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Entire-Domain Basis Functions
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Abstract—A family of orthogonal, and entire-domain basis
functions (named Fourier-Bessel) is proposed for the analysis
of circular modulated metasurface (MTS) antennas. In the
structures at hand, the MTS is accounted for in the Electric
Field Integral Equation (EFIE) as a sheet transition impedance
boundary condition (IBC) on top of a grounded dielectric
slab. The closed form Hankel transform of the Fourier-Bessel
Basis Functions (FBBF) allows one to use a spectral domain
formulation in the Method of Moments (MoM) solution of the
EFIE. Moreover, these basis functions are fully orthogonal, which
implies that they are able to represent the global evolution of the
current distribution in a compact form. FBBFs also present a
better filtering capability of their spectrum compared to other
well known orthogonal families such as the Zernike functions.
The obtained MoM matrix is sparse and compact, it is thus very
well conditioned and can be efficiently computed and inverted.
Numerical results based on the proposed decomposition are
presented and compared with those based on the use of Gaussian
Ring Basis Functions (GRBF) and with full-wave analysis of MTS
antennas implemented with small printed elements. A very good
agreement is observed.

Index Terms—Method of Moments, basis functions, spectral
domain methods, metasurfaces (MTSs), leaky-wave (LW) anten-
nas, impedance boundary condition (IBC).

I. INTRODUCTION

IN recent years, a lot of interest has been attracted by artifi-
cial surfaces able to provide electromagnetic properties that

one cannot find in nature [1], [2]. Such structures, commonly
referred to as metasurfaces (MTSs), can be employed in a
wide range of frequencies, from microwaves [3] to optics [4].
Although MTSs may also be used to tailor the transmission
of space waves [4], [5], they have found a vast number of
applications in the control of surface-waves (SWs) wavefronts
[6], [7] and the design of aperture antennas [8]-[14]. At
microwave frequencies, metasurfaces may be implemented as
dense textures of sub-wavelength elements (typically λ/10,
with λ being the free-space wavelength) printed on a grounded
dielectric slab [10]. The resulting number of printed patches is
generally around 104 for devices with a 15λ diameter. Indeed,
MTS antennas [11] generally consist of circular apertures,
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where a SW launcher [15] is used to excite the structure. This
paper will focus on circular apertures, bearing in mind that a
proper stretching of the proposed basis functions may enable
the treatment of elliptical ones [12], [16], [17].

The numerical analysis of MTS devices is very challenging,
due to the large number of electrically small printed elements.
In fact, this feature leads to a very dense mesh (the example
in [11, Sec. III.D] required about 106 basis functions) and,
hence, a prohibitive memory and simulation time for the
resulting system of equations. Besides, the presence of fine
mesh details can yield an ill-conditioned system of equations.
Therefore, one has to combine iterative solvers with efficient
preconditionners [18], use analytical [19] or characteristics
basis functions [20], [21] to reduce the number of unknowns,
or apply a combination of both [22]. However, analytical and
characteristic basis functions may depend on the shape and the
orientation of the patches and the aforementioned fast methods
also become inefficient for apertures with diameters larger than
20 λ.

Given the electrically small size of the patches, the fields
in the cell allotted to each patch can be averaged, and the
actual MTS structure can thus be represented by an equivalent
impedance boundary condition (IBC) [1], [2]. The conditions
under which the IBC model is applicable have been discussed
in [23]. The synthesis problem then consists of finding the
appropriate IBC which will perturb the original SW in order
to generate the desired radiation or wave-guiding effect. In the
case of antenna engineering, the interest lies in transforming
the SW into a LW. Several methods have been proposed in
the literature, ranging from holographic techniques [13] to the
recent theory of Flat Optics (FO) [24], [14]. This paper does
not address the design problem. However, a direct simulation
of radiation by the modulated IBC is sufficient to provide an
excellent idea about the performance of a given design [11],
[25] and by considering the IBC problem, one can optimize
a few parameters of the modulation before implementing
it. Once the design has been completed, the MTS can be
implemented by gradually changing the shape, dimensions
and orientation of the sub-wavelength patches, under a local
periodicity assumption [10]-[12].

MTS structures can be represented as IBCs in two different
ways. In both cases, the obtained boundary condition is
valid for a given incidence. The first possibility consists of
describing the whole metasurface (MTS) as a unique entity,
assuming its impenetrability. One can then represent the MTS
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in the form of an opaque or impenetrable IBC [26]-[27] which
relates the average tangential electric field to the average
tangential magnetic field at the upper interface (see Fig. 1(a)
from [25]). The second possibility is to treat separately the

Fig. 1: From [25], equivalent transmission line circuits for the (a) impenetrable
(opaque) IBC and (b) sheet transition IBC for grounded dielectric slab MTS.

cladding and the substrate [2], [26], [29]. The resulting sheet
transition IBC now relates the average tangential electric field
on the MTS sheet to the difference of the tangential magnetic
fields on either side of the MTS cladding, which stands for
the current flowing on the sheet (see Fig. 1(b) from [25]). The
sheet transition IBC can be obtained from the opaque one,
after removing the contribution of the substrate, as described
in [30]. The stability issue of both representations has been
discussed in [31]. Although both approaches present instabil-
ities, the second formulation is more stable and accurate for
practical values of the IBC. Moreover, in practical optimization
problems, the substrate does not change and the optimization
parameters are only related to the sheet impedance and to the
excitation. For the aforementioned reasons, the sheet transition
IBC formulation is selected in this paper.

