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Abstract 

RATIONALE 
Chlorine reacts in swimming pools with several compounds released by bathers to form disinfection by-products 

(DBPs). Epidemiological studies have shown adverse effects on health associated with the exposure to DBPs 

present in indoor swimming pool atmosphere. DBPs analyses require the use of multiple techniques depending 

on the targeted molecules. The measurement process itself is challenging due to the low stability of several 

compounds and the lack of specificity of certain methods. The Membrane Introduction Mass Spectrometry 

(MIMS) technique provides a solution to these problems by specific and sensitive in-situ measurement of DBPs. 

This study investigates the effect of analytical conditions on DBPs quantification and assesses the relevance of 

using MIMS for reliable analysis under typical swimming pool operating conditions. 

METHODS 
MIMS is based on the simultaneous permeation of the selected compounds from the air or water samples through 

a polydimethylsiloxane (PDMS) membrane. DBPs are identified and quantified with a quadrupole analyzer after 

electron ionization. Limits of quantification (LOQ) of 5 DBPs are determined to assess the sensitivity of the 

system. Moreover, signal changes are monitored while varying physicochemical parameters such as temperature, 

pH and ionic strength. 

RESULTS 
The mass spectra obtained for individual molecules show that the simultaneous measurement of trihalomethanes 

(THMs) and chloramines requires the monitoring of several ions and mathematical corrections of the signal. The 

pH and ionic strength of the solution does not significantly influence the determination of THMs. On the contrary, 

the temperature and hydraulics at the membrane interface must be controlled for accurate determination of DBPs. 

CONCLUSION 
Results confirm that MIMS is a promising technology for the simultaneous quantification of volatile DBPs in both 

water and air of swimming pools. However operating conditions such as membrane temperature should be handled 

with great care in order to avoid interferences. 

Keywords: Disinfection by-products, MIMS, Indoor swimming pool, Chloramines, 

Trihalomethanes.  
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INTRODUCTION 

According to a 2010 study of the French Sports Ministry1 swimming is one of the three most 

recreational sports practiced by French people with walking and cycling. Susceptible 

individuals like babies or seniors are particularly encouraged to swim2,3. Studies even support 

the practice of swimming for asthmatic population with a weakened respiratory system4–6. It is 

therefore crucial to ensure that swimming can be practiced with the lowest risk to health. The 

main risk comes from microbiological infections due to the warm and humid atmosphere of 

pool halls, which is suitable for bacterial development. Chlorine disinfection is the most 

commonly used treatment to ensure a good microbiological quality. However, hypochlorous 

acid reacts with organic material and nitrogen compounds to form disinfection by-products 

(DBPs) such as halogenated by-products and chloramines. The presence of the DBPs and 

chloramines precursors is due to the excretion of sweat, urine, saliva, nasal secretions or 

swimmer cosmetics in pool water 7. Urea and ammonia are the main components in urine and 

sweat and they could be responsible for the majority of the DBPs formed in swimming 

pools. Moreover, some amino acids as well as creatinine and citric acid lead to the formation 

of DBPs. Numerous studies have shown that the presence of these DBPs in the pool 

atmospheres has a negative impact on health8–11. Trichloramine would cause eyes irritation, 

predisposition to respiratory allergies and development of asthma12. Health disorders related to 

the exposure to chlorine derivatives are also recognized as occupational diseases for French 

pool workers since 200313. The chlorinated and brominated trihalomethanes are all classified 

as carcinogenic or potentially carcinogenic substances. Therefore, a better reporting of DBPs 

concentrations in swimming pool environments is of public health concern. Inhalation is an 

important way of exposure to volatile DBPs such as trichloramine and chloroform14. The 

volatile fraction of these DBPs is indeed transferred to the ambient air of the pool hall, while 

the other fraction remains in the bathing water. A better understanding of water/gas transfer 

mechanisms is crucial to control the DBPs emissions. It requires the development of an 

analytical method allowing the simultaneous quantification of chlorinated compounds in both 

phases, which is not possible with the existing techniques. This method would also enable the 

evaluation of the impact of the remediation treatments (stripping, filters backwash, UV 

dechlorination/dechloramination, etc.) on the quality of pool and spa environments15,16.  

