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Abstract: Monitoring vegetation cover during winter is a major environmental and scientific issue in
agricultural areas. From an environmental viewpoint, the presence and type of vegetation cover in
winter influences the transport of pollutants to water resources. From a methodological viewpoint,
characterizing spatio-temporal dynamics of land cover and land use at the field scale is challenging
due to the diversity of farming strategies and practices in winter. The objective of this study was
to evaluate the respective advantages of Sentinel optical and SAR time-series to identify land use
in winter. To this end, Sentinel-1 and -2 time-series were classified using Support Vector Machine
and Random Forest algorithms in a 130 km2 agricultural area. From the classification, the Sentinel-2
time-series identified winter land use more accurately (overall accuracy (OA) = 75%, Kappa index
= 0.70) than that of Sentinel-1 (OA = 70%, Kappa = 0.66) but a combination of the Sentinel-1 and -2
time-series was the most accurate (OA = 81%, Kappa = 0.77). Our study outlines the effectiveness of
Sentinel-1 and -2 for identify land use in winter, which can help to change agricultural practices.

Keywords: agricultural monitoring; earth observing sensors; multi-temporal classification; optical
and SAR time-series; Random Forest algorithm; Support Vector Machine algorithm

1. Introduction

Monitoring vegetation cover during winter is a major environmental and scientific issue in
agricultural areas. From an environmental viewpoint, the presence and type of vegetation cover in
winter influences the transport of pollutants to waterbodies by reducing the loss of nitrates, nutrients,
pesticides or sediment from agricultural fields [1,2]. Lack of vegetation cover acts as an accelerator
when soils are bare after a main crop (e.g., maize, rapeseed), while catch crops act as an obstacle to
transport [3]. In this context, identifying and characterizing winter land use is a major component
of water quality restoration and sustainable management in agricultural landscapes [4]. From a
methodological viewpoint, characterizing spatio-temporal dynamics of land use and land cover
(LULC) at the field scale is challenging due to the diversity of farming strategies and practices in winter.
Identifying winter land use remains a major scientific challenge for the remote sensing community.
While optical remotely sensed data are used mainly to determine annual LULC [5], they have several
limitations for identifying land use in winter.
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Time-series of medium-resolution remotely sensed data have been shown to be useful for
classifying LULC over large areas [6,7] or for mapping and monitoring bare soils during winter
in intensive agricultural regions [8,9]. However, due to their insufficient spatial resolution, these
time-series can detect only patches of bare soil for winter land use at the field scale ([10]. High and
very high spatial resolution remotely sensed data are also widely used to discriminate the main crop
rotations and land uses at the field scale [11,12]. Refs. [13,14] demonstrated the potential of very high
resolution remotely sensed data to monitor land use during summer. [15,16] showed the ability of
high and very high spatial resolution images (Landsat and IKONOS) to identify crop residues during
winter with high accuracy (overall accuracy (OA) > 80%). However, soil surface and vegetation growth
conditions vary daily, seasonally and among fields [17]. Capturing these variations, which is necessary
to identify land use types, requires acquiring several remotely sensed images during winter.

Optical remotely sensed data are under-exploited for identifying winter land use, mainly
because few cloud-free images are available in winter for monitoring intra-annual dynamics of crops.
Synthetic-Aperture Radar (SAR) data provide a reliable solution to address the limitations of optical
images because they are not sensitive to atmospheric conditions and can be acquired during the
day or night [18]. Thus, time-series of SAR images can be acquired to study intra-annual changes
in vegetation [19]. SAR images have been used extensively to map land use in winter, especially to
identify bare soil and tillage practices [20,21]. SAR time-series can also be used to identify inter-crops
and crop residues. Refs. [22,23] demonstrated that vegetation structure and phenology is directly
related to the backscattering mechanisms that occur between the SAR signal and land surfaces.