The IBCs generally consist of smooth locally periodic mod-
ulations, with period of the order of the free-space wavelength.
It is thus reasonable to expect that the currents flowing on the
MTS sheet be also smooth and with variation at the wavelength
scale. It should therefore be possible (by using entire-domain
basis functions) to represent the current distribution with a
number of basis functions drastically smaller than the one
needed to mesh the patches with sub-entire domain basis
functions. Such full-domain basis functions provide a good
representation of the global field propagation along the sur-
face, while local effects such as interaction with the feeding
structure may be less accurate. The authors of [25] propose the
use of Gaussian Ring Basis Functions (GRBF). These basis
functions lead to a drastic reduction of the Method of Moments
matrix size and a very short computation time. This family
of functions tends to provide a good localization of rapid
changes in surface currents, owing to the Gaussian decay of
the functions along the radial coordinate around a given radius.
In opposition, the family of functions proposed here has a
relatively homogeneous level over the whole radial domain,
which allows a good distinction between different “modes”

of propagation over the whole structure. The goal pursued
here is to represent more compactly the global evolution of
the current distribution by using a set of fully orthogonal and
entire-domain basis functions.

Two families of functions are well known, due to their
orthogonality on a disk. The first one is the Zernike family
of functions [32], [33], which present a polynomial radial
dependence. The second one is the Fourier-Bessel family
[34]. Both families possess a closed form spectrum, but the
Zernike spectrum is much wider. This leads to a non-negligible
asymptotic component (in the integrals describing the substrate
matrix) that needs to be carefully taken into account by
properly choosing the testing operation. Moreover, Zernike
functions are less suited than the Bessel family to describe
typical current distributions on MTS owing to their non-zero
admissible edge currents. For the aforementioned reasons,
Fourier-Bessel functions are more convenient to describe the
current distribution on MTS antennas.

The primary goal of this paper is to demonstrate that an
appropriate choice of full-domain basis functions can lead
to more compact discretizations than previously used repre-
sentations [25]. The second objective consists of providing
an efficient formulation for the reaction integrals between
the proposed basis functions for the electric-field integral
equations (EFIE) in the presence of layered media. This paper
may be viewed as an extension of a previous communication
[35], in which the primary goal had not been addressed; it
will also provide supplementary results regarding the efficient
calculation of the reaction integrals.

The remainder of the manuscript is structured as follows.
Section II presents the family of Fourier-Bessel Basis Func-
tions as well as their spectral behavior. Section III describes
the Method of Moments formulation. Section IV illustrates
the numerical simulation of metasurface antennas, comparing
them with Gaussian Ring Basis Functions (GRBF), already
validated in [25] and with full-wave analysis of MTS antennas
implemented with small printed elements. Finally, conclusions
are drawn in section V.

II. FOURIER-BESSEL BASIS FUNCTIONS (FBBF)

The circular MTS region is placed at the air dielectric
interface of an infinite grounded dielectric slab, which corre-
sponds to the z = 0 plane of a Cartesian coordinate system
(x, y, z) with unit vectors âx, ây , âz (see Fig. 1(b)). The
observation point on this surface will be denoted by ~ρ. The
FBBFs are described in cylindrical coordinates (ρ, φ), with
unit vectors (âρ, âφ), and accordingly, the observation vector
is ~ρ = ρ cos(φ)âx + ρ sin(φ)ây .

The Bessel functions are defined on a unit disk (0 ≤ ρ0 ≤ 1)
as follows [34]:

Fm,n(ρ0) = Jn(λmn ρ0) (1)

where λmn is the m-th positive zero of Jn(x) (the Bessel
function of the first kind and order n). This class of functions
are orthogonal for a fixed value of n (see Appendix A). In
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addition, this family of Bessel functions admits a closed form
Hankel transform:

F̃m,n(kρ) = −λ
m
n Jn−1(λmn )Jn(kρ)

(λmn )2 − k2ρ
(2)

Fig. 2(a) and Fig. 2(b) illustrate the behavior of the Bessel
functions in (1) for different values of m and n, respectively.
The parameter m controls the number of oscillations. The

(a)

(b)

Fig. 2: Radial part of the FBBFs for (a) a fixed n = 1 index and m = 1, 5
and 15, (b) a fixed m = 5 index and n =0, 5 and 10.

number of maxima and minima with positions different from
ρ0 = 0 and ρ0 = 1 is equal to m, for any value of n. On the
other hand, the parameter n controls essentially the behavior
near to the origin. Fig. 3(a) and Fig. 3(b), show the spectra
which correspond to the Bessel functions plotted in Fig. 2(a)
and Fig. 2(b), respectively. One can see that the spectrum
oscillates until the peak at kρ = λmn . From this value, it
decays very fast. This results in an easy rule of thumb for the
integration domain. It is important to note that the spectrum
is finite at λmn since, the numerator is also equal to 0.

