberty, testicular morphology, and reduces testosterone production 

(Romano et al. 2010). In adult rats, GBH exposure leads to disruption of normal testicular 

architecture, coupled with a decrease of testosterone secretion as well as abnormal sperm 
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properties (Owagboriaye et al. 2017). The toxicity of GBHs is for now attributed to the 

surfactants and adjuvants that are added during commercial preparations (Tsui and Chu 2003; 

Mesnage et al. 2013; Johansson et al. 2018). Unlike many studies that focused on GBHs, recent 

studies on glyphosate alone showed that glyphosate does not affect male reproduction in rat (Dai 

et al. 2016) or decrease the total sperm production at the high dose of 500 mg/kg/day without 

affecting testosterone level (Johansson et al. 2018). However, some studies support the 

hypothesis that glyphosate affects sperm parameters in fish (Lopes et al. 2014; Uren Webster et 

al. 2014; Gonçalves et al. 2018).

In humans, with the exception of attention deficit hyperactivity disorder (ADHD) in children of 

glyphosate applicators, data from existing epidemiological studies does not support the idea that 

glyphosate is toxic to reproduction and human development (de Araujo et al. 2016). However, a 

recent study associates exposure to glyphosate to shortened gestational length (Parvez et al. 

2018).

With the goal of testing the impact of glyphosate and GBH toxicity at low doses on the male 

reproductive function, this study is conducted in mice, a species which has not yet been largely 

used for evaluating the glyphosate toxicity. The pregnant mice are exposed to purified glyphosate 

or a GBH, the Roundup® 3 Plus, from E10.5 to the end of lactation (20 dpp). Reproductive 

functions of male offspring were evaluated by analyzing testis morphology, estimating the 

number of spermatozoa and serum testosterone levels. The number of germ cells and expression 

of genes involved in their differentiation were also investigated in prepubertal mice. This study 

highlights the adverse effects of glyphosate and a GBH at low doses on spermatozoa number, 

testosterone levels and the genes involved in germ cell differentiation. 
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Methods

Chemicals

The chemicals used are: glyphosate so-called glyphosate acid (N-(Phosphonomethyl)glycine) 

(Sigma-Aldrich CAS 1071-83-6; product number 89432, purity ≥ 99.2%) and Roundup® 3 Plus 

(Monsanto Europe, Belgium) containing 229 g/L glyphosate isopropylamine salt (170 g/L 

glyphosate acid equivalent). By weight, the Roundup® 3 Plus formulation contains: 21% 

glyphosate isopropylamine salt, about 8% surfactants and other ingredients, and about 71% water 

(CAS 7732-18-5) .The data (in French) is available at: 

http://www.aude.gouv.fr/IMG/pdf/SCOTTS-Roundup-3-plus_cle639faf.pdf. Glyphosate acid is a 

phosphonic acid resulting from the formal oxidative coupling of the methyl group of 

methylphosphonic acid with the amino group of glycine (Pubchem).

Animals’ exposure and ethic statement

All animal procedures were performed according to the guidelines for animal models in research 

defined by the Ethics Committee and approved by the Ministry of France (reference project 

number is APAFIS#518). All experiments were performed by AGP who is qualified for 

laboratory animal care and use. The outbred Swiss mouse strain was used. Four-month-old (m.o.) 

adult mice were treated for each experimental condition. The day of vaginal plug detection was 

considered as embryonic day 0.5 (E0.5) and purified glyphosate or a GBH (Roundup® 3 Plus) 

was administered in drinking water from E10.5 to 20dpp at the concentration corresponding to 

0.5, 5 and 50 mg/kg/day of glyphosate based on average water uptake of mice 5 ml/day and 

average body weight equal to 30 g at the beginning of experiment. Stock solution of glyphosate 

http://www.aude.gouv.fr/IMG/pdf/SCOTTS-Roundup-3-plus_cle639faf.pdf
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was prepared as 0.3 mg/ml water solution and it was diluted and provided fresh twice during the 

week. Roundup® 3 Plus was prepared by diluting the product directly in drinking water. Drinking 

water was changed twice a week. Control group received water alone. Exposure by drinking 

water was chosen because the main source  of human exposure is the consumption of 

contaminated water and food (Damalas and Eleftherohorinos 2011; Panzacchi et al. 2018). 

Control and treated young prepubertal or adult mice were euthanized, and reproductive organs 

were dissected in 5, 20, 35 days-old (d.o.) and in 8 m.o. mice. Experiments were done in at least 

5 animals derived from at least 3 to 4 different litters in each group. 

Testosterone quantification

Serum was collected from ketamine/xylazine-anaesthetized adult animals by terminal cardiac 

exsanguination and aliquots were stored at −20 °C. Testosterone levels in the serum were assayed 

in duplicate using a commercial radioimmunoassay (RIA) based on competitive binding with 

I125-labeled testosterone (Immunotech, Ref. IM1087, Czech Republic), according to the 

manufacturer’s recommendations. 

Epididymis sperm reserves

Spermatozoa counts were conducted as previously described (Vallet-Erdtmann et al. 2004). 

Briefly, the mice were euthanized, and the epididymis was dissected, rapidly frozen in liquid 

nitrogen and stored at -80°C until the sperm heads were counted as follows. The organ was first 

cut with a scalpel into several fragments and homogenized in 6 ml of 0.15 M NaCl containing 

0.005 % (vol/vol) Triton X-100 (Sigma-Aldrich). After homogenization with three rounds of 

sonication (12 kHz), an aliquot of the cell suspension was loaded onto a Malassez 
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hemocytometer, and spermatozoa heads were counted. The data from at least six controls or 

treated animals were averaged and plotted.

