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Abstract

The pathophysiological mechanisms underlying the seasonal dynamic and epidemic occur-
rence of bacterial meningitis in the African meningitis belt remain unknown. Regular season-
ality (seasonal hyperendemicity) is observed for both meningococcal and pneumococcal
meningitis and understanding this is critical for better prevention and modelling. The two
principal hypotheses for hyperendemicity during the dry season imply (1) an increased risk
of invasive disease given asymptomatic carriage of meningococci and pneumococci; or (2)
an increased transmission of these bacteria from carriers and ill individuals. In this study,
we formulated three compartmental deterministic models of seasonal hyperendemicity, fea-
turing one (model1-‘inv’ or model2-‘transm’), or a combination (model3-‘inv-transm’) of
the two hypotheses. We parameterised the models based on current knowledge on meningo-
coccal and pneumococcal biology and pathophysiology. We compared the three models’ per-
formance in reproducing weekly incidences of suspected cases of acute bacterial meningitis
reported by health centres in Burkina Faso during 2004–2010, through the meningitis surveil-
lance system. The three models performed well (coefficient of determination R2, 0.72, 0.86 and
0.87, respectively). Model2-‘transm’ and model3-‘inv-transm’ better captured the amplitude of
the seasonal incidence. However, model2-‘transm’ required a higher constant invasion rate for
a similar average baseline transmission rate. The results suggest that a combination of seasonal
changes of the risk of invasive disease and carriage transmission is involved in the hyperen-
demic seasonality of bacterial meningitis in the African meningitis belt. Consequently, both
interventions reducing the risk of nasopharyngeal invasion and the bacteria transmission,
especially during the dry season are believed to be needed to limit the recurrent seasonality
of bacterial meningitis in the meningitis belt.

Introduction

Africa has the highest contribution to the global burden of bacterial meningitis, a severe dis-
ease with up to 30% case fatality despite timely antibiotic treatment and 20% of survivors liv-
ing with psychomotor sequelae [1–4]. In the African meningitis belt spanning the Sahel from
Senegal to Ethiopia [5], meningococcal and pneumococcal meningitis incidence displays a sea-
sonal pattern during the dry season (December through May) with a 10- to 100-fold increase
of weekly incidences at local health centre, district and national levels, which subsides with the
onset of the rainy season [6, 7]. This seasonal increase in the disease incidence in the dry sea-
son is observed every year and consistent across countries of the so-called African meningitis
belt: a situation commonly described as ‘ubiquitous seasonal hyperendemicity’. In addition,
localised epidemics of meningococcal meningitis occur unpredictably limited to one or few
villages, with attack proportions beyond 1% [1]. Despite introduction of effective and afford-
able conjugate vaccines against meningococcal serogroup A (in December 2010) [8] and 10–13
pneumococcal serotypes (in 2013) [9] through mass vaccination campaigns and infant routine
immunisation, respectively, this pattern continues, mainly due to the persistence of other epi-
demic meningococcal serogroups and high adult pneumococcal meningitis incidence.

A distinction between the mechanisms underlying meningitis ubiquitous annual seasonal-
ity (hyperendemicity) and localised epidemics would have implication on how the disease is
mathematically modelled and how control strategies are designed in the meningitis belt [1,
6, 7]. A better understanding of the mechanisms behind this epidemiology is therefore needed,
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along with appropriate mathematical models allowing the identi-
fication of optimised preventative vaccination strategies.

Previous modelling efforts relied on a wide range of unknown
parameters values [10] given the lack of surveillance data from
which parameters could be estimated. Others have used incidence
data for model fitting at low spatial resolution, mainly data aggre-
gated at district level [11, 12]. This does not allow differentiating
between dry seasons with localised epidemics and dry seasons
without localised epidemics, as localised epidemic usually can
be seen at the health centre level only [13, 14]. To go further
from these previous efforts, we have developed a model in
which unknown parameters values are estimated based on
meningitis surveillance data at a fine spatial (health centre) and
temporal (weekly) scale. This study focuses on modelling the
regular seasonal hyperendemicity, observed during all dry seasons
across the meningitis belt and used surveillance data from
Burkina Faso for parameters estimation and model validation.
Burkina Faso lies within the meningitis belt with an enhanced
surveillance system for bacterial meningitis.

Two main explanations have been suggested for the hyperen-
demic incidence increase during the dry season. First, the climatic
conditions such as low relative air humidity and high aerosol load
experienced across countries of the meningitis belt during the dry
season (November through May) could damage the nasopharyn-
geal mucosa and thus facilitate invasion of meningococci and
pneumococci into nasopharyngeal tissues, which results in men-
ingitis [15]. The second hypothesis suggests that these climatic
conditions or related behavioural changes could facilitate the bac-
terial transmission in the population and thus proportionally
increase disease incidence [15]. Mueller and Gessner’s hypothet-
ical explanatory model builds on the first hypothesis (increased
invasion rate) [16].