The azimuthal dependence is introduced after multiplying
Fm,n(ρ0) by e−jnφ, where φ is the azimuthal coordinate. The
Fourier-Bessel Basis Functions (FBBF) are then defined on a
disk of radius a as:

Rm,n

(ρ
a
, φ
)

= Fm,n

(ρ
a

)
e−jnφ (3)

This azimuthal behavior generalizes the orthogonality, even for
different values of n. The obtained FBBF family is then fully

(a)

(b)

Fig. 3: Spectral domain counterpart of the radial part of the FBBFs shown in
(a) Fig. 2(a) for a fixed n index, (b) Fig. 2(b) for a fixed m index.

orthogonal (see Appendix A) and their closed form Hankel
transform is:

R̃m,n(kρ, α) = −2πjne−jnα
[
a2λmn Jn−1(λmn )Jn(kρa)

(λmn )2 − (kρa)2

]
(4)

where kρ and α are the spectral variables in cylindrical
coordinates.

As observed, the FBBFs are directly defined in all the
circular domain and vanish at the rim of the disc. That is,
they do not admit a normal component at the border. This
property ensures the absence of line charges at the border in
the Integral Equation formulation.

The current distribution can be decomposed in two ways.
First, by using its Cartesian x and y orthogonal components
as follows:

~J(~ρ) =
N∑

n=−N

M∑
m=1

ixmnR
x
m,n

(ρ
a
, φ
)
âx+iymnR

y
m,n

(ρ
a
, φ
)
ây

(5)
where âx and ây are the unit vectors along the x and y
directions, respectively.

The second possibility consists in using the (âρ, âφ) decom-
position, which is useful to reduce the number of unknowns
for isotropic MTS. This decomposition cannot be efficiently
and directly used in a MoM formulation, as the resulting
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dyadic Green’s function does not exclusively depend on the
vector between the source and observation positions, but on
both positions. However, owing to the orthogonality of the
basis functions, the second formulation can be extracted from
the first one, by decomposing the (âx, ây) basis and testing
functions into (âρ, âφ) basis and testing functions, as explained
in section III-D.

III. METHOD OF MOMENTS FORMULATION

Let us start from the definition of the sheet transition IBC:

~Et = Z
S
~J (6)

where ~Et is the tangential electric field on the MTS plane, and
it stands for the sum of the E-field radiated by the equivalent
currents ~J and that from the excitation. Equation (6) then leads
to the following Electric Field Integral Equation:

n̂×
[∫ ∫

S′
GEJ(~ρ, ~ρ ′) ~J(~ρ ′)dS′ − Z

S
(~ρ) ~J(~ρ)

]
= −n̂× ~Ei

(7)
where n̂ is the normal to the surface, ~ρ ′ = x′ âx + y′ ây
and ~ρ = x âx + y ây are the source and observation
points, respectively. GEJ is the dyadic Green’s function of the
grounded dielectric slab, Z

S
is the sheet transition IBC tensor

and ~Ei is the excitation electric field. The fields are tested with
the complex conjugate of the basis functions. Nevertheless,
testing with the basis functions themselves also provides good
results. After introducing the current expansion (5) in (7) and
testing the fields, (7) leads to a system of equations that can
be written in a compact form as follows:[

[Zxx] [Zxy]
[Zyx] [Zyy]

] [
[ix]
[iy]

]
=

[
[vx]
[vy]

]
(8)

Identifying each testing function with the couple of parameters
(m,n) and each basis function with the couple parameters
(m′, n′), each element of the submatrix [Zxx] is defined as:

Zxx(m,n;m′, n′) = ZxxG (m,n;m′, n′)−ZxxIBC(m,n;m′, n′)
(9)

with:

ZxxG (m,n;m′, n′) =

∫ 2π

0

∫ a

0

Rx,∗m,n

(ρ
a
, φ
)

∫ 2π

0

∫ a

0

GEJxx (|~ρ− ~ρ ′|) Rxm′,n′

(
ρ′

a
, φ

)
ρ′ dρ′ dφ′ρ dρ dφ

(10)

and the sheet IBC contribution:

ZxxIBC(m,n;m′, n′) =

∫ 2π

0

∫ a

0

Rx,∗m,n

(ρ
a
, φ
)
ZxxS (ρ, φ)

Rxm′,n′

(ρ
a
, φ
)
ρ dρ dφ

(11)

The excitation vector [vx] is given by:

vx(m,n) = −
∫ 2π

0

∫ a

0

Rx,∗m,n

(ρ
a
, φ
)
Exi (ρ, φ) ρ dρ dφ (12)

Finally, as the substrate Green’s function is known in closed
form in spectral domain, and the FBBFs admit a closed

form Fourier transform, it is more convenient to evaluate
the substrate and the excitation contribution directly in the
spectral domain. Expressions (10) and (12) can be rewritten
respectively as:

ZxxG (m,n;m′, n′) =
1

4π2

∫ 2π

0

∫ ∞
0

R̃x,∗m,n(kρ, α) G̃EJxx (kρ, α)

R̃xm′,n′(kρ, α) kρ dkρ dα
(13)

vx(m,n) = − 1

4π2

∫ 2π

0

∫ ∞
0

R̃x,∗m,n(kρ, α) Ẽxi (kρ, α)

kρ dkρ dα
(14)

where G̃EJxx (kρ, α) is the xx component of the Green’s func-
tion spectral dyad and Ẽxi (kρ, α) is the x̂−oriented component
of the excitation spectrum.

The elements in the others submatrices [Zxy], [Zyx] and
[Zyy] in (8) and that of [vy] are given by definitions analogous
to (9), (11), (13) and (14).