Analysis of histology and numbers of germ cells and Sertoli cells

For the histological analysis, testis samples were fixed in Bouin’s solution and embedded in 

paraffin. Histological sections (5-μm-thick) were stained with hematoxylin and eosin (H&E). For 

immunohistochemistry (IHC), only the adult animals were perfused, and the testes were fixed for 

24h in 4 % (wt/vol) paraformaldehyde (PFA) and then embedded in paraffin. In order to check 

the number of undifferentiated spermatogonia on 5 d.o. testes sections, 5-μm-thick testis sections 

were incubated overnight at 4 °C with a primary rabbit polyclonal antibody DDX4 diluted at 

1:500 (Abcam, ref. Ab13840) and then a secondary Alexa-Chicken anti-rabbit 488 antibody 

during one hour (dilution 1/500). For IHC on 35 d.o. testis section, 5-μm-thick testis sections 

were incubated overnight at 4 °C with goat anti-ZBTB16 (R&D system, ab2944) diluted at 1:500 

and rat anti-GATA1 (Santa cruz, ref. sc-265)  diluted at 1:50 and then a secondary Alexa-

Chicken anti-goat 488 antibody and a secondary Alexa-donkey anti-rat 594 during one hour 

(dilution 1/500).

The sections were all counterstained with 0.001% (vol/vol) 4,6-diamidino-2-phenylindole 

dihydrochloride (DAPI) and mounted in Vectashield (Vector Laboratories, UK) before 

microscopy analysis.

To quantify the number of Sertoli cells (GATA1-positive cells) and undifferentiated 

spermatogonia (ZBTB16-positive cells), we manually counted the cells in an average of 30 

sections of seminiferous epithelium at stage VII in control and glyphosate-derived groups. We 
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analysed cells in 3 different areas of the testis for each biological replicate. The perimeter of each 

tubule section was measured by using ImageJ. The values shown indicate the cell counts per 

micrometer of tubule circumference. For 5 d.o. the germ cells were counted in an average of 96 

sections of seminiferous tubules in control and glyphosate-derived groups using 3 different areas 

of the testis for each biological replicate. Numbers of germ cells were expressed as number of 

spermatogonia per/square unit of tubule surface. The surface of each tubule section was measured 

by using ImageJ.

RNA extraction and quantitative PCR

Total RNA was extracted from 5 d.o. whole testis using the RNeasy plus mini kit according the 

protocol of the manufacture (Qiagen) and reverse transcription was performed with 1 µg of RNA 

using the iScript™ cDNA Synthesis Kit according to the manufacturer’s instructions (Biorad). 

The resulting cDNA was diluted 5 times and used for quantitative PCR. The primer sequences 

used for qPCR are indicated in Table 1. qPCR was performed using the iTaq Universal SYBR 

Green Supermix (Bio-Rad) according to the manufacturer’s instructions on a CFX384 Touch 

Real-Time PCR Detection system (Bio-Rad). The gene copy number was calculated with Bio-

Rad CFX Manager 3.1. PCR amplification of the coding regions of Actb and Rplp0 was used for 

normalization. The data from at least 6 samples were analyzed, compared, plotted and expressed 

as a fold change in treated samples compared to controls. 

Statistical analysis

The statistical tests were carried out using R software (R Core Team 2018). For each experiment, 

the results were separated and compared by modality. First, the data were tested for normality by 

the Shapiro test and homoscedasticity by the Bartlett test. If the data distribution for each 
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modality followed a normal distribution and if the variances were equal, the Anova test was 

performed, a parametric comparison test. If the data of at least one of the groups was not 

normally distributed or if the data of the groups was distributed normally but the variances were 

not equal, the Kruskal-Wallis test was carried out, a non-parametric comparison test of average. 

The differences were considered statistically significant when p <0.05. In this case, post-hoc tests 

were performed as follows: Tukey test after the Anova test and Mann-Whitney test after the 

Kruskal-Wallis test. At 5 d.o., 20 d.o. and 8 m.o., data was collected by randomizing in view of 

origin litter and pups was used as the experiment unit for statistical analysis. At 35 d.o., 

corresponding to the first complete wave of spermatogenesis, litters were used as the experiment 

unit for statistical analysis.
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Results

Justification of the molecules and their doses used in the study

In this study, we used both purified glyphosate and a commercial GBH, Roundup® 3 Plus. We 

chose to add each of these compounds in drinking water from E10.5 until the last day of lactation 

(20dpp). We chose to start the treatment at E10.5, when primordial germ cells start to colonize 

the genital ridge. This developmental period allow us to specifically target the germ cells. To be 

relevant to human exposure, we treated pregnant mice with dose of 0.5 mg/kg/day, which 

corresponds to the acceptable daily intake (ADI) for glyphosate in Europe. In the United-States, 

the ADI is 1.75 mg/kg/day, which is about three times higher than the dose chosen in our study. 

We also tested the dose of 5 mg/kg/day, ten times less than the no-observed-adverse-effect-level 

(NOAEL) and the NOAEL dose, 50 mg/kg/day.

In our study, we analyzed seven experimental groups of males derived from pregnant mice 

treated with vehicle (called ctrl), glyphosate at the concentration of 0.5 mg/kg/day (called G0.5), 

5 mg/kg/day (called G5) and 50 mg/kg/day (called G50) or with a GBH, the Roundup® 3 Plus, at 

the concentration of 0.5 mg/kg/day (called R0.5), 5 mg/kg/day (called R5) and 50 mg/kg/day 

(called R50).