Most titrimetric and colorimetric methods are not specific since organic chloramines interfere 

with the measurements of inorganic chloramines17. Other methods including chromatographic 

techniques appear reliable and reproducible but have numerous disadvantages especially the 

impossibility of on-line measurement and the necessity of sample pretreatment17. The principle 

of Membrane Introduction Mass Spectrometry (MIMS) is based on the extraction of 

compounds from the aqueous or gaseous sample using a thin membrane, typically made of 

polydimethylsiloxane (PDMS), according to the principle of pervaporation. The target 

compounds are then detected using mass spectrometry. This tool was recently used to evaluate 

the effectiveness of water treatment processes in a pool16. MIMS has the potential to make real-

time measurements of many DBPs such as trihalomethanes (THMs) and chloramines17–19. 

The main advantages of the MIMS technology are the absence of sample processing, the 

possibility to carry out real-time in-situ measurements over long periods and the ability to 

measure targeted compounds in both water and air 20,21. Nevertheless, this innovative method 

is still not widely used and operating conditions must be optimized. The objective of this bench 

scale study is to assess the potential of the MIMS method and to determine the optimal 

conditions for DBPs measurements in indoor pool water and air.  Particular attention is paid to 
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the influence of the water physicochemical characteristics (pH, ionic strength and temperature) 

and to the stirring conditions.  

MATERIAL AND METHOD 

All experiments have been performed at lab scale. Procedures adopted for the preparation of 

solutions and gaseous streams are described in the following sections. All experiments have 

been performed at 20 °C, unless otherwise noted.  

Preparation of solutions 

The pH and temperature of solutions were measured with a Multi 3430 multimeter (WTW) 

equipped with a pH-electrode SenTix® (WTW). Solutions of free chlorine (hypochlorous acid 

/ hypochlorite ion) were obtained by diluting commercial sodium hypochlorite (Organic 

Accros, Sodium Hypochlorite 13%) in ultrapure water (UPW, 18.2 MΩ .cm, Elga PureLab 

Classic UV). The free chlorine concentration was titrated by colorimetric method at 525 nm 

after reaction with diethyl-para-phenylenediamine (DPD)22. Chloramines solutions were 

prepared daily and titrated by the DPD method. Then these stock solutions were used to 

produce chloramines solutions at low concentrations. Monochloramine solutions were 

prepared through the slowly addition of chlorine in an ammonium chloride (Sigma Aldrich, 

ACS Reagent> 99.5%) solution with a Cl/N molar ratio equal to 0.823. The two solutions were 

adjusted beforehand to pH 8.5 using sodium hydroxide. Dichloramine solutions were prepared 

by acidification, at pH = 4 with sulfuric acid, of a monochloramine solution23. Trichloramine 

solutions were obtained by addition of acidified (pH = 4 with H2SO4) ammonium chloride 

solution in a chlorine solution (pH = 4)24. THMs solutions were prepared by dilution of pure 

commercial solutions (Sigma Aldrich) in methanol (stock solution) and UPW (working 

solution). 

Generation of air streams enriched with trichloramine and chloroform 

An air stream enriched with calibrated concentrations of trichloramine was generated using the 

system previously described by Nguyen et al.25. Trichloramine was produced by pumping 

ammonium sulfate (2.10-4 M) and sodium hypochlorite (4.10-3 M) at the same flow (1.2 

mL.min-1) into a three-neck stirred flask. The pH was adjusted to 7.2 with a 50 mM phosphate 

buffer. The trichloramine solution was pumped at 2.4 mL.min-1 to the top of a stripping column 

(0.7 m length x 5 cm internal diameter) filled with glass beads. The air stream generated by an 

air compressor was injected at the bottom of the column at an 80 L.h-1 flow rate. The output air 

stream was bubbled in two consecutive saturated solutions of sulfamic acid to remove traces 

of chlorine, monochloramine and dichloramine. The flow was then divided into two streams. 

One stream was used to regularly check the trichloramine concentration generated by the 

system, and is called “reference stream”. The second stream was diluted with air before 

reaching the MIMS membrane. The trichloramine concentration was then checked again after 

the air stream had gone along the MIMS membrane. 