In a systematic review and meta-analysis of published data
from the meningitis belt [7], seasonal hyperendemicity of menin-
gococcal meningitis was associated with a seasonal increase of the
case–carrier ratio, while the prevalence of meningococcal carriage
assessed in cross-sectional carriage studies did not change with
season, thus supporting the first hypothesis. However, in a multi-
site series of cross-sectional meningococcal carriage studies,
Kristiansen et al. [17] reported minor but statistically significant
changes in serogroup A meningococcal carriage prevalence
between the rainy and dry season (from 0.24% to 0.62%), a find-
ing supporting the second hypothesis (increased transmission
rate). The present study aimed at using mathematical models to
assess which of these competing hypotheses or their combination
best explained observed hyperendemic incidence pattern of sus-
pected bacterial meningitis in Burkina Faso.

Methods

Study setting and surveillance data

In countries of the meningitis belt, suspected cases of bacterial
meningitis (as defined by the WHO) are systematically notified
from the peripheral level (local health centres) to the intermediate
(district) and central (national) levels since the establishment of
an enhanced meningitis surveillance network in 2003 across the
meningitis belt with the support of the WHO. Suspected menin-
gitis cases are notified from the local health centres on a weekly
basis and the number of cases must be reported even when
there is zero case at all levels. Burkina Faso is one of the countries
entirely located within the meningitis belt for which we had access

to weekly counts of suspected bacterial meningitis cases at the
health centres level. In the country, prior to 2010, suspected
meningitis case notification was often supplemented by labora-
tory investigation of a subset of the notified cases; especially
when epidemic threshold defined at the district level is crossed,
to guide epidemic preparedness and choice of polysaccharide
vaccine. Acute bacterial meningitis in the meningitis belt is
most commonly caused by Neisseria meningitidis, Streptococcus
pneumoniae and, since introduction of a conjugate vaccine, to
a lower extent Haemophilus influenzae Type b [18, 19].
Suspected and laboratory-confirmed cases correlate well usually
[20] and suggest a relatively good performance of the surveillance
system and appropriateness of the data for epidemiologic studies.
Until 2010, and before the introduction of serogroup A menin-
gococcal conjugate vaccine in December 2010, meningitis epi-
demics were predominantly caused by N. meningitidis across
the belt. Pneumococcal meningitis contributes to meningitis
hyperendemicity and mimics the seasonality of meningococcal
meningitis across the meningitis belt [21]. In this study, to esti-
mate the unknown parameter values and to evaluate our models
performances, we used data from routine surveillance of sus-
pected acute bacterial meningitis cases recorded from 2004
through 2010 in health centres in Burkina Faso (a period preced-
ing introduction of the MenAfrivac serogroup A meningococcal
vaccine). While data aggregated at the district level are available
in routine surveillance reports, this database of original weekly
health centre data had been compiled in a collaborative effort
between the Direction de la Lutte contre la Maladie (DLM) of
the Ministry of Health of Burkina Faso, EHESP French School
of Public Health, and the Agence de Médecine Préventive
(AMP), Paris, France. We selected four health districts
(Houndé, Lena, Karangasso Vigué and Séguénéga) for the com-
pleteness of data, providing 126 health centre years. Seasonal
hyperendemicity and localised epidemics are two distinct phe-
nomena involving potentially different mechanisms [16].
Therefore, we separated health centre years with localised epi-
demics from those with usual hyperendemic incidences, using
the threshold definition of 75 weekly cases per 100 000 main-
tained during at least two consecutive weeks [13]. Thus, only
hyperendemic health centre year curves are used for models’ ana-
lysis in this study. Seasonal hyperendemicity of bacterial menin-
gitis is a regular phenomenon observed every year in the belt.
Localised meningitis epidemics are irregular in the meningitis
belt. Therefore, we considered a deterministic framework as a
reasonable first step over a stochastic framework in modelling
hyperendemic meningitis in the belt. Overall, 64 hyperendemic
health centre years (out of the 126) identified based on the
defined threshold were used in the primary analysis
(Supplementary Fig. S1–S3).

A second threshold of 50 weekly cases per 100 000 maintained
during at least two consecutive weeks was used for sensitivity ana-
lyses. This sensitivity analysis was performed to assess the effi-
ciency of the model when using a lower incidence threshold
definition of hyperendemic incidence excluding health centre
years with outlier peak incidence from the primary analysis.
Fifty-seven out of the initial 64 hyperendemic health centre
years were then identified and used in the sensitivity analysis.
We smoothed incidence time series using a simple moving aver-
age on a 3-week window to reduce random noise in the data and
the influence of instable estimates of incidence potentially due to
delays in reporting. We used the SMA function in the TTR R
package to achieve this.
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Model structure

Similar to Irving et al. [10], we used a compartmental deter-
ministic Susceptible–Carrier–Ill–Recovered–Susceptible (SIRS)
model, which divides the population into four mutually exclusive
groups (Fig. 1): individuals susceptible to infection (S); asymp-
tomatic carriers (C) who can transmit the bacteria (meningococci
or pneumococci) to susceptibles; individuals ill from meningitis
(I) following contagion and who are also infectious; and indivi-
duals who have recovered (R) from asymptomatic carriage or
meningitis. Recovered individuals have developed temporary
immunity and become susceptible once immunity has waned
[22]. Transition rates include rates for birth, natural death and
death from meningitis (Table 1). The system of ordinary differen-
tial equations defining the model dynamic is as follows:

dS
dt

= wR+ b− btS(C + I) − mS (1)

dC
dt

= btS(C + I) − atC − aC − mC (2)

dI
dt

= atC − rI − (m+ g)I (3)

dR
dt

= rI + aC − (w+ m)R (4)

at = a0
1a
2

( )
cos 2p t − u

365

( )( )
+ 1+ 1a

2

( )[ ]
(5)

bt = b0 1+ 1b cos 2p t − u

365

( )( )[ ]
(6)

Variables S, C, R, and I are proportions of the total population
at time t in the respective compartments of the model. The mod-
els’ parameters are described in Table 1.