Perinatal exposure to glyphosate but not a GBH affects testis weight, the morphology of the 

seminiferous epithelium and the level of circulating testosterone at short term

To analyze the effect of glyphosate and a GBH on spermatogenesis, we analyzed the effects of 

these compounds on body and organs weight and on the morphology of the testis. We did not 
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observe any variations in body weight in 5 days-old (d.o.) and 35 d.o. animals, but we found an 

increase in body weight in 20 d.o. mice in G0.5 and R5 groups compared to control (suppl. 

Figure 1). In 20 d.o. mice, relative testis weight did not change in all groups except for the R50 

treated group (data not shown). As production of spermatozoa takes about 35 days in mice, we 

chose this time point to consider the effect of glyphosate and GBH on a complete round of 

spermatogenesis. In 35 d.o. mice, no change of body weight was observed but a decrease in 

relative testis weight was observed in G0.5 and G5 groups compared to control (Figure 1A, B). 

In GBH group, the relative testis weight was not affected in 35 d.o. animals. We also checked the 

epididymis and seminal vesicle weights of 35 d.o. males of treated and control groups. A 

decrease in epididymis weight was observed in R0.5 group, and a decrease in seminal vesicle 

weights was detected in G5, G50 and R0.5 groups compared to the control group (Figure 1B-D). 

To reveal whether exposure to glyphosate and a GBH leads to changes in spermatozoa numbers, 

we counted the spermatozoa in total epididymis of 35 d.o. males exposed to toxicant during 

gestation. We found a significant decrease of 89% and 84% spermatozoa numbers in G5 and 

R0.5 groups, respectively (Figure 1E). To assess the endocrine function following treatment, we 

measured testosteronemia. We determined that serum testosterone levels were about three times 

lower in G0.5 and G50 groups compared to the control group (Figure 1F).  We considered at this 

time point the animals from the same litter as one biological replicate. We also checked that 

considered pups as experimental unit for statistical analysis does not change most of our result, 

meaning that origin litter does not affect our findings (data not shown). Our data showed that 

glyphosate alone affected the relative testis weight and led to a decrease in the levels of 

circulating testosterone. However, no change was observed in groups exposed to GBH. In 

addition, exposure to glyphosate and GBH lead to changes in relative seminal vesicle weights in 
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G5, G50, R0.5 and R50 groups and affected the production of spermatozoa in G5 and R0.5 

groups.

To determine whether exposure to glyphosate and a GBH could affect the cellular morphology, 

we prepared paraffin sections from exposed and control testes and performed an H&E staining. 

The analysis of testis sections revealed that glyphosate causes an adverse effect on testis 

morphology in 20 d.o. males compared to the control (Figure 2A, E). In GBH groups, we did not 

observe changes in testis morphology, except for the presence of rare vacuoles in R5 group 

(Figure 2B-D). In glyphosate treated groups, an increase in vacuoles in the seminiferous 

epithelium was observed in G0.5, G5 and G50 groups (Figure 2F-H). In G5 group, some tubules 

were completely empty with a total absence of germ cell populations (Figure 2G). These effects 

were reversible, because in 35 d.o. glyphosate-treated animals, we did not observe the presence 

of vacuoles and testes looked normal (Figure 2I-L). 

In summary, our data showed that exposure to a GBH had effects on seminal vesicles weight and 

spermatozoa numbers but only at some doses. Remarkably, in glyphosate-exposed groups, we 

observed changes in testis and seminal vesicles weights, spermatozoa numbers, testosterone 

levels and testis morphology, suggesting that the reproductive system was impaired by 

glyphosate itself. 

Perinatal exposure to glyphosate affects the number of undifferentiated spermatogonia in 

35 d.o. adult mice 

As glyphosate treatment during gestation and lactation affected the testis morphology of 20 d.o. 

males and the testis weights and spermatozoa production in 35 d.o. mice, we investigated the 

effects of glyphosate alone on the number of undifferentiated spematogonia and Sertoli cells in 
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35 d.o. mice. We immunostained testis sections using antibodies against proteins specific to these 

cell types (i.e., ZBTB16 and GATA1, respectively, (Figure 3A-B). Following quantification, we 

observed that glyphosate did not affect the number of GATA1 positive cells (Figure 3C) but induced 

a decrease in the number of ZBTB16 positive cells in G5 group in 35 d.o. animals (Figure 3D). This 

result indicates that glyphosate decreases the number of undifferentiated spermatogonia at this dose.

Perinatal exposure to glyphosate affects spermatogonia differentiation during the first wave 

of spermatogenesis in mouse

As glyphosate treatment during gestation and breastfeeding affected the number of 

undifferentiated spermatogonia in adults, we investigated the effects of this compound on 

undifferentiated prepubertal spermatogonia in 5 d.o. testis in glyphosate groups. At this time, Aal 

spermatogonia, which retain stem cell properties, have not yet differentiated into A1 

spermatogonia, which are irreversibly committed toward gamete production. To this end, we 

counted the germ cells numbers in 5 d.o. testis by immunostaining the testis sections against the 

germ cell marker, DDX4 (also known as MVH) (Figure 4). We observed that the number of 

undifferentiated spermatogonia did not change in glyphosate-treated groups compared to the 

control (Figure 4A-C). 