Trichloramine concentrations were measured spectrophotometrically after reaction with 

potassium iodide. The air flow was bubbled into 200 mL of a potassium iodide solution (0.2 

M) whose pH was adjusted to 6 with a phosphate buffer. The triiodide ions formed were dosed

with an Uvikon XS spectrophotometer (Secoman) at 353 nm. At least five measurements were 

done spectrophotometrically to ensure the trichloramine quantification in the air stream. The 

trichloramine concentrations generated varied from 0.1 mg NCl3.m
-3 to 1.5 mg NCl3.m

-3 
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Calibrated mixtures of chloroform and air were obtained by injecting a concentrated 

chloroform mixture (1.9 mg.L-1) stored in a 10 mL gas-tight syringe in the air flow via a syringe 

pump (Kd Scientific). The final concentration was adjusted via the syringe pump speed. 2.5 µL 

of pure liquid chloroform (Sigma Aldrich, 99+%) were evaporated in a hermetically closed 2 

L glass flask equipped with a magnetic stirrer and glass beads to obtain the concentrated 

mixture. The syringe was filled via a septum cap. 

Membrane Inlet Mass Spectrometer (MIMS) 

The MIMS analyzer (HPR40, Hiden Analytical Ltd.) (Figure 1.a) consisted of two flow-over 

PDMS membranes, a simple quadrupole, a Faraday detector and a secondary electron 

multiplier (SEM). The system used was composed of two identical membranes/transfer lines. 

These were continuously under vacuum while a series of pneumatics valves allowed the “direct 

to vacuum pump” or “direct to MS source” transfer of the analytes. For water sampling, 

membranes were immersed in a 100 mL stirred and hermetically closed flask containing 

solutions (Figure 1.b). For air sampling, membranes were placed in glass tubes through which 

the air flowed. Compounds diffused through the membrane26 (Figure 1.c) to the transfer line 

and the electron ionization source (70 eV). The membranes were always at equilibrium in their 

respective media and only few seconds between valve switching and mass spectrometer (MS) 

measurement were needed to obtain a stable signal. Signals of m/z 53, 84, 85, 86, 88, and 119 

ions were used to analyze the chloramines and signals of m/z 83, 129, 173 and 208 ions to 

analyze the THM; MASsoft 7 software was used to process the data. Chloroform (TCM), 

bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform (TBM) 

concentrations were calculated using the following equations: 

[𝑇𝐵𝑀] =  𝑎1 𝐼173 (Eq.1) 

[𝐷𝐵𝐶𝑀] =  𝑎2 𝐼208 (Eq.2) 

[𝐵𝐷𝐶𝑀] =  𝑎3 𝐼𝐵𝐷𝐶𝑀
129  𝑤𝑖𝑡ℎ 𝐼𝐵𝐷𝐶𝑀

129 =  𝐼129 − (𝐼208  × (
129

208
)

𝐷𝐵𝐶𝑀
) (Eq.3) 

[𝑇𝐶𝑀] =  𝑎4  × 𝐼𝑇𝐶𝑀
83  𝑤𝑖𝑡ℎ 𝐼𝑇𝐶𝑀

83 =  𝐼83 − (𝐼𝐵𝐷𝐶𝑀
129  × (

83

129
)

𝐵𝐷𝐶𝑀
) (Eq.4) 

Where I represents the signal intensity and α the response factor. 

RESULTS 

Quantification of specific DBPs in water and air 

In this section the MIMS performances regarding DBPs measurements in water and air are 

quantified. Its sensitivity and specificity for the monitoring of two families of molecules 

(trihalomethanes and inorganic chloramines) are evaluated. 

Trihalomethanes Analysis (THMs) 

Trihalomethanes in water 

The mass spectra obtained for several targeted DBPs are presented in Figure 2. Although the 

MIMS source remained at ambient temperature, spectra obtained for THMs are very close to 

those referred for these compounds27 with the same ionization energy. Bromoform (TBM) can 

be specifically analyzed with the m/z 173 ion using a constant response factor 1 (see Eq.1). 

The m/z 129 ion is obtained by the fragmentation of dibromochloromethane (DBCM) and 
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bromodichloromethane (BDCM). Therefore, the m/z 208 ion is necessary for the determination 

of DBCM concentration despite a lower response factor 2 than the ion m/z 129. (see Eq.2). 