Seasonality

To represent the two hypotheses of increased invasion or trans-
mission rate during the dry season, we included seasonal forcing
of the transition rate to invasive disease given carriage (model1-
‘inv’), or the bacterial transmission rate (model2-‘transm’), or
both (model3-‘inv-transm’). The invasion and transmission para-
meters (at and βt) were represented with periodic sinusoidal func-
tions (equations 5 and 6). Based on the explanatory model by
Mueller and Gessner [16], and the systematic review of season-
specific case–carrier ratio in the meningitis belt [7, 16], the
case–carrier ratio (a proxy for the risk of invasive meningitis
given colonisation) could increase up to 100-fold during the dry
season. We included this information by parameterizing the peri-
odic function of the invasion rate such that variations of up to
100-fold are possible in the dry season depending on the seasonal
forcing amplitude (εa) estimate which can take on values from 0
to 100. The seasonal forcing amplitudes εa and εb dictate the

magnitude of seasonal variation of the invasion and transmission
rate, respectively (equations 5 and 6).

Model assumptions

The model structure assumed a steady and well-mixed population
with frequency-dependent transmission. Age structure of the
population was deliberately not included in this proof of concept.
However, the potential effects of heterogeneous mixing were
explored in complementary analyses. Immunity from asymptom-
atic carriage and disease was assumed temporary. We assumed
immunity provided by carriage and disease to be of similar dur-
ation, and asymptomatic carriers are as likely as ill individuals to
transmit the infection to a susceptible. Ill individuals may be at a
greater risk to transmit only from vomiting but are usually bound
to bed.

Parameterisation

We obtained parameters values including natural death rate, death
rate from meningitis, recovery rate after bacterial meningitis and
birth rate from the scientific literature (Table 1). Case fatality
rates of 10–15% were reported during serogroup A epidemics
meningitis in the meningitis belt [1]. We inferred natural death
rate as the inverse of life expectancy at birth (average life expect-
ancy was 54 years in Burkina Faso) [26], and the average recovery
rate as the inverse of duration of acute phase of meningitis (acute
phase of bacterial meningitis would last a week on average) [27]
(Table 1). Parameters that are not available in the literature
were estimated using suspected bacterial meningitis cases report
data from Burkina Faso; a country within the meningitis belt.
The data consist of weekly counts of new suspected cases of bac-
terial meningitis recorded at health centres of four districts of the
country from 2004 to 2010 together with the population sizes cov-
ered by each health centre. The estimated parameters were: the
average meningococcal transmission and invasion rates, the
amplitudes of seasonal forcing of transmission and invasion
rates, the rate at which asymptomatic carriers and ill individuals
recover, the duration of temporary immunity and the timing of
weekly incidence peak relative to January 1. Initial susceptibles
and carriers population size at the start of calendar years were
also estimated for each health centre year hyperendemic’s curves,
as they could not be inferred directly from the literature. We lim-
ited the space of potential parameters values to be tested to plaus-
ible values according to the published literature if possible
(Table 1). For example, we used the 95% confidence interval of
the meningococcal case–carrier ratio estimate during the dry
hyperendemic season in the meningitis belt [7] as plausible values
range for the average bacterial invasion rate (a0). We estimated all
unknown parameters values using a maximum likelihood
approach. For each model, parameters values were selected to
maximise the Poisson likelihood of observed bacterial meningitis
incident cases. We used the COBYLA algorithm, a derivative-free
optimisation algorithm, implemented in the R package nloptr for
parameters optimisation routine [28]. We chose this algorithm as
it is relatively fast, it allows good convergence of the coefficients
estimated on our data and it supports optimisation constrains
such as parameter range. Several initial values were tested, and
best-fit parameters estimates were obtained after 40 000 iterations.
Implementations details of the optimisation routine are provided
in Supplementary Material S1. In the complementary exploratory
analysis investigating heterogeneous mixing of the population age
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groups in the models, we inferred the effective contact matrix
from age-specific force of infection estimates in dry season with
‘minor epidemics’ as reported by Tartof et al. [11] in Burkina
Faso.

Model simulation and evaluation

We implemented and simulated the models using R statistical
computing software [29], and the lsoda function (deSolve pack-
age) for numerical integration of the ordinary differential equa-
tions with 1-day time step. We computed weekly incidence as:

∫t+(1/52)

t

atCdt , (7)

with atC, the proportion of asymptomatic carriers who becomes
ill at time t.