A. Grounded slab contribution

The substrate interaction matrix is directly formulated in the
spectral domain. The dyadic spectral Green’s function of the
grounded slab can be written as follows [36]-[38]:[
G̃EJxx G̃EJxy
G̃EJyx G̃EJyy

]
= G̃A(kρ)

[
1 0
0 1

]
+ G̃V (kρ)

[
k2x kxky
kxky k2y

]
(15)

where G̃A and G̃V are, respectively, the scalar potentials
with respect to currents and charges. After substituting (15)
into (13) and integrating along α, the substrate matrix elements
are given by:

ZxxG (m,n;m′, n′) = (−j)njn
′
a4
∫ ∞
0

F̃m,n(kρa)F̃m′,n′(kρa)

[2π G̃A(kρ)δn,n′ + G̃V (kρ) ε
cc
n,n′ ] kρ dkρ

(16)

ZxyG (m,n;m′, n′) = ZyxG (m,n;m′, n′) = (−j)njn
′
a4∫ ∞

0

F̃m,n(kρa) F̃m′,n′(kρa) [G̃V (kρ) ε
s,c
n,n′ ] kρ dkρ

(17)

ZyyG (m,n;m′, n′) = (−j)njn
′
a4
∫ ∞
0

F̃m,n(kρa)F̃m′,n′(kρa)

[2π G̃A(kρ)δn,n′ + G̃V (kρ) ε
ss
n,n′ ] kρ dkρ

(18)

with εccn,n′ = (π/2)(2δn,n′ + δn,n′+2 + δn,n′−2), εscn,n′ =
(π/2j)(δn,n′−2 − δn,n′+2) and εssn,n′ = (π/2)(2δn,n′ −
δn,n′+2 − δn,n′−2). The function δi,j is the Kronecker delta.
These integrals can be efficiently computed using a parabolic
contour deformation [39]. In practice, an integration range
from 0 to 2λMN /a is enough to obtain accurate results. For
examples discussed in this paper, 2λMN /a ≈ 10k0, with
k0 = 2π/λ, where λ is the free-space wavelength. This
means that each integration can be carried out with about 500
sampling points by using a higher-order quadrature, such as
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the Gauss-Legendre one. The obtained substrate matrix ZG
is relatively sparse since it has to be calculated for only few
elements. This matrix structure has already been discussed in
[25]. The substrate matrix can then be computed extremely
fast (less than 1 minute on a laptop computer).

B. Sheet impedance contribution

The analysis is limited here to the ZxxIBC component since
the obtained expression is valid for the other components. The
sheet contribution can be directly evaluated in space domain
as follows:

ZxxIBC(m,n;m′, n′) =

∫ a

0

Fm,n

(ρ
a

)
Fm′,n′

(ρ
a

)
∫ 2π

0

ej(n−n
′)φZxxS (~ρ) dφ ρ dρ

(19)

Thanks to the azimuthal periodicity, it is better to expand ZxxS
into a Fourier series as follows:

ZxxS (~ρ) =

∞∑
r=−∞

ar(ρ) ejrφ (20)

Then (19) reduces to:

ZxxIBC(m,n;m′, n′) = 2π

∫ a

0

Fm,n

(ρ
a

)
Fm′,n′

(ρ
a

)
an′−n(ρ) ρ dρ

(21)

In practice, the first 10 harmonics of the Fourier series are
sufficient to describe accurately the impedance. It means that
this integral can be assumed equal to zero for |n′ − n| large
enough.

Those calculations can be organized differently, in a faster
way, but requiring more memory. It consists of directly pro-
jecting the sheet impedance in the FBBF basis as follows:

ZxxS (~ρ) =

N ′′∑
n′′=−N

M ′′∑
m′′=1

γn′′m′′Rn
′′

m′′

(ρ
a
, φ
)

(22)

The expansion coefficients are calculated by simple projection:

γn′′m′′ =
1

K(m′′, n′′)

∫ 2π

0

∫ a

0

ZxxS (~ρ) R∗m′′,n′′

(ρ
a
, φ
)

ρ dρ dφ
(23)

where K is a normalization factor given by:

K(m′′, n′′) = −π Jn′′−1(λm
′′

n′′ ) Jn′′+1(λm
′′

n′′ ) a2 (24)

After inserting (22) into (19) and integrating along φ, we get:

ZxxIBC(m,n;m′, n′) = 2π a2
M ′′∑
m′′=1

γ(n′−n)m′′[∫ 1

0

Fm,n(ρ) Fm′,n′(ρ) Fm′′,(n′−n)(ρ) ρ dρ

] (25)

The expression between brackets is a unique function of
(m,n;m′, n′;m′′) and can therefore be tabulated.