To reveal the effects of exposure on gene expression in spermatogonia, we performed 

quantitative, real-time PCR (RT-QPCR). For the analysis we chose genes encoding proteins 

involved in stem cell maintenance (Pou5f1, Foxo1, Gfra1, Nanos3, Ret, Zbtb16), germ cell 

differentiation (Sall4, Dazl, Sohlh1, Sohlh2, Kit), steroidogenesis (Cyp11A1, Cyp19A1), 

endocrine signalling (Fshr, Lhr, Esr1, Esr2, Star) and apoptosis (Bax, Bcl2). Our results showed 

that exposure to glyphosate  did not affect the expression of genes implicated in steroidogenesis 

(Cyp11A1, Cyp19A1, Star)  and genes implicated in estrogen signaling pathway (Fshr, Lhr, Esr1, 
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Esr2, Star) (Figure 4 and Suppl. Figure 2). By contrast, glyphosate exposure leads to increased 

expression of Bax and Bcl2, which are genes involved in apoptosis (Figure 4D). Glyphosate 

treatment did not affect the expression of Sohlh1 but induced an increase in Dazl and Sohlh2 

expression in group G0.5. Moreover, exposure to glyphosate led to a decrease in Kit expression 

in G50 group and in Sall4 expression in all glyphosate groups compared to control (Figure 4 and 

Suppl. Figure 2). Glyphosate also induced a non-significant increase (p=0.06635) of Ret in G5 

group, a significant increase of Nanos3 in G0.5 and G50 groups and of Foxo1 gene expression in 

G0.5 group compared to the control. Our results show that glyphosate alone promotes a decrease 

or an increase in the expression of genes involved in differentiation and an increase in genes 

involved in stem cell fate. 

Perinatal exposure to GBH affects long term testis weight and the circulating testosterone 

levels

Since some chemicals do not have a clear short term effects but may have harmful effects in long 

term, the reproductive function of 8 months-old (m.o.) male offspring was examined. No changes 

in body weights were observed (data not shown). A decrease in relative testis weights were 

observed in G0.5 group, which correlates with the results of body weights in 35 d.o., and R5 

groups (Figure 5A). No changes in the epididymis and seminal vesicle weights were observed 

(Figure 5B-C). The testosterone levels were dramatically reduced in R5 and R50 –by 90% and 

85% respectively but not in glyphosate groups (Figure 5D). 

To reveal whether the reduction of testosterone level leads to changes in spermatozoa numbers, 

we also counted the spermatozoa in epididymis, but did not observe any significant changes 

(data not shown). The H&E morphologic analysis showed that there were no apparent 
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differences between control and treated groups in 8 m.o. male offspring (Figure 5E), suggesting 

that the effects were reversible in the long term. Undifferentiated spermatogonia and Sertoli cell 

counts showed that there were no significant differences between control and treated groups 

(data not shown). 

In summary, our results showed that glyphosate has low toxicity in male reproduction in the long 

term. In contrast, GBH decreases testosterone levels and testis weights in adult male mice eight 

months after exposure. 
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Discussion 

Glyphosate and a GBH affect the reproductive function in males

The aim of our study was to investigate the possible impact of glyphosate and a GBH (Roundup® 

3 Plus) on the reproductive system of male mice. Most of the previous studies reported the effects 

of glyphosate either alone or as GBH. In our study, we tested pure glyphosate as well as its 

commercial preparation. Contrarly to the idea that the toxicity of the GBHs comes from the 

surfactants and adjuvants added in the formula (Tsui and Chu 2003; Mesnage et al. 2013; 

Johansson et al. 2018), we observed that glyphosate itself has stronger toxic effects on the 

reproductive system compared to GBH in the short term. Of note, however, it cannot be excluded 

that the difference in solubility between pure glyphosate (glyphosate acid) and glyphosate 

isopropylamine salt present in the GBH can also be responsible for the difference in toxicity 

observed. In fact, while glyphosate acid is moderately soluble in water (10 to 12 g/l), in contrast, 

the isopropylamine salt is very soluble in water (1050 g/l) (INRS-Institut National de Recherche 

et de Sécurité 2009), suggesting the toxicokinetics of these two compounds are different. The 

glyphosate isopropylamine salt may have less toxicity than glyphosate acid because it can be 

excreted by the urinary tract more easily and quickly. However, more study will be needed to 

thoughtfully understand why at low dose and at short term, pure glyphosate shows more toxic 

effects in male reproduction than the GBH tested.

GBHs are produced by several companies (Monsanto, Bayer, Dow, Syngenta ...) and the mix of 

chemicals in each product differs from company to company. Therefore, it is difficult to predict 
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the toxicity of all GBHs based only on one formula, especially for herbicides used for 

glyphosate-resistant plants, which contain other active substances. 

Glyphosate did not have any effect on the body weight of animals tested in this study. These 

results are in consistent with the previous studies (Benachour et al. 2007; Dai et al. 2016) and 

indicate that the doses used in our study have no significant toxic effects on animals. The 

decrease in testicular weights observed in the G0.5 and G5 groups at 35 d.o. and G0.5 group at 8 

m.o. indicates that glyphosate, even at low doses, can significantly impair spermatogenesis, as 

testicular weight is a very reliable indicator of the normal function of male reproductive system. 

Exposure to glyphosate and Roundup® 3 Plus leads to a decrease in the weight of seminal 

vesicles at some doses. As the weight of seminal vesicles is directly influenced by androgens, our 

data shows that these two compounds have some endocrine disruptor activities. This fact was 

confirmed by measuring the level of testosterone in plasma after glyphosate exposure. In our 

study, the serum testosterone levels were significantly decreased in G0.5 and G50 groups at 35 

d.o. and in R5 and R50 groups at 8 m.o. The decrease in testosterone level after exposure to 

Roundup® has been observed in previous studies (Dallegrave et al. 2007; Romano et al. 2010) but 

not with glyphosate alone. In 8 m.o. mice, the decrease in testosterone production in R5 and R50 

groups is not associated with a decrease in seminal vesicles weight. In 35 d.o. mouse, this organ 

is significantly affected in R0.5 group.  As in aged rodents the seminal vesicles may become very 

large (Knoblaugh et al. 2018), we suggest that the decrease in testosterone in these animals is not 

strong  to cause the decrease in seminal vesicles size. 