We quantitatively assessed the models’ performance accuracy
using the coefficient of determination (R2), the per cent bias
(PB), and the ratio of the root-mean-squared-error (RMSE) to
observation standard deviation (RSR) (Supplementary Material
S1). These three statistics quantify errors in models’ predictions.
PB computes the average absolute bias in model predictions of

observations. It gives an indication on whether the model results
are consistently under- or overestimated compared with the
observations [30]. The optimal value of PB is 0.

RSR standardises the RMSE using the observations standard
deviation. It incorporates the benefits of error index statistics
and includes a scaling/normalisation factor, so that the resulting
statistic can be compared across data with different variance.
The lower RSR, the better the model simulation performance.
We also compared carriage prevalence predicted by the models
with carriage prevalence reported by series of meningococcal car-
riage studies and a review of carriage during wet endemic and dry
hyperendemic seasons in the meningitis belt [7, 17, 31]. We
assessed the models’ performance qualitatively by visual inspec-
tion of trajectories matching plots of model predictions of weekly
incidence and observed data, and the ability of the models to fit
data across all health centre years with a relatively good accuracy,
i.e. capture both the seasonal trend in data, as well as timing and
amplitude of observed seasonal peaks. Finally, the three models
were compared based on their Akaike Information Criteria
(AIC) to account for model complexity associated with the num-
ber of input parameters. The lower the model’s AIC, the better
and an absolute difference in AICs between 0 and 2 was consid-
ered weak to distinguish two models.

Uncertainty and parameter sensitivity analysis

The Latin Hypercube Sampling (LHS) uncertainty technique [32]
was used to assess the model robustness to varying fixed and esti-
mated parameters values (uncertainty analysis). Primarily, we
evaluated the effect of parameters estimates uncertainty on pre-
dictions of the annual cumulative meningitis incidence and the
annual average asymptomatic carriage prevalence. The estimates
of these two models’ state variables were obtained from the results
of uncertainty analyses, and their distribution described for each
model. Probability distribution functions (pdfs) of the estimated
parameters were unknown. Therefore, we set the parameters
pdfs to the uniform distribution. We also set the minimum and
maximum values of the uniform distributions to be the 1st and
3rd quartiles of each of the estimated parameters distribution
per model. Models were simulated with each of 1000 sets of para-
meters values sampled based on the LHS schema. We sampled a
large number of values (1000) without replacement, within the
boundaries of each parameter space to ensure that a great number
of plausible parameters values combinations were explored. We
calculated partial rank correlations coefficients (PRCC) between
each of the estimated parameters and the sensitivity outcome vari-
able: the annual cumulative incidence of meningitis cases.
Scatterplots (of each input parameter against the sensitivity out-
come variable) were generated to check that the assumption of
monotonicity was satisfied. The sign of the PRCC identifies the
specific qualitative relation between each of the estimated para-
meters and the sensitivity outcome variable. We used the PRCC
to identify key parameters that contributed the most to the mod-
els’ predictions imprecision.

Results

Model fit

The three models reproduced the weekly incidence of meningitis
cases across the 64 health centre years with a good accuracy.
Median R2 over all health centre years was 0.72, 0.86 and 0.87

(a)

(b)

(c)

Fig. 1. Flow chart of state progression of individuals between the different epidemio-
logical classes of the SCIRS models. Thick black arrows indicate parameters with sea-
sonal forcing. (a) Model1-‘inv’: seasonal forcing of the invasion rate alone, (b)
model2-‘transm’: seasonal forcing of the transmission rate alone, (c)
model3-‘inv-transm’: seasonal forcing of the transmission and invasion rate.
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for model1-‘inv’, model2-‘transm’ and model3-‘inv-transm’,
respectively (Table 2). On average, model1-‘inv’ underestimated
observed values, namely the peak incidence values (highest weekly
incidence in the year) by 2%, while model2-‘transm’ and
model3-‘inv-transm’ overestimated observed incidences by 5%
and 1%, respectively. The error rates of the three models were
relatively low but model 1-‘inv’ had an error rate (RSR = 0.52)
that is about 40% higher than for model2-‘transm’ and
model3-‘inv-transm’ (Table 2). Adding annual seasonality of the
transmission parameter to seasonality of the invasion rate
(model3-‘inv-transm’) improved the weekly incidence predictions
of model1-‘inv’ overall (R2 and error rate RSR improved).
However, the gain in prediction accuracy was marginal when
comparing model3-‘inv-transm’ to model2-‘transm’ perfor-
mances (Table 2).

The AIC of the three models were on average similar, suggest-
ing that the models cannot be distinguished based on their quan-
titative performance alone (mean AIC = 46, standard deviation
S.D. = 19 for model1-‘inv’; mean AIC = 44, S.D. = 20 for model2-‘
transm’ and mean AIC = 46, S.D. = 20). Trajectories matching
plots between the models predictions of weekly incidences and

data at each health centre year suggested that seasonal trends in
data were captured well by the three models, but model2-‘transm’
and model3-‘inv-transm’ captured annual peaks of disease inci-
dence better than model1-‘inv’ in some health centre years
(Fig. 2, Supplementary Figs S1–S3).