C. Excitation contribution

The MTS presented in this paper are antennas excited at the
origin by an elementary vertical dipole. The Green’s function
associated to this excitation can be written in the following
form:

G̃EJxz (~k) = cos(α) f̃(kρ); G̃
EJ
yz (~k) = sin(α) f̃(kρ) (26)

Inserting this expression into (14), and integrating along α
leads to the following expressions:

vx(m,n) =
(−j)n

2
a2λmn Jn−1(λmn ) (δn,1 + δn,−1)∫ ∞
0

Jn(kρa)

((λmn )2 − (kρa)2)
f̃(kρ) kρ dkρ

(27)

vy(m,n) =
(−j)n

2j
a2λmn Jn−1(λmn ) (δn,−1 − δn,1)∫ ∞
0

Jn(kρa)

((λmn )2 − (kρa)2)
f̃(kρ) kρ dkρ

(28)

D. Polar formulation of the current distribution

The precedent formulation based on the Cartesian (âx, ây)
current expansion leads to a system of equations that can be
written in matrix form:

(Z
G
− Z

IBC
)I = V (29)

where Z
G

is the substrate impedance contribution, Z
IBC

is
the sheet impedance tensor written in Cartesian coordinates.
The (âρ, âφ) formulation can be written in a similar form:

(Z ′
G
− Z ′

IBC
)I ′ = V ′ (30)

where Z ′
G

is the equivalent substrate contribution and Z ′
IBC

is the sheet contribution directly written in polar (âρ, âφ)
coordinates, I ′ is the current expansion in the (âρ, âφ) unit
vectors and V ′ is the excitation.
Starting from equation (8) and expanding the basis and testing
functions in the (âρ, âφ) basis and test functions, it can be
proven that:

Z ′
G

= QHZ
G
Q (31)

and

V ′ = QHV (32)

where superscript (H) in (31) and (32) represents the Hermi-
tian transposed.
The matrix Q can be written in the following form:[

[Qα] [Qγ ]
[Qβ ] [Qα]

]
(33)

Each block of the Q matrix has a size (JMAX ∗ J ′MAX),
where JMAX = (2N +1)∗M is the number of basis / testing
functions used in the (âx, ây) formulation and J ′MAX =
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(2N ′ + 1) ∗ M ′ is the number of basis / testing functions
used in the (âρ, âφ) formulation. The block Qα is defined as:

Qα(m,n;m′, n′) =
1

K(m,n)

∫ 2π

0

∫ a

0

Rx,∗m,n

(ρ
a
, φ
)

cos(φ)

Rxm′,n′

(ρ
a
, φ
)
ρ dρ dφ

(34)

where K is a normalization factor given by:

K(m,n) = −π Jn−1(λmn ) Jn+1(λmn ) a2 (35)

The expressions of Qβ and Qγ , are obtained by replacing the
cos(φ) in expression (34) by respectively sin(φ) and − sin(φ).
After integrating (34) along φ, we obtain:

Qα(m,n;m′, n′) =
πa2

K(m,n)
(δn,n′−1 + δn,n′+1)∫ 1

0

Fm,n (ρ)Fm′,n′ (ρ) ρ dρ

(36)

Similar expressions are obtained for the others blocks (See
Appendix B). The obtained matrix projection Q is then very
sparse and can be computed extremely fast. In practice,
choosing JMAX = J ′MAX is sufficient to describe accurately
the current projection. In passing, if one is interested only
by the âρ oriented currents (as is the case for isotropic MTS
antennas), the projection matrix Q is given by:[

[Qα]
[Qβ ]]

]
(37)

IV. NUMERICAL RESULTS

To test the accuracy and the efficiency of the method, we
analyze three MTS antennas. The first one is synthesized
using an isotropic MTS, i.e. a scalar IBC distribution, whereas
the other ones use anisotropic MTSs, i.e. a tensorial IBC
distribution. We analyze the FBBFs in terms of convergence
(number of basis functions needed to get a stable solution)
and computation time, and compare the obtained results with
the simulation of the IBC using GRBFs [25], and with the
full-wave analysis of MTS antennas implemented with small
printed elements.

A. Broadside pencil beam antenna with isotropic MTS

The analyzed structure is a scalar modulated MTS antenna,
designed to radiate a broadside right-handed circularly polar-
ized (RHCP) pencil beam. The design procedure has been
discussed in [11] and leads to the following opaque IBC
distribution:

Zρρ+ (~ρ ) = jX0 [1 +M0 sin(2πρ/d− φ)]

Zρφ+ (~ρ ) = Zφρ+ (~ρ ) = 0 (38)
Zφφ+ (~ρ ) = jX0 [1 +M0 sin(2πρ/d− φ)]

where: X0 = 0.71η0, with η0 being the free-space impedance,
M0 = 0.27 and d = λ/

√
1 + (X0/η0)2. The frequency of

operation is f = 17 GHz and the antenna radius is a = 5.65λ
at that frequency. Finally, the dielectric substrate has relative
permittivity εr = 3.66 and thickness h = 1.524 mm. The sheet

impedance is obtained after removing from the opaque one the
substrate contribution, as explained in [31], and the MTS is
excited with a vertical electric dipole placed in the middle of
the substrate and at the center of the disk (ρ = 0).

Fig. 4(a) and Fig. 4(b) show the absolute value of the
current distribution obtained with FBBF and that obtained with
GRBF, respectively. In both simulations, we have used the
same number of basis functions (N = 8; M = 46), which
leads to a total of 1632 basis functions. We can observe the

(a) (b)

Fig. 4: Absolute value of the surface current distribution (in log10 scale) on
a scalar IBC aperture used to generate a RHCP broadside pencil-beam. The
IBC disk has been analyzed with a) FBBFs and b) GRBFs, in both cases
N = 8 and M = 46.

same appearance in both cases, except close to the center (for
ρ < 0.5λ) given that we have not defined GRBFs in the
central region. In this way, one may account for the absence
of MTS elements often encountered in the region occupied by
the feeder. Indeed, in practice, the feed is not a simple vertical
dipole and realistic feeds cover a disk of radius about 0.5λ. On
that disk, in the implementation of [11], there are no equivalent
electric currents since there are no patches implementing the
IBC.