The m/z 83 ion is also obtained by the fragmentation of two compounds: chloroform (TCM) 

and BDCM. It is therefore necessary to calculate the ion ratio and apply a mathematical 

correction to simultaneously quantify these two THMs. The fragmentation of DBCM produces 

the m/z 129 and m/z 208 ions with a stable ratio (
129

208
)

𝐷𝐵𝐶𝑀
 of 25 (σ = 1.97, n = 46). Similarly 

in the case of BDCM, the ratio between the m/z 83 and the m/z 129 ions,(
83

129
)

𝐵𝐷𝐶𝑀
, is equal to 

14 (σ = 0.65, n = 96). It is possible to calculate the intensity corresponding to each THM for 

the m/z 129 and m/z 83 ions using these two ratios. Single compound pure solutions of TCM 

and BDCM were analyzed to determine the response factors 4 and 3 for the m/z 83 and 

m/z 129 ions, respectively. Consequently, BDCM and TCM concentrations in complex 

solutions can be calculated with Eq.3 and Eq.4, respectively (see Material and method section). 

The limits of quantification (LOQ) were calculated for THMs according to the NF-T-90-210 

method and are slightly higher than values usually reported for brominated THMs during 

measurement campaigns in French indoor pools28. Indeed LOQ amounts to 5.1 μg.L-1 for 

TBM, 5.8 μg.L-1 for DBCM and 3.3 μg.L-1 and 3.8 µg.L-1 for TCM and DBCM respectively. It 

is noteworthy that the LOQ calculation result depends on the number and on the position of the 

points on the calibration curve. Hence, analytical performances could be improved by 

increasing the number of points of the calibration curve, specifically for low concentrations. 

Chloroform in air 

Chloroform is the predominant THM in swimming pool air owing to its high volatility. 

Brominated THMs are usually not monitored in air since their concentrations are negligible 

compared to chloroform concentration29,30. Hence, the MIMS sensitivity in air was evaluated 

only for chloroform. The limit of quantification calculated according to the NF-T-90-210 

method reaches 30 µg.m-3, which is low enough to quantify the chloroform in most of the 

French indoor swimming pools28,31,32. However, the calculated LOQ could be lowered by 

adding calibration points below 20 µg.m-3. 

Chloramines analysis 

Chloramines in water 

Mass spectra of inorganic chloramines show that mono-, di- and trichloramine can be 

determined by the monitoring of the m/z 53, 84 and 85 ions. Figure 3 shows the signal 

evolution of these three ions function of chloramines concentrations. It appears that 

trichloramine can be easily determined in water by using the m/z 84 ion. This ion is specific to 

trichloramine because its signal intensity does not increase with mono and dichloramine 

concentrations. The slight increase observed at high dichloramine concentrations does not 

affect trichloramine determination in this work since such concentrations are unlikely to occur 

in swimming pools18,19,33.  

There are no specific ions for monochloramine and dichloramine. Hence, a mathematical 

correction is necessary to quantify these two compounds, as previously described for THMs. 

This lack of specificity could be fixed by decreasing the ionization energy in order to form 

different pseudomolecular ions. 
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An example of signal transition (m/z 84 ion) is presented in Figure 3.c. for trichloramine. 

These data show that the equilibrium state is obtained within 20 minutes when the membrane 

is transferred from pure water to a 0.6 mg Cl2.L
-1 trichloramine solution. However, the time 

needed to reach equilibrium decreases with further spikings. 

Trichloramine in air 

The mass spectrum of trichloramine is presented in Figure 2.d. A similar spectrum has been 

realized by Shang and Blatchley17 on a different MIMS system. In our case however, impurities 

contained in the air stream produce highly abundant ions at m/z 52 and m/z 54. These 

undesirable signals are easily suppressed by subtracting the background mass spectrum. 

A calibration curve was realized to evaluate the MIMS sensitivity (Figure 4). The m/z 84, 86, 

88 and 119 ions were monitored. The m/z 88 ion seems to be the best ion to measure 

trichloramine concentration in air. Despite its low signal intensity, this ion produces better 

sensitivity results than the ions m/z 84 and m/z 86. Its intercept is indeed significantly lower, 

probably due to reduced interferences in the air. Note that the curve is not linear for 

concentrations lower than 1 mg NCl3.m
-3. This LOQ remains slightly high for trichloramine 

monitoring in French swimming pool atmospheres where concentrations usually reported range 

from 0.1 mg NCl3.m
-3 to 1 mg NCl3.m

-3 28,34.  

Figure 4.b. shows the signal transition of the m/z 88 ion. The equilibrium is reached 10 min 

after injection, which is significantly faster than in the aqueous medium. The vapor permeation 

process occurring in the gaseous phase is indeed faster than the pervaporation process which 

applies in the aqueous phase, because trichloramine is already evaporated in the first case. 