Model1-‘inv’ involved an average 2.9-fold increase, S.D. = 5.5 of
the baseline invasion rate, while model2-‘transm’ involved an
average 2.0-fold increase, S.D. = 0.3, of the baseline transmission
rate. When both seasonality of the invasion and transmission
rate is included (model3-‘inv-transm’), an average 2.0-fold
increase, S.D. = 1.2 of the invasion rate is involved vs. an average
1.6-fold increase of the transmission, S.D. = 0.3.

The weekly carriage prevalence predicted by all three models
during endemic wet season were <1% and in agreement with
meningococcal serogroup A carriage prevalence studies outside
epidemic periods in the meningitis belt [7, 17]. During the dry
season, the median value of weekly carriage prevalence peaks
(across all 64 health centre years) was 12% (1st, 3rd quartile =
7%, 18%) for model1-‘inv’, 17% (1st, 3rd quartile = 13%, 26%)
for model2-‘transm’ and 11% (1st, 3rd quartile = 15%, 25%) for
model3-‘inv-transm’. Including age structure in the models did

Table 1. Fixed and unknown parameters values and ranges for calibration of the models of seasonal hyperendemic bacterial meningitis in the African meningitis
belt

Parameter Short description
Plausible
range

Initial
valuea Unit Comments and sources

Unknown parameters

β0 Meningococcal mean
transmission rate

>0 0.5 Day−1 Unknown. Only positive values

a0 Meningococcal mean invasion
rate given carriage

0.002–0.012 0.007 Month−1 Inferred from case–carrier ratios estimated in a
systematic review, specific for season and
epidemiological context [7]

α Rate of loss of carriage 1–52 12 Year−1 Unknown, carriage duration between 1 week and 1
year, range inferred from [20, 23]

w Rate of loss of natural
immunity

0.2–12 4 Year−1 Unknown, persistence of natural immunity of between
1 month and 5 years, range inferred from [20, 24]

εa Amplitude of seasonal forcing
of invasion rate

0–100 50 An amplitude of 0 means that the baseline invasion
rate remains constant across seasons; of 100 means it
increases up to 100-fold

εb Amplitude of seasonal forcing
of meningococcal
transmission rate

0–1 0.5 An amplitude of 0 means that the baseline
transmission rate remains constant across seasons,
and values up to 1 means presence of seasonality

θ Calendar day of maximal
invasion rate

91–112 97 Assuming correlation with aerosol load during period
of relative humidity <40% (calendar week 13 through
16) [25]

S0 Proportion of initial
susceptibles in the population

0–1 0.5 The proportion of susceptible at the beginning of the
calendar year (1 January)

C0 Proportion of initial carriers in
the population

0–1 0.01 The proportion of carriers at the beginning of the
calendar year (1 January)

Fixed parameters
values

γ Death rate from meningitis 5.2 Year−1 Case fatality = 10% [1]

μ Natural death rate 0.02 Year−1 Life expectancy = 54 years [26]

ρ Recovery rate 52 Year−1 Acute phase of bacterial meningitis disease lasts a
week on average [27]

b Birth rate b = μ + γI Year−1 Scaled to keep total population size constant

aValues used as initial values for parameters optimisation routine.
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not improve the models fit to data nor significantly change the
results. This complementary analysis and the fits results are pre-
sented in Supplementary Material S2.

Parameter estimation

Estimates of the baseline transmission rate were similar in the
three models, as were estimates of the average duration of immun-
ity, the timing of weekly incidence peak, and the initial suscepti-
bles population size in model2-‘transm’ and model3-‘inv-transm’.
However, with model1-‘inv’, duration of immunity tended to be
longer, and the initial susceptibles population size larger (Fig. 3,
Table 3). The average invasion rate estimated by model2-‘transm’
was fourfold higher than that of model1-‘inv’ and model3-‘inv-
transm’. Overall, parameter estimates with model3-‘inv-transm’
had smaller between-health centres variances than with

model1-‘inv’ andmodel2-‘transm’ (Fig. 3, Table 3). Sensitivity ana-
lyses with hyperendemic health centre years defined as 50 weekly
cases per 100 000 maintained during at least two consecutive
weeks did not yield substantially different results (data not shown).

Uncertainty and parameters sensitivity

Uncertainty analysis results (Table 4) show that the prediction
precision of the three models is low due to high degree of estima-
tion uncertainty for the baseline values of the estimated para-
meters. Model2-‘transm’ has the higher prediction imprecision
with a larger variance of the predicted annual cumulative inci-
dence: 6346 compared with 439 for model1-‘inv’, and 731 for
model3-‘inv-transm’. Uncertainty in estimating five of the nine
estimated parameters was most critical in affecting the prediction
precision of the three models. The five most critical parameters

Table 2. Quantitative performances (goodness of fit) of the three compartmental models in predicting annual seasonal hyperendemic incidence of 64 health centre
years in four health districts of Burkina Faso during 2004–2010