Moreover, the treatment with different doses of glyphosate or GHB didn’t produce monotonic 

dose-responses. It is the case for data of epididymis and seminal vehicles weights, testosterone 

levels and spermatozoa counts in 35 d.o. animals. We observed here nonmonotonic dose-
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responses curve starting from a low concentration, the ADI, to the NOAEL. Recent findings 

showed that nonmonotonicity commonly occurs after exposure to endocrine-disrupting chemicals 

(EDC), as well as when animals are exposed to low dose. The effects are explained by the fact 

that the endocrine system responds to even very low concentration of hormones (Vandenberg et 

al. 2012). As nonmonotonicity involved different mechanisms as cytotoxicity, tissue-specific 

factors, receptor desensibilization among others (Vandenberg et al. 2012), it is conceivable that 

there is low correlation between  different doses and observed effects on measured parameters.

The decrease in testosterone level after exposure to Roundup® has been observed in previous 

studies (Romano et al. 2010, Dallegrave et al. 2007) but not with glyphosate alone. As glyphosate 

didn’t affect the expression of the Cyp19a1 transcript here, we suggest that the decrease could not 

be explained by the alteration of the activity of the aromatase enzyme, encoded by Cyp19a1, 

which transforms testosterone into estradiol. However, in studies using human placental and 

embryonic cells it has been shown that the treatment with low concentrations of GBHs leads to 

changes in aromatase activity and mRNA level (Richard et al. 2005; Benachour et al. 2007). The 

toxicity of glyphosate may be mediated via its effects on endocrine regulation of the 

hypothalamic-pituitary axis (Yousef et al. 1995). On the other hand, Uren Webster et al. 

hypothesized that glyphosate disrupts the steroid biosynthetic pathway by causing oxidative 

stress (Uren Webster et al. 2014). 

We observed that glyphosate or Roundup® 3 Plus exposure led to a significant decrease in the 

spermatozoa numbers R0.5 groups at 35 days leading to a decrease of epididymis weights. This 

decrease in the spermatozoa numbers demonstrates that exposure to glyphosate or a GBH could 

reduce male fertility. The disturbance of the male reproductive function can also be observed if 

there are changes in testicular morphology. In rats, exposure to Roundup® can provoke the 
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appearance of vacuoles and the degeneration of the seminiferous epithelium (Dallegrave et al. 

2007); there are also changes in the epithelial height and luminal diameter of seminiferous 

tubules (Romano et al. 2010, Romano et al. 2012). In our study, the presence of vacuoles or 

absence of epithelium layers were observed in 20 d.o. animals of glyphosate groups, but the 

testicular morphology in treated groups became normal again at the age of 35 days, and at 8 

months, suggesting that the toxic effects of glyphosate in the short term are reversible after the 

end of exposure.

The adverse effect of glyphosate on germ cell differentiation

The toxicity of glyphosate could be explained by direct cytotoxic effects on spermatogenesis via 

effects on the autocrine and paracrine regulatory pathways, emanating respectively from germ 

cells and Sertoli cells.

The first wave of spermatogenesis is accompanied by massive apoptosis in the testes, which 

mainly affects the pachytene spermatocytes (Jahnukainen et al. 2004). This cells death is 

considered to be important to obtain normal proportions between Sertoli cells and germ cells, 

which in turn, is essential for the differentiation and constitution of seminiferous tubules 

(Jahnukainen et al. 2004). The observed changes in the expression of key apoptosis genes (Bax, 

Bcl2) in glyphosate groups in our study could influence the balance between Sertoli cells and 

spermatogonia. 

In G5 group (Figure 3D), we observed a decrease in spermatogonia number in 35 d.o. animals. 

As the cell count of the pool of undifferentiated spermatogonia in the testes of 5 d.o. animals 

confirmed that there were no changes in the number of germ cells in the glyphosate groups, the 

decrease in spermatogonia number in 35 d.o. animals may be the result of a modification of key 
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genes involved in germ cell differentiation. In our study, we found dramatic changes in Sall4 and 

Kit mRNA expression in 5 d.o animals of glyphosate groups (Figure 4D).  Both of these factors 

are part of the retinoic acid (RA) -dependent signaling pathway involved in the differentiation of 

Aal spermatogonia into A1 which are irreversibly committed in the differentiation process 

(Busada et al. 2015; Gely-Pernot et al. 2015). This result suggests that glyphosate is able to alters 

spermatogonial differentiation and maturation and this explains, at least in part, the molecular 

mechanism responsible for the morphological defects observed in 20 d.o. males and the decrease 

in spermatozoa number observed in adults. It also shows that the RA-signaling pathway could be 

implicated in spermatogonia decline in the G50 group. Perinatal glyphosate treatment also 

increases mRNA expression of Ret, Nanos3 and Foxo1, three factors involved in spermatogonia 

stem cell maintenance and self-renewal (Jijiwa et al. 2008; Lolicato et al. 2008: 3; Goertz et al. 

2011: 1). This confirms the adverse effect of glyphosate on stem cell differentiation.

As deregulation of Sall4 and Kit expression can result in testicular cancer (Coffey et al. 2008; 

Cao et al. 2009) and as glyphosate is classified as a "probable carcinogen for humans" by the 

WHO (Guyton et al. 2015), it will be interesting to investigate a possible link between glyphosate 

or GBH exposure and testis cancer development in humans. 