The complexity of trichloramine chemistry motivates the use of chemically stable compounds 

to study the influence of the analytical conditions on the MIMS signal. Hence in the rest of this 

paper, the study focuses on the effect of stirring, pH, temperature, ionic strength and air velocity 

variations using THMs standard solutions.  

Effect of analytical conditions 

Agitation rate 

The stirring speed has a significant impact on the observed signal. Figure 5 shows the effect 

of rotation speed on the signal of the m/z 83 and 129 ions for a 10 μg.L-1 BDCM standard 

solution in UPW. For low stirring rates (Rate 2 – Rate 3), an increase in the steady state signal 

intensity is observed. Moreover, the time needed to reach equilibrium decreases with the stirrer 

rotation speed. At higher stirring rates (Rate > 4), no signal variation is observed while 

increasing the velocity gradient. These observations are explained by a liquid boundary layer 

existing at the membrane, such that the concentration at the water-membrane interface is lower 

than in the bulk solution. This boundary layer limits the analyte diffusive flux through the 

membrane and reduces the mass spectrometer signal. Under high velocity gradient in the 

solution, this phenomenon becomes negligible since the concentration at the membrane-water 

interface tends to be equal to the concentration in the bulk aqueous phase. Although the 

experimental approach used in this study does not allow to fully characterize the hydraulic 

conditions at the membrane-sample interface, it highlights the importance of hydrodynamic 

conditions and underlines the necessity of using sufficient agitation to perform reliable analysis 

by MIMS technique.  Similar results were obtained for chloramines, showing that MIMS is 

fast enough for real-time monitoring of chloramines and THMs concentrations in swimming 

pool water. The liquid flow rate influence has also been reported in other studies: Yang and 

Shang35 observed a maximum of signal intensity at elevated flow rates. In addition, they 
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reported a decrease in the response time while increasing the sample flow rate. These 

observations support the strong influence of the boundary layer highlighted in this study. On 

the other hand,  Shang and Blatchley17 previously reported a positive correlation between liquid 

flow rate and response time, although they were using the same equipment. 

pH 

The pH influence was studied for the range 6.2-9.5, covering the full scope of conditions 

commonly encountered in pool water (the pH range authorized for French swimming pool 

water is 6.9-7.736). To compensate for possible variations due to analytical system instability, 

the two membranes of MIMS were immersed in a reference solution (DBCM 10 µg.L-1, pH = 

6.2) and in a sample (DBCM 10 µg.L-1; pH ranging from 6.2 to 9.5 by NaOH addition). For a 

given volume of NaOH added in the sample solution, the same amount of UPW was added in 

the reference solution in order to compensate for the dilution effect or loss of THM by 

evaporation due to the flask opening. MS valves switch every 10 seconds between the reference 

and sample inlets. Figure 6 shows the analysis of non-averaged raw signal corresponding to 

the intensity ratio between the sample inlet measurement and the reference inlet measurement. 

Note that the signal noise was about 10 % when using this relative quantification method.  

Moreover, no significant signal deviation was observed between the reference solution and the 

sample for the pH range 6.2-9.5. Yang and Shang35 also reported stable MIMS signals for the 

analysis of CNCl and CNBr on the pH range 6-8. However, the MIMS signal variations with 

pH remains to be tested for other Cl-DBPs before analysis. 

Ionic strength 

In some cases swimming pool water is chlorinated using in situ chlorine formation from sodium 

chloride with electrolytic cell. The salt concentrations should be kept between 4 and 6 g.L-1 to 

ensure optimal disinfection, according to manufacturers’ recommendations. Fundamental 

equations governing the diffusion process are not based on concentration in the aqueous phase 

but on the molar fraction of the analyte in the aqueous solution. Consequently, the analytes 

diffusion through the membrane could be altered for high ionic strength solutions in 

comparison with UPW (zero ionic strength solution). Figure 7 shows the effect of the ionic 

strength on the signals measured for the m/z 83 and 129 ions of a BDCM solution. The two 

membranes were initially placed in two identical BDCM solutions at 10 µg.L-1. Once 

equilibrium was reached, NaCl was added in the sample solution to increase the sample salinity 

up to 10 g.L-1. Figure 7 demonstrates that salinity does not play a significant role in MIMS 

analysis. However, the maximum salt concentration tested here does not ensure the absence of 

interference in the particular case of seawater swimming pools, where salt concentration can 

reach 20 g.L-1 37. At higher NaCl concentrations (5,8 – 58 g.L-1), Miranda et al.38 reported ionic 

strength dependence of MIMS signal for the quantification of four gases. Further experiments 

at high ionic strength would be necessary to determine if measurements could be performed by 

MIMS in seawater swimming pools. 