Models

R2a PB (%)b RSRc

Median 1st, 3rd quartiled Median 1st, 3rd quartile Median 1st, 3rd quartile

Model1-‘inv’ 0.72 0.62, 0.83 −2.30 −11.10, 4.20 0.52 0.41, 0.61

Model2-‘transm’ 0.86 0.78, 0.92 0.50 −7.10, 1580 0.37 0.28, 0.47

Model3-‘inv-transm’ 0.87 0.78, 0.92 4.96 −10.20, 11.20 0.36 0.28, 0.46

aR2: coefficient of determination. Refers to the variance in observed data explained by the model.
bPB: per cent bias (%). Average tendency of the simulated values to be larger or smaller than their observed ones.
cRSR: ratio of root-mean-square error (RMSE) to standard deviations of observations.
d1st, 3rd quartiles refers to: first and third quartiles of the estimates distribution.

Fig. 2. Trajectory matching plots of observed weekly incidence data and models’ predictions. Data (hallow circles) and models predictions (black solid line). (a)
Health centre year with the poorest fitted data. (b) Health centre year with the best-fitted data. a0-fold and β0-fold indicate the seasonal fold increase of the inva-
sion and transmission rate (respectively) relative to their baseline or average value. Model1-‘inv’: seasonal forcing of the invasion rate alone, model2-‘transm’: sea-
sonal forcing of the transmission rate alone, and model3-‘inv-transm’: seasonal forcing of the transmission and invasion rate. Trajectory matching plots for all 64
health centre years are provided in Supplementary Figs S1–S3. Simulations are based on best-fit estimates of the parameters.
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were the baseline transmission and invasion rates, average dur-
ation of asymptomatic carriage, the duration of immunity to
infection and disease and the initial susceptibles population size
(Table 5). The effect of uncertainty of carriage duration on predic-
tion imprecision was more important with model1-‘inv’, than
with model2-‘transm’ and model3-‘inv-transm’. Parameter sensi-
tivity ranking based on the PRCCs indicates that with model1-
‘inv’, the baseline invasion rate was the most sensitive parameter,
followed by the duration of asymptomatic carriage. With model2-‘
transm’, the most sensitive parameters were duration of immunity
to infection and disease, and the baseline invasion and transmis-
sion rate. With model3-‘inv-transm’, the baseline transmission
and population immunity were the first two most critical para-
meters. However, initial proportion of carriers at the beginnings
of the dry season also appears critical for the later (Table 5).

The positive value of the PRCC for the majority of the esti-
mated parameters values implies that when the values of these
input parameters increase, the future number of meningitis
cases will increase. As immunity wanes quickly, the future num-
ber of meningitis cases is likely to increase. One possible way this
can occur is by fast replenishment of the pool of susceptible indi-
viduals. With higher pool of susceptible individuals and lower
population level immunity, comes increased likelihood of effective
transmission of infection.

Discussion

This modelling study is a first attempt to fit compartmental mod-
els based to surveillance data of suspected bacterial meningitis at a
fine spatial (health centre) and temporal (weekly) scale in the
African meningitis belt. Two publications, by Karachaliou et al.

[12] (building on Irving et al. [10]. work), and Tartof et al. [11]
used meningitis compartment models to evaluate long-term vac-
cination strategies with serogroup A conjugate vaccine. Both stud-
ies included seasonal change of the transmission and invasion rate
in an age-structured model, but did not aim at comparing models
with different types of seasonal forcing with regard to the transi-
tion from endemic to hyperendemic situation. Our study aimed at
investigating the pathophysiology of the seasonal hyperendemicity
of bacterial meningitis in this region at a fine scale, which is extra-
ordinarily pronounced with a 10- to 100-fold increase observed
every year in all districts [6, 7]. We found that compartmental
models using seasonal forcing of risk of invasive disease given car-
riage, transmission or both, all produced seasonal disease inci-
dence patterns consistent with the observed data, while models
containing a seasonal effect on transmission improved the fit of
seasonal incidence peaks. The latter finding appears to be some-
what in contrast with the hypothetical model presented by
Mueller and Gessner [16]. While the three models required simi-
lar estimates of the endemic transmission rate to reproduce the
observed disease incidence, the model including seasonality of
transmission only (model2-‘transm’) involved a 2–4 times higher
endemic invasion rate. This suggests that it is not sufficient to
have higher transmission in the dry season to accurately repro-
duce the observed hyperendemicity, the level of meningitis disease
risk given colonisation is important as well. Also, we found that
seasonal change occurred in both the transmission and invasion
rate in the model including seasonality of these two parameters.
Our findings seem to conflict with the results from Tartof et al.
[11] who published an age-structured model of MenA in the
meningitis belt showing that observed data trends could be
explained by a model with varying infection rates, but little