Fig. 5(a) shows the normalized co-polar pattern obtained
with GRBF and FBBF. One can observe a difference, es-
pecially on the secondary lobes. Indeed, close to the center,
the current increases very rapidly, leading to a non-negligible
contribution to the far field. This may be viewed as a weakness
of the FBBF representation which produce nonzero fields
everywhere including close to the feed point. This problem can
be partly corrected by removing a posteriori the center currents
contribution (in the region where the GRBFs are not defined)
from the pattern. The obtained pattern is now represented in
Fig. 5(b). A better agreement is observed although it is not
perfect since truncating is not strictly equivalent to the use of
basis functions which do not admit center currents. The same
observation is valid for the cross polar patterns (see Fig. 6).
In terms of antenna performances, the results are summarized
in Table I. As expected, the performances are much closer
to the GRBFs simulation after the center current subtraction.
The difference w.r.t the GRBFs Co-polar pattern is 1.5 dB
without center current subtraction and 0.6 dB after center
current subtraction. The remaining error may be attributed to
the fact the two simulated structures are not exactly the same,
one of them having a zero sheet admittance over a disk of
radius 0.5λ at the center. Nevertheless, the results obtained
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(a)

(b)

Fig. 5: RHCP component of the normalized directivity pattern for the structure
described by (38). The result obtained with GRBFs (solid line) is compared
with the FBBFs one (dashed line) in two cases: a) without center current
subtraction and b) with center current subtraction.

TABLE I: Computed Co-polar and Cross-polar maximum
directivity for the MTS described by (38).

Solver RHCP LHCP

GRBF 26.5 dBi 18.2 dBi

FBBF without center current subtraction 25 dBi 16.6 dBi

FBBF with center current subtraction 25.9 dBi 18 dBi

Difference w.r.t GRBF 0.6 dB 0.2 dB

after center current subtraction provide a good estimation of
the radiation performance, both for the Co-polar and the Cross-
polar patterns. Next, we have implemented with square patches
a smaller version of the MTS (3λ radius). The patches cover
all the disk and the structure is excited with the same vertical
dipole. The implemented MTS made of square patches is
meshed with 154868 RWG basis functions and simulated with
the MoM technique in [41]. Fig. 7 shows the obtained co-polar
pattern.

One can observe a good agreement, despite the fact that
we did not remove the center current contribution since the
implemented MTS is defined on all the disk. It is important
to note that for MTSs excited outside the surface or near its

(a)

(b)

Fig. 6: LHCP component of the normalized directivity pattern for the structure
described by (38). The result obtained with GRBFs (solid line) is compared
with the FBBFs one (dashed line) in two cases: a) without center current
subtraction and b) with center current subtraction.

Fig. 7: Directivity pattern without direct excitation contribution of a smaller
version of the structure described by (38) and used to obtain a broadside
beam. The RHCP pattern obtained with the RWG-MoM simulation of the
MTS antenna implemented with square patches (red dotted line) is compared
with the pattern obtained using FBBFs and the IBC in the circular domain
(blue solid line). The inset disk corresponds to the absolute value of the current
distribution (in log10 scale) obtained with FBBF.

border, as is the case for the Luneburg Lens in [40], the IBC
is defined on all the circular domain, thus the FBBFs directly
provide good results. However, a full modeling of the MTS
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in presence of realistic feed will require a full-wave analysis
of the feeding structure together with its immediate vicinity,
taking into account the local coupling between the feed and
the IBC.

Below, we study the convergence of the solution (38)
obtained with FBBFs, and compare it with that obtained with
GRBFs. Both types of function present identical azimuthal
dependence. Therefore, we will just compare their convergence
rate with respect to the index M , which controls the radial
discretization. To this end, we analyze the evolution of the
pattern shape. We define the relative error for a given number
M of radial basis functions as follows:

errM = 100

∑90o

θ=0o
∑360o

φ=0o || ~EM (θ, φ)− ~EM+2(θ, φ)||2∑90o

θ=0o
∑360o

φ=0o || ~EM+2(θ, φ)||2
(39)

The evolution of the relative error obtained with both FBBFs
and GRBFs is depicted in Fig. 8. Although the convergence

Fig. 8: Relative error versus index M obtained with (39) for the FBBF and
the GRBF simulation of the structure in Fig. 4 and Fig. 5.

rate is approximately the same, the number of basis functions
needed to obtain a given relative error is smaller when using
FBBFs. In particular, for a relative error of approximately
1%, we need for FBBFs, M = 36 and for GRBF, M = 48
where M has been defined in (5). As it will be seen later,
this difference is more significant for larger MTS. Moreover,
for the isotropic MTS case, the orthogonality of the basis
allows one to apply the MoM formulation which uses only
âρ directed currents, leading to significantly lower number
of basis functions. In this particular example, we only need
612 FBBFs and 1632 GRBFs, provided that we use only âρ
directed currents. In the following sections, we will assume
that a stable convergence rate is obtained when the relative
error ≈ 1%. The computation time needed for the different
steps of the simulation is shown in Table II. In order to
be consistent in the comparisons, we use now the (âx, ây)
formulation for the current distribution. The simulations have
been done with an Intel Core i7 @ 2.8 GHz computer. One
can observe that the simulation based on GRBFs is faster
than that using FBBFs. This difference is mainly due to the

TABLE II: Simulation times for the MTS described by (38).