Glyphosate and public health

Several studies have reported a decrease in quantity and quality of sperm and an increase of male 

reproductive problems such as hypospadias and cryptorchidism over the last 50 years (Carlsen et 

al. 1992; Auger et al. 1995; Serrano et al. 2013; Levine et al. 2017). This problem could arise due 

to a possible impact of environmental factors such as agricultural products (Serrano et al. 2013; 

Köhn and Schuppe 2016). Among them, glyphosate is the most used herbicides in human history 
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and actually is a huge question about its toxicity and its authorization for scientists as well as 

legislative authorities (Myers et al. 2016; Torretta et al. 2018). The use of glyphosate causes a 

global contamination not only in the soil, the surface and underground waters, and the 

atmosphere, but also in human and animal foods and objects of common use, such as diapers, 

medical gauze, and feminine hygiene products (Torretta et al. 2018; Zhao et al. 2018). In food 

and beverage contamination, glyphosate residues was found in cereals-based products (Liao et al. 

2018), both conventional and organic honeys (Rubio et al. 2013), in legumes (Çetin et al. 2017), 

in beer (Jansons et al. 2018) and wine and fruit juice (Zoller et al. 2018). Glyphosate was then 

detectable in human milk (Torretta et al. 2018) and urine (Conrad et al. 2017; Connolly et al. 

2018). Due to the large human population exposure to glyphosate, concerns have increased 

worldwide about its potential health effects. More studies are needed to understand whether 

glyphosate is toxic for human and if the actual ADI is safe for populations. Here, our study was 

not only to investigate the effects of glyphosate on the biology of male reproduction, but also to 

provide important scientific evidence of glyphosate toxicity to protect human health against its 

adverse effects. 

Conclusions

Our research demonstrates that both glyphosate and a GBH affect the male reproductive system 

at low dose in mice. More precisely, perinatal exposure to glyphosate is reprotoxic to young 

animals, contrary to GBH exposure which is less toxic in the short term but shows its effect in the 

long term in testosterone levels and testis weight. At the ADI dose, our study shows that 

glyphosate could have endocrine disrupting effects which could impair male reproductive system. 

All these data together may help risk assessors reevaluate the glyphosate ADI to ensure the 

security of humans and ecosystems.



23



24

Table 1

Primers used for quantitative RT-PCR

Gene 
symbol

5’ - 3’ forward primers 5’ - 3’ reverse primers

Actb 5’-CCAACTGGGACGACATGGAG-3’ 5’-ACAGCACAGCCTGGATGGC-3’

Foxo1 5’-ATCACCAAGGCCATCGAGAG-3’ 5’-GTGAAGGGACAGATTGTGGC-3’

Nanos3 5’-CGGCCTGACAAGGCAAAGAC-3’ 5’-CACCATGGTCCTCCCCACTC-3’

Ret 5’-TGGGCTCCCGAGATGTTT-3’ 5’-TTGCCTCCCAGGGTCACAAT-3’

Gfra1 5’-CAACTTCAGCCTGACATCCG-3’ 5’-CCGCTCATATGGGGAATCT-3’

Zbtb16 5’-AACGGTTCCTGGACAGTTTG-3’ 5’-CCCACAGCAGACAGAAGA-3’

Kit 5′-AGCGTCTTCCGGCACAACGG-3′ 5′-GCCAATGAGCAGCGGCGTGA-3′

Stra8 5’-
GATGCTTTTGACGTGGCAAGTTTCC-3’

5′-TCATCATCTGGGGGCTCTGGTTC-3′

Sohlh1 5′-GGGCCAATGAGGATTACAGA-3′ 5′-CACAGGAGCTGTGCAGAGAG-3′

Sohlh2 5’-TCAGTGAGCCGCTGACCTTG-3’ 5’-AAAAACGCCCTCCGAGTTCAC-3’

Dazl 5’-CAGTATGTTCAGGCATATCCTC-3’ 5’-ATTCATTGGGCAAAATATCAGC-3’

Star 5’-TCTCTGCTTGGTTCTCAACT-3’ 5’-AAACACCTTGCCCACATCTG-3’

Sall4 5’-GAGCGAACACACACGGGAGA-3’ 5’-GCGCTCTCTTTCCCTGAGCA-3’

Fshr 5’-GTCTGTGCCAGTGACAATGCC-3’ 5’-TTCCTCCGTTTCTTCCGAGATG-3’

Lhr 5’-TGCCTTTGACAACCTCCTCA-3’ 5’-TCGAAACATCTGGGAGGGTC-3’

Cyp19a1 5’-TCGGCATGCATGAGAACGGC-3’ 5’-TTCGCCCAGCCGGTCCAAAT-3’

Cyp11a1 5’-ACACGACCTCCATGACCCTGC-3’ 5’-GCAAGGTCACGGAGATGGGGT-3’

Bax 5’-TTTGCTACAGGGTTTCATCCAG-3’ 5’-CCAGTTCATCTCCAATTCGCC-3’
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Bcl2 5’-GTGTGGAGAGCGTCAACAGG-3’ 5’-CACAAAGGCATCCCAGCCTC

Ddx4 5’-ACAGGATGTCCCCGCATGGC-3’ 5’-TCCCATGACTCGTCATCAACTGGA-3’

Pou5f1 5’-AGACCACCATCTGTCGCTTC-3’ 5’-ATCCTTCTCTAGCCCAAGCTG-3’
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Figure legends

Figure 1: Perinatal exposure to glyphosate and/or GBH affects testis, epididymis and 

seminal vesicles weight, the number of spermatozoa and the secretion of testosterone in 35 

d.o. mice.  (A) Body weight and (B) testis, (C) epididymis and  (D) seminal vesicle weight in 35 

d.o. mice derived from females treated with vehicle (Ctrl; in grey), glyphosate (G0.5, G5, G50; in 

bleu) and a GBH (R0.5, R5, R50; in green). (E) Spermatozoa number in epididymis. (F) The 

amount of testosterone levels in serum decreased in G0.5 and G50 groups compared to control. 