Fig. 3. Boxplot showing the distribution of parameter
estimates across all health centres years per model.
The boxes include 50% of the distribution, and dots
represent outliers’ values. Tick horizontal lines in the
boxes represent the median value of the estimates.
Values bellow the boxes are less than the 25th percent-
ile and values above the boxes are greater than the 75th
percentile of the distributions. Initial susceptibles and
carriers’ populations estimates are reported as propor-
tion of the population as of 1 January of the calendar
years. Model1-‘inv’: seasonal forcing of the invasion
rate alone, model2-‘transm’: seasonal forcing of the
transmission rate alone, and model3-‘inv-transm’: sea-
sonal forcing of the transmission and invasion rate.
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seasonal variation in the risk of disease given colonisation. Adding
a similar age-specific contact pattern to our models did not sig-
nificantly change our results nor improve the fit to the data
(Supplementary Material S3). The age-specific contact matrix
(Supplementary Material S2) for this complementary analysis
was extrapolated from Tartof et al.’s [11] paper and its supple-
mental materials, which may have its own limitations. However,
discrepancies with the Tartof et al.’s study may be explained by
differences in the spatial scale and scope of data analyses.
Tartof et al. used data aggregated at the district or national level
and aimed at explaining the occurrence of larger epidemic clusters
or epidemic waves spanning several consecutive years. In contrast,
our exercise aimed at studying the transition from endemic to
hyperendemic situations, excluding localised epidemics detected
based on high-resolution data (health centre level). The two mod-
els therefore differ in aim and spatial scale. Their use of larger
scale data, i.e. district or national while we use local health centres,
may prevent from accurately discriminating epidemic from regu-
lar hyperendemic events, thus mixing two distinct disease spread-
ing mechanisms. Until appropriate contact pattern data from the
meningitis belt population become available, our complementary
analysis of the models including an age-structured model of trans-
mission (Supplementary Material S2 and S3) should be consid-
ered exploratory.

The average annual carriage prevalence estimates from our
models’ uncertainty analysis exceeded 1% (1.9%). Carriage preva-
lence studies conducted in the meningitis belt show that, outside
of epidemics, MenA carriage prevalence rarely exceeds 1%. Lack
of serogroup-specific surveillance data for our model estimation
may explain this behaviour, and the obtained carriage estimates
represent both meningococci and pneumococci, all serogroups
and type combined. Carriage studies using classical swabbing
and culture inoculation techniques may have also underestimated
the prevalence of nasopharyngeal carriage [6, 33–35]. Seasonal
variations of the transmission rate in each health centre year
appear to mirror the small or absent seasonal variations of car-
riage prevalence observed in available epidemiological studies
[17, 31].

The model including only seasonal forcing of invasion
(model1-‘inv’) required a substantially longer persistence of nat-
ural immunity following carriage or disease (median = 2.5 years
vs 1 and 1.5 years), where the few serological studies available sug-
gest rather shorter immunity persistence [20, 24]. An additional
limitation of model1-‘inv’ was its lower accuracy in reproducing
annual peaks of data in several health centre years, which was
improved by an additional forcing of the transmission rate. An
explanation for this could be that some health centre years inci-
dence curves were classified as hyperendemic incidence based
on the epidemic threshold definition used but were small-
localised outbreaks resulting essentially from an accelerated trans-
mission of the bacteria in the community as explained in the
explanatory model suggested by Mueller and Gessner. However,
sensitivity analyses with a lower epidemic threshold (50 weekly
cases per 100 000) did not impact the models’ results.

The fold increase of the transmission rate was not systematic-
ally higher than that of the invasion rate. It appears that both
pathophysiological mechanisms are relevant and may reflect the
impact that climatic conditions have on bacterial meningitis.

This study builds on the model published by Irving et al. [10]
who investigated how well simple deterministic models were able
to qualitatively reproduce the meningitis epidemiology in the
African meningitis belt. Their study was limited to largerTa
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epidemic waves that are observed every 7–10 years at the national
level and did not use surveillance data for parameterisation or
evaluation of model performance. The authors found that the
model captured the irregular pattern of meningitis epidemics
qualitatively and concluded, under the assumption of an
increased bacterial transmission during the dry season, that the
dynamics of population immunity could explain disease dynam-
ics. Our study focused on hyperendemic incidences during the
dry season, and results from the two studies should be considered
as complementary, in particular as; as suggested by Mueller and
Gessner [16], hyperendemicity, localised epidemics and epidemic
waves may be distinct phenomena with distinct pathophysio-
logical and epidemiological mechanisms. However, it appears
essential to use surveillance data for parameterisation and quan-
titative evaluation. The availability of such data at high spatial
(health centre) and temporal (weekly) resolution will allow adapt-
ing our model to reproduce the occurrence of localised epidemics,
epidemic waves and meningitis incidence at the regional level

using meta-populations models. Eventually integrating immun-
isation interventions, such models will serve to develop optimised
vaccination strategies against meningococcal and pneumococcal
meningitis. We identified key parameters for which more data
from clinical and epidemiological studies are needed to improve
prediction, in particular duration of immune protection and car-
riage episodes, rates of invasion and transmission of the bacteria,
and their variation by season.