Water temperature 

The temperature influence was tested by measuring chloroform and bromoform solutions at 

different temperatures (15, 25 and 30°C) and concentrations (6.5 and 13 µg.L-1). Signal intensities 

are temperature-dependent for all the monitored ions. Increasing temperature (15 to 30°C) led to an 

increase in the MS signal (Figure 8). This can be easily explained by the temperature-dependence 

of the diffusion coefficient. Therefore, a specific calibration of the instrument at the swimming-
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pool temperature is required before analysis. Alternative approach could consist in using 

thermostated sampling lines in order to avoid any bias due to temperature fluctuations during 

sampling campaigns. The temperature effect on dichloramine17 and cyanogen chloride35 analysis 

has been reported in the literature. In all cases the optimum temperature was found to be 70°C and 

the response time decreased with an increase in the membrane temperature.  

Air flow 

The air speed at the membrane interface influences the analyte diffusion to the membrane and 

could affect the signal intensity. In this paragraph, the importance of this effect for chloroform 

quantification is assessed. The chloroform calibration curve was realized at three different air 

flows to evaluate the air speed influence on the m/z 83 ion signal intensity (Figure 9). No 

significant difference was observed at 0.1 m3.h-1 and 0.5 m3.h-1. This is mainly due to the low 

air viscosity. Reynolds numbers are estimated at 370 and 1900 for air flows of 0.3 m3.h-1 and 

0.5 m3.h-1 respectively, which demonstrates that the flow is laminar along the membrane. Under 

these conditions, the mass transfer is not significant compared to the diffusion. As the 

repeatability is good, it can be considered that precise control of the air flow is not a critical 

parameter. 

CONCLUSION 

This work shows that for adequate operating conditions the MIMS method is a robust tool for 

analyzing DBPs in swimming pools and make diagnostics during facilities operation. However, 

the measurement of THMs and chloramines requires the monitoring of several ions and 

mathematical corrections of the signal. THMs are detected using m/z 83, 129, 173 and 208 ions 

and chloramines with m/z 53, 84, 85 and 88 ions. The calculated limits of quantification 

demonstrate that the MIMS is sensitive enough to accurately monitor THMs in swimming pool 

water and chloroform in swimming pool air. However, further developments are needed to 

lower the limit of quantification for trichloramine, before using the MIMS for trichloramine 

measurements in swimming pool halls. Reducing the membrane thickness and increasing the 

contact surface may be a solution to increase the signal intensity and will be envisaged as future 

work. 

The pH and ionic strength of the solution do not significantly influence the determination of 

THMs. On the other hand, the temperature and hydraulics at the membrane interface must be 

controlled in order to obtain an accurate determination of DBPs in water. The air speed did not 

affect the signal intensity for DBPs quantification in pool atmospheres.  

Future experimental setup designs will have to consider these influences in order to provide 

accurate and reliable results.  
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Figure 1: a / MIMS HPR-40 DSA. b / Illustration of the valve system. c / Pervaporation principle at the 
MIMS membranes26
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Figure 2: Mass spectra obtained for several targeted DBPs (70 eV) a) Chloroform in water (100 µg/L) 
b) Bromodichlorometthane in water (100 µg/L) c) Dibromochloromethane in water (200 µg/L) d) and

e) Trichloramine in air (2 mg/m3)
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Figure 3: MIMS signal of m/z 53, 84 and 85 ions function of the monochloramine (a), dichloramine 
(b) and trichloramine (c) concentration. 
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Figure 4: MIMS signal of m/z 84, 86, 88 and 119 ions function of the trichloramine concentration in 
the air stream 
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Figure 5: Stirring rate influence on BDCM ion signal intensity at m/z 83 (a/) and m/z 129 (b/). 
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Figure 6: Effect of pH on relative signal intensities of the m/z 83 (a/) and of the m/z 129 (b/) ions for 

BDCM. 
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Figure 7: Effect of salt on relative ion signals intensities of the m/z 83 (a/) and m/z 129 (b/) for BDCM 
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Figure 8: Temperature influence on chloroform signal intensity(a/) and bromoform signal intensity 

(b/) 
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Figure 9: MIMS calibration curve for chloroform (m/z 83 ion) at three different air velocities 