Values are expressed as mean value ± standard error. Ctrl, G0.5, G50, R0.5, R5: n= 4 litters (with 

6 pups by litters); G5, R50: n=3 litters (with 5 and 7 pups by litters respectively). Statistical 

analyses were performed on the n number of litters using Kruskal-Wallis test followed by Mann-

Whitney post-hoc test to compare the control and treated groups, *p <0.05, is considered to be 

significantly different from the control group.

Figure 2: Perinatal exposure to glyphosate and not to a GBH affects the testis morphology 

in 20 d.o. mice. H&E staining of the histological sections in (A-H) 20 and (I-L) 35 d.o. mice 

from (A, E and I) ctrl, (B) R0.5, (C) R5, (D) R50, (F;J) G0.5, (G;K) G5 and (H;L) G50, 

experimental groups. An increase in vacuoles in the seminiferous epithelium of the testis (arrow) 

and empty tubules (star) were observed in glyphosate group (G0.5, G5 and G50) compared to 

control. The presence of vacuoles were observed in R5 group as well. In 20 d.o. mice, n=5 for 

each conditions, in 35 d.o. mice, Ctrl, R0.5, R5, R50, G0.5: n=6; G5: n=5; G50: n=7
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Figure 3: Perinatal exposure to glyphosate decreases the number of undifferentiated 

spermatogonia in adult mice. Representative images of testes sections from (A) the control (left 

panel) and (B) glyphosate (G5; right panel) animals: Sertoli cells and spermatogonia (Spg) were 

immunostained using anti-GATA1 (red) or anti-ZBTB16 (green) antibodies, respectively. The 

ZBTB16 antibody staining of Leydig cells located outside of seminiferous tubules is non-

specific. A quantitative analysis of (C) Sertoli cells and (D) spermatogonia was performed by 

manually counting the GATA1 and ZBTB16 positive cells at stage VII of the seminiferous 

epithelium. The contour of each tubule section was measured using ImageJ. The values shown 

indicate the cell counts per micrometre of tubule circumference. Values are mean ± standard 

error; n = 5 for all conditions. Statistical analyses were performed on the n number of progeny 

using Kruskal-Wallis test followed by Mann-Whitney post-hoc test to compare the control and 

treated groups. *p <0.05, ** p<0.01 are considered to be significantly different compared to the 

control group. Scale bar 150 µm. The immunostaining of the testis sections was performed as 

described in the Methods section. 

Figure 4: Perinatal exposure to glyphosate affects the expression of the genes involved in 

spermatogonia differentiation in prepubertal 5 d.o. mice. Representative images of testes 

sections from (A) the control (left panel) and (B) glyphosate (G5; right panel) animals: 

spermatogonia were immunostained using anti-DDX4 (green) antibodies. Scale bar: 40µm (C) 

Quantitative analysis of the number of spermatogonia showed no any significant differences in 5 

d.o. testis. (D) RT-QPCR analysis of RNA expression in control (Ctrl; in grey) and glyphosate 

groups (G0.5, G5, G50; in bleu). Values are mean ± standard error. Ctrl, G5, G50: n =6; G0.5: 

n=7. Statistical analyses were performed on the n number of progeny using Kruskal-Wallis test 

followed by Mann-Whitney post-hoc test to compare the control and a treated groups. *p <0.05, 
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** p<0.01 are considered to be significantly different compared to control. The copy numbers of 

each target gene were normalized to Actb and Rplp0. Data were presented as normalized values 

compared to control. 

Figure 5: Perinatal exposure to glyphosate and a GBH affects the testis weight and 

exposure to GBH but not to glyphosate decreases serum testosterone levels in 8 m.o. mice. 

(A) Testis, (B) epididymis and (C) seminal vesicle weights in 8 m.o. mice derived from females 

treated with vehicle (ctrl; in grey), glyphosate ( G0.5, G5, G50; in bleu) and a GBH (R0.5, R5, 

R50; in green). Ctrl: n=6; G0.5: n=13; G5: n=20; G50: n=10; R0.5: n=12; R5: n=6; R50: n=8 

(D). The amount of testosterone level in serum were decreased in R5 and R50 groups compared 

to control. Values are mean ± standard error; Ctrl: n=12; G0.5: n=13; G5: n=20; G50: n=10; 

R0.5: n=12; R5: n=6; R50: n=7. Statistical analyses were performed on the n number of progeny 

using Kruskal-Wallis test followed by Mann-Whitney post-hoc test to compare the control group 

with a treated group. *p<0.05, **p<0.01 are considered to be significantly different compared to 

control. (E) H&E staining of the histological sections in 8 m.o. mice from ctrl and R50 

experimental groups. Scale bar: 100µm.

Suppl Figure 1: Perinatal exposure to glyphosate and a GBH does not affect body weight in 

mice.  Body weight of (A) 5, (B) 20 d.o. an 35 d.o. mice derived from control (Ctrl in grey), 

glyphosate (G0.5, G5, G50 in blue) and a GBH (R0.5, R5, R50 in green)-treated pregnant female 

mice. A small increase in body weight was observed in G0.5 and R5 treated 20 d.o mice when 

compared to the control. Values are mean ± standard error. In 5 d.o. mice, Ctrl, G5, G50, R0.5, 

R5, R50: n =6; G0.5: n=7. In 20 d.o. mice, n=5 for each conditions. Statistical analyses were 

performed on the n number of progeny using Kruskal-Wallis test followed by Mann-Whitney 
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post-hoc test to compare the control group with a treated group. *p <0.05 is considered to be a 

significantly different compared to control.