Our study has some limitations inherent to the deliberately
simple model structure and assumptions. We assumed that mix-
ing among individuals was homogeneous. Meningococcal car-
riage and disease affect different age groups at different rates
[31] and it is expected that contacts will be more intense between
individuals in the same age group, in particular for older children
and young adults. Limitations inherent to our extrapolation of
age-specific contact pattern from Tartof et al.’s paper may have
prevented our age-structured model from achieving better fit to
the data than the simpler model. Similarly, we assumed only

Table 4. Description of predicted annual incidence and weekly carriage prevalence (averaged over the year) using 1000 combinations of parameters values from the
Latin Hypercube Sample (uncertainty analysis)

Values

Annual incidence per 100 000 inhabitants Average weekly carriage prevalence (%)

Model1 Model2 Model3 Model1 Model2 Model3

Minimum 28.70 0.06 0.28 0.90 0.00 0.01

Maximum 125.4 355.0 139.0 3.8 3.7 3.5

Mean 67.0 115.0 59.0 1.9 1.6 1.8

Median 62.3 105.0 54.0 1.8 1.5 1.7

Variance 439.9 6346.0 731.0 0.3 0.7 0.6

5th percentile 37.70 1.50 18.00 1.10 0.02 0.70

95th percentile 108.8 273.0 110.0 2.7 3.1 3.2

Table 5. Partial rank correlation coefficients (PRCC) between the Latin Hypercube Samples of estimated parameters and the annual cumulative incidence of
meningitis (sensitivity analysis)

Model1-‘inv’ Model2-‘transm’ Model3-‘inv-transm’

Parameter Short description PRCCa
95% Confidence

interval PRCC
95% Confidence

interval PRCC
95% Confidence

interval

β0 Meningococcal mean transmission rate 0.76*** 0.68–0.84 0.80*** 0.75–0.86 0.91*** 0.88–0.96

a0 Meningococcal mean invasion rate 0.90*** 0.86–0.96 0.84*** 0.76–0.94 0.81*** 0.75–0.89

α Rate of loss of carriage −0.89*** −0.93 to −0.86 −0.49*** −0.65 to −0.31 −0.63*** −0.75 to −0.54

w Rate of loss of natural immunity 0.80*** 0.73–0.88 0.87*** 0.82–0.93 0.90*** 0.87–0.95

θ Calendar day of maximal invasion rate 0.18 −0.01 to 0.36 0.03 −0.17 to 0.27 −0.04 −0.26 to 0.19

εa Seasonal forcing amplitude of invasion
rate

−0.15 −0.34 to 0.05 NA NA −0.025 −0.25 to 0.22

εb Seasonal forcing amplitude of
meningococcal transmission rate

NAb NA 0.18 0.03–0.37 −0.11 −0.31 to 0.11

S0 Initial susceptibles’ proportion 0.86*** 0.81–0.93 0.73*** 0.66–0.84 0.81*** 0.74 to 0.90

C0 Initial carriers’ proportion 0.09 −0.08 to 0.33 0.11 −0.095 to 0.28 0.22* 0.04 to 0.40

aPartial rank correlation coefficients estimates are significantly different than 0 at 0.05 level (*), and <10−10 level (***) two-sided P values. They quantify the statistical relationship between
each parameter and the model output.
bNA stands for not applicable to the model.
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one level of protection against carriage and disease, given the
sparsity of evidence, while models evaluating vaccination strat-
egies will require more distinct assumptions.

We used sinusoidal functions to force the seasonality of the
transmission and invasion parameters, while an improved
approach could consist in modelling these two parameters as a
function of climatic variables, such as mean aerosol load, that
are known to correlate well with seasonal meningitis incidence
[36–38]. In some health centres with small population size, we
had to limit the effect of random noise in the data by smoothing
the time series to focus on the underlying seasonal trend. Chance
variations of some unknown parameters, in particular the extent
of climate conditions changing from year to year, was not expli-
citly included in the model structure. We addressed this in
part by fitting the parameters on a yearly basis rather than
using a single multiple year time series. However, stochastic mod-
els may be more appropriate when these fluctuations are import-
ant. Stochastic models shall be explored in the future for they
appear to be particularly relevant when modelling localised epi-
demics. We used a model structure of overall meningococcal car-
riage and infection. The epidemiology of carriage likely differs
between meningococcal and pneumococci meningitis but the lim-
ited knowledge about both bacteria dynamics made it challenging
to adapt the proposed model to include pneumococci carriage
data. Finally, our analysis carried on hyperendemic bacterial
meningitis, i.e. both meningococcal and pneumococcal meningi-
tis, assuming similar pathophysiologic mechanisms [39]. This
assumption may not hold with regard to a variety of factors,
including age structure of carriage, duration of carriage and
immunity. However, given the lack of pathogen-specific meningi-
tis surveillance data over a long period and in a large area, our
approach appears justified, while it should be improved as appro-
priate surveillance data become available.

Despite these limitations, our findings suggest that the ubiqui-
tous hyperendemicity of bacterial meningitis during the dry sea-
son in the African meningitis belt occurs due to a combination
of increased risk of meningitis given asymptomatic carriage and
meningococcal transmission. Despite the description of this phe-
nomenon by Lapeyssonie [40] more than 50 years ago, the bio-
logical mechanisms for this pronounced seasonality remain
largely unknown and little is known about the impact of aerosols
and low air humidity on the human mucosal structures, immune
system and interaction with the bacteria.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268818002625.
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