Solver Substrate matrix IBC matrix Inversion time Total time

FBBF 6.54 s 1.51 s 0.14 s 9.34 s

GRBF 2.59 s 0.32 s 0.14 s 3.58 s

closed-form evaluation of the integrals arising in the GRBF
formulation [25]. From the times in Table I, one can conclude
that the largest difference lies in the calculation of the substrate
matrix Z

G
, which cannot be computed in closed form with

FBBFs. However, in an optimization process, the substrate
matrix needs to be calculated only once and for all, while
the matrix related to the sheet transition IBC Z

IBC
has to be

computed at each optimization step. We can also observe that
the computation times of the sheet matrix, remains lower for
GRBF than for FBBF. This is due to the fact that the evolution
of the sheet is smooth in comparison with the Gaussian width,
allowing an asymptotic calculation of the reaction integrals.
Finally, it is important to mention that the same simulation
takes 2.4 h with FEKO [42], using RWG basis functions and
needs 54907 basis functions.

B. Broadside pencil beam MTS antennas based on anisotropic
IBCs

In this subsection, we analyze two anisotropic MTS anten-
nas of different sizes with a RHCP broadside pencil beam.
The elements of the impenetrable IBC tensor of the first one
are defined as:

Zρρ+ (~ρ ) = jX0 [1 +Mρρ cos(2πρ/d− φ)]

Zρφ+ (~ρ ) = Zφρ+ (~ρ ) = jX0Mρφ sin(2πρ/d− φ) (40)
Zφφ+ (~ρ ) = jX0 [1−Mφφ cos(2πρ/d− φ)]

where the modulation parameters are X0 = 279 Ω, Mρρ =
Mρφ = Mφφ = 0.4 and d = λ/

√
1 + (X0/η0)2. The

frequency of operation is f = 8.425 GHz and the antenna
radius is a = 7.6λ at this frequency. The cladding lies
on a dielectric substrate which has a relative permittivity
εr = 9.8 and thickness h = 1.57 mm. The obtained current
distributions using FBBFs and GRBFs are depicted in Fig. 9(a)
and Fig. 9(b), respectively. In both simulations we have used
the same discretization parameters with N = 16 and M = 96,
which leads to a total of 6336 unknowns. Fig. 9(c) presents
the evolution of the currents obtained with both methods on
the φ = 0 axis. We can observe a very good agreement up to
ρ = 0.5λ since the GRBFs have not been defined in the center
region. Fig. 10 shows the current distribution with FBBFs
obtained with 60% fewer basis functions (N = 16; M = 60,
i.e. 3960 basis functions) in comparison with (N = 16;
M = 96, i.e. 6336 basis functions). We can still observe a very
good correspondence despite, using 60% fewer FBBFs (3960
vs. 6336). For this example, choosing (N = 16; M = 65 i.e.
4290 basis functions) is enough to get a stable convergence.
The calculation times, are summarized in Table II. The same
simulation, using RWG basis functions to mesh the patches
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(a) (b)

(c)

Fig. 9: Results for the RHCP broadside pencil-beam antenna described by
the anisotropic IBC in (40). The IBC disk has been analyzed using N = 16
and M = 96. Absolute value of the surface current distribution obtained: a)
on the aperture with FBBFs, b) on the aperture with GRBFs, and c) on the
φ = 0 axis both with FBBFs and GRBFs.

Fig. 10: Convergence analysis for the RHCP broadside pencil-beam antenna
described by the anisotropic IBC in (40). Comparison between the absolute
value of the currents obtained on the φ = 0 axis with FBBFs and (N = 16;
M = 60); and with FBBFs and (N = 16; M = 96).

implementing the corresponding IBC requires 1083240 basis
functions and 1h35 min of computation time even with the
fast full-wave solver adopted in [11].

Next, we analyze a larger MTS aperture. The elements of
the opaque IBC tensor are now given by (40), with X0 =
0.55η0, Mρρ = 0.2, Mρφ = 0.2, Mφφ = 0.15, and d =
λ/
√

1 + (X0/η0)2. The frequency of operation is f = 30 GHz
and the antenna radius is a = 30λ at this frequency. The

TABLE III: Simulation times for the MTS described by (40).

Solver Substrate matrix IBC matrix Inversion time Total time

FBBF 21.76 s 12.32 s 3.67 s 39.65 s

GRBF 7.48 s 4.44 s 3.67 s 16.59 s

cladding lies on a dielectric substrate with relative permittivity
εr = 9.8 and thickness h = 0.425 mm. The obtained patterns,
without and with center current subtraction are represented in
Fig. 11(a) and Fig. 11(b). One can observe a good agreement

(a)

(b)

Fig. 11: RHCP component of the normalized directivity pattern for the
structure described by (40). The results obtained with GRBFs (solid line)
are compared with the FBBFs one (dashed line) in two cases: a) without
center current subtraction and b) with center current subtraction. The inset
disk corresponds to the absolute value of the current distribution (in log10
scale).

between both approaches. However, a stable convergence is
obtained with FBBF for (N = 16; M = 90), i.e. 5940 basis
functions, whereas in the GRBFs case one needs to use (N =
16; M = 150) which leads to 9900 basis functions.