Suppl Figure 2: Perinatal exposure to glyphosate does not affect the expression of genes 

involved in endocrine-signaling pathway in 5 d.o. prepubertal mice. RT-QPCR analysis of 

RNA expression in control (Ctrl; in grey) and glyphosate groups (G0.5, G5, G50; in blue). Values are 

mean ± standard error. Ctrl, G5, G50: n =6; G0.5: n=7. Statistical analyses were performed on the 

n number of progeny using Kruskal-Wallis test followed by Mann-Whitney post-hoc test to 

compare the control group with a treated group. ** p<0.01 significant difference from the control. 

The copy numbers of each target gene were normalised to Rplp0 and Actb and data were presented 

as normalised values compared to control.
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Figure 1: Perinatal exposure to glyphosate and/or GBH affects testis, epididymis and seminal vesicles 
weight, the number of spermatozoa and the secretion of testosterone in 35 d.o. mice.  (A) Body weight and 
(B) testis, (C) epididymis and  (D) seminal vesicle weight in 35 d.o. mice derived from females treated with 

vehicle (Ctrl; in grey), glyphosate (G0.5, G5, G50; in bleu) and a GBH (R0.5, R5, R50; in green). (E) 
Spermatozoa number in epididymis. (F) The amount of testosterone levels in serum decreased in G0.5 and 
G50 groups compared to control. Values are expressed as mean value ± standard error. Ctrl, G0.5, G50, 

R0.5, R5: n= 4 litters (with 6 pups by litters); G5, R50: n=3 litters (with 5 and 7 pups by litters 
respectively). Statistical analyses were performed on the n number of litters using Kruskal-Wallis test 

followed by Mann-Whitney post-hoc test to compare the control and treated groups, *p <0.05, is considered 
to be significantly different from the control group. 
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Figure 2: Perinatal exposure to glyphosate and not to a GBH affects the testis morphology in 20 d.o. mice. 
H&E staining of the histological sections in (A-H) 20 and (I-L) 35 d.o. mice from (A, E and I) ctrl, (B) R0.5, 
(C) R5, (D) R50, (F;J) G0.5, (G;K) G5 and (H;L) G50, experimental groups. An increase in vacuoles in the 
seminiferous epithelium of the testis (arrow) and empty tubules (star) were observed in glyphosate group 
(G0.5, G5 and G50) compared to control. The presence of vacuoles were observed in R5 group as well. In 

20 d.o. mice, n=5 for each conditions, in 35 d.o. mice, Ctrl, R0.5, R5, R50, G0.5: n=6; G5: n=5; G50: n=7. 
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Figure 3: Perinatal exposure to glyphosate decreases the number of undifferentiated spermatogonia in adult 
mice. Representative images of testes sections from (A) the control (left panel) and (B) glyphosate (G5; 

right panel) animals: Sertoli cells and spermatogonia (Spg) were immunostained using anti-GATA1 (red) or 
anti-ZBTB16 (green) antibodies, respectively. The ZBTB16 antibody staining of Leydig cells located outside 
of seminiferous tubules is non-specific. A quantitative analysis of (C) Sertoli cells and (D) spermatogonia 

was performed by manually counting the GATA1 and ZBTB16 positive cells at stage VII of the seminiferous 
epithelium. The contour of each tubule section was measured using ImageJ. The values shown indicate the 

cell counts per micrometre of tubule circumference. Values are mean ± standard error; n = 5 for all 
conditions. Statistical analyses were performed using Kruskal-Wallis test followed by Mann-Whitney post-hoc 

test to compare the control and treated groups. *p <0.05, ** p<0.01 are considered to be significantly 
different compared to the control group. Scale bar 150 µm. The immunostaining of the testis sections was 

performed as described in the Methods section. 
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Figure 4: Perinatal exposure to glyphosate affects the expression of the genes involved in spermatogonia 
differentiation in prepubertal 5 d.o. mice. Representative images of testes sections from (A) the control (left 
panel) and (B) glyphosate (G5; right panel) animals: spermatogonia were immunostained using anti-DDX4 
(green) antibodies. Scale bar: 40µm (C) Quantitative analysis of the number of spermatogonia showed no 

any significant differences in 5 d.o. testis. (D) RT-QPCR analysis of RNA expression in control (Ctrl; in grey) 
and glyphosate groups (G0.5, G5, G50; in bleu). Values are mean ± standard error. Ctrl, G5, G50: n =6; 
G0.5: n=7. Statistical analyses were performed using Kruskal-Wallis test followed by Mann-Whitney post-

hoc test to compare the control and a treated groups. *p <0.05, ** p<0.01 are considered to be 
significantly different compared to control. The copy numbers of each target gene were normalized to Actb 

and Rplp0. Data were presented as normalized values compared to control. 
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Figure 5: Perinatal exposure to glyphosate and a GBH affects the testis weight and exposure to GBH but not 
to glyphosate decreases serum testosterone levels in 8 m.o. mice. (A) Testis, (B) epididymis and (C) 

seminal vesicle weights in 8 m.o. mice derived from females treated with vehicle (ctrl; in grey), glyphosate ( 
G0.5, G5, G50; in bleu) and a GBH (R0.5, R5, R50; in green). Ctrl: n=6; G0.5: n=13; G5: n=20; G50: 

n=10; R0.5: n=12; R5: n=6; R50: n=8 (D). The amount of testosterone level in serum were decreased in 
R5 and R50 groups compared to control. Values are mean ± standard error; Ctrl: n=12; G0.5: n=13; G5: 
n=20; G50: n=10; R0.5: n=12; R5: n=6; R50: n=7. Statistical analyses were performed using Kruskal-
Wallis test followed by Mann-Whitney post-hoc test to compare the control group with a treated group. 

*p<0.05, **p<0.01 are considered to be significantly different compared to control. (E) H&E staining of the 
histological sections in 8 m.o. mice from ctrl and R50 experimental groups. Scale bar: 100µm. 
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