C. Squinted pencil beam MTS antenna based on an
anisotropic IBC

The last example is an anisotropic MTS antenna radiating
a RHCP squinted pencil beam at θp = 30o and φp = 0o. The
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applied anisotropic IBC is defined as (see Sec. IV-B of [11]):

Zρρ+ (~ρ ) = jX0 [1 +M0 cos θp cos(2πρ/d− γ − φ)]

Zρφ+ (~ρ ) = Zφρ+ (~ρ ) = jX0M0 sin(2πρ/d− γ − φ) (41)
Zφφ+ (~ρ ) = jX0 [1−M0 cos(2πρ/d− γ − φ)] / cos2 θp

where: γ = k0ρ cosφ sin θp. The other parameters are the
same as those considered in section V-B2 of [25]. Here, a
stable convergence (relative error ≈ 1% on the pattern) is
obtained with FBBF for (N = 26; M = 50), i.e. 5300 basis
functions and with GRBF for (N = 26; M = 96), i.e. 10176
basis functions. The current distributions obtained with FBBFs
and GRBFs are represented in Figs. 12(a) and 12(b), respec-
tively. The corresponding co-polar and cross-polar patterns are

(a) (b)

Fig. 12: Absolute value of the surface current distribution (in log10 scale) on
the anisotropic IBC aperture described by (41) and used to generate a RHCP
squinted pencil-beam. The IBC disk has been analyzed with a) FBBFs using
(N = 26; M = 50) and with b) GRBFs using (N = 26; M = 96).

depicted in Figs. 13(a) and 13(b), respectively. In the same
plots, one can find the radiation pattern from the RWG-MoM
simulation of the MTS implemented with screw-head patches
in [25]. It is important to note that for the RWG simulation,
there are no patches close to the center of the MTS. A good
agreement is observed, despite using almost two times fewer
basis functions (5300 vs 10176), except for the region close
to the MTS center, due to reasons we have already discussed
in section IV-A. However, one can see that the radiation
pattern obtained after center current subtraction provides a
good estimate of the pattern obtained with the RWG-MoM
solution of the MTS simulated without center patches. This
has been observed for all the simulated examples. Such a
subtraction has also proven to produce good comparison with
measured data of a MTS antenna made with realistic feed
as shown in [17]. The authors believe that such modeling is
sufficient to achieve a first MTS antenna design. A fine control
of the antenna input impedance and far-out sidelobes may
require a full-wave analysis of the feeding structure, taking
into account the coupling with the immediate IBC vicinity.

V. CONCLUSION

A Method of Moments analysis using Fourier-Bessel Basis
Functions (FBBFs) has been proposed to obtain the global
evolution of the current distribution on circular modulated
metasurfaces. These basis functions are directly defined over
the whole computational domain, without any emphasis on

(a)

(b)

Fig. 13: Normalized directivity pattern for the structure described by (41) and
used to obtain a squinted pencil beam. The results obtained with N = 26,
M = 96 GRBFs (blue solid line) and those obtained after meshing the patches
of the MTS with RWG basis functions are compared with the results obtained
using N = 26, M = 50 FBBFs (red dotted line) both for the a) RHCP
component and the b) LHCP component.

specific sub-domains. The main advantage of the Fourier-
Bessel basis with respect to Gaussian Ring basis Functions
(GRBFs) resides in its orthogonality and its completeness,
allowing an analysis of a general class of disk current distribu-
tion in an effective manner i.e., more compactly. In comparison
with the well known family of orthogonal Zernike functions,
FBBFs possess a very limited bandwidth, leading to an easy
and fast calculation of the reaction integrals in the spectral
domain. Moreover we have observed that the Fourier-Bessel
basis is better suited than the Zernike basis in describing
typical current distributions on circular metasurfaces. The
proposed basis can be extended to analyze the more general
class of elliptical apertures, while maintaining the orthogo-
nality properties. The basis chosen here is not limited to a
particular kind of excitation even if the examples proposed in
this paper used a dipole excitation. When the MTS is excited
from the center, GRBFs allow a better representation of the
currents in the immediate vicinity of the feed. Finally, it is
expected that, owing to the orthogonality of the basis, the
FBBF decomposition will provide new insight into the design
procedure of circular metasurfaces without directly referring
to their implementation using patches.
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APPENDIX A
FOURIER-BESSEL ORTHOGONALITY

The Bessel functions satisfy the orthogonality relation (for
the same n index) on the unit disk:∫ 1

0

Fmn(ρ0) Fm′n(ρ0) ρ0 dρ0 = −δmm′

Jn−1(λmn )Jn+1(λmn )

2

(42)

After adding the azimuthal term, the Fourier-Bessel functions
become fully orthogonal.∫ 2π

0

∫ 1

0

Rmn(ρ0, φ) R∗m′n′(ρ0, φ) ρ0 dρ0 dφ = −π δmm′δnn′

Jn−1(λmn )Jn+1(λmn )
(43)

APPENDIX B
SECOND BLOCK OF THE PROJECTION Q MATRIX

The Qβ matrix is defined as follows:

Qβ(m,n;m′, n′) =
jπa2

K(m,n)
(δn,n′+1 − δn,n′−1)∫ 1

0

Fm,n (ρ)Fm′,n′ (ρ) ρ dρ

(44)

where K(m,n) is given by expression (35) and

Qγ(m,n;m′, n′) = −Qβ(m,n;m′, n′) (45)
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