However, while optical and SAR data should be complementary, few studies have evaluated the
combined use of optical and SAR time-series to identify and characterize land use [5,24,25] and, to our
knowledge, none has done so for land use in winter. The development of Sentinel-1 and -2 sensors,
which acquire optical and SAR data with high spatial and temporal resolutions, provides interesting
opportunities to monitor winter land use. Until now, few studies have evaluated the use of Sentinel-1
(SAR) and Sentinel-2 (optical) time-series for monitoring land use, either separately or combined [26,27].
Refs. [28,29] identified land use classes during summer using Sentinel-2 time-series, with OA > 91%.
However, only three studies [28–30] have used Sentinel-2 data to monitor intra-annual land use changes,
mainly because few cloud-free images are available during winter. Ref. [30] has shown the potential of
Sentinel-2 time-series compared to Landsat-8 and SPOT-5 time-series for detecting changes in LULC,
with better results obtained with Sentinel-2 than the other data. Refs. [28,29] demonstrated the ability
of Sentinel-2 single-date images and time-series to map land use changes during the growing season,
with OA > 90%. Several studies evaluated the use of Sentinel-1 data for identifying and monitoring
land cover during summer, with OA > 80% [31,32]. Ref. [33] classified Sentinel-1 time-series to map
winter vegetation in five quality classes (“bare soil” to “high quality”) using a deep-learning approach,
with OA > 98%. Only two studies investigated the potential of the use of combined Sentinel-1 and
-2 time-series to identify land cover. Refs. [34,35] demonstrated that the combined use of Sentinel-1
and -2 time-series increased the OA by 5–10 percentage points. Nevertheless, the evaluation of using
Sentinel-1 and -2 time-series to monitor winter land use remains unexplored.

The aim of this study was to evaluate the ability to use Sentinel-1 and -2 time-series to identify
winter land use. To this end, a time-series of nine Sentinel-1 and -2 images acquired during a
single hydrological year in autumn, winter and early spring was processed, first separately and
then combined. Optical and SAR parameters, such as backscattering coefficients and vegetation
indices, were extracted first. These parameters were then used to perform classifications with Random
Forest (RF) and Support Vector Machine (SVM) algorithms [36,37].
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2. Study Site and Data

2.1. Study Site

The “Zone Atelier Armorique” study site, a long-term ecological research (LTER) site in the
LTER-Europe and ILTER networks, is located south of the Bay of Mont-Saint-Michel (48◦31’0” N,
1◦31’30” W), France (Figure 1). It was established in 1993 to assess relationships between changes in
farming practices, landscape dynamics and ecological processes related to biodiversity, water quality
and climate [38]. This agricultural area covers ca. 130 km2 and has a temperate climate with an annual
mean temperature of 12 ◦C, minimum mean temperature for the coldest year of 8 ◦C, maximum mean
annual temperature of 16 ◦C and mean annual precipitation of 650 mm. The site contains ca. 7000
agricultural fields surrounded by a hedgerow network; field size ranges from 0.1-65 ha, with a mean of
2.1 ha. The crop system is characterized by a single crop planted per field each year. The main annual
crops are maize, wheat, rapeseed and barley. In winter, catch crops are grown to prevent nitrogen
leaching, in the framework of the Nitrate Directive of the European Union [39] and some of the catch
crops are fed to cattle. In certain areas, soils are not completely covered by vegetation. Hence, it is
important to locate such areas to advise farmers how to implement the best management practices.
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image from Sentinel-1 data, 2016, ©Copernicus data 2016).SE: Shannon Entropy.

2.2. Field Data

Land Use Data

The winter land use types studied are winter crops, grasslands, catch crops, crop residues and
bare soil (Figure 2). Winter crops (wheat, barley and rapeseed) cover 40% of the utilized agricultural
area (UAA) (Table 1). Wheat and barley sown in October have similar plant structure and phenology.
Barley is harvested at the end of June or beginning of July, whereas wheat is harvested mainly in the
middle of July. Rapeseed is sown mainly in September and harvested at the beginning of July. At full
development, rapeseed plants are twice as tall (ca. 1.8 m) as wheat and barley and their stems are
intertwined, with no clear vertical structure [27]. Grasslands, which are considered to have a major
influence in regulating water flows and nutrient cycling [40], cover ca. 30% of the UAA. They are
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mown or grazed, which explains their similar plant structure but different phenology. Catch crops,
sown after the main crops (August–October), cover 25% of the UAA, are diverse (e.g., oat, phacelia,
mustard) and show different plant structure and phenology. Although bare soils have been banned for
several years to avoid soil erosion and water pollutant flows, they cover an average of 5% of the UAA.
Residues of annual crops (cereal stubble or maize stalks) cover parts of fields.
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Figure 2. Main land use types encountered in winter in the study site: (a) crop residues (maize stalks),
(b) bare soils, (c) winter crops (winter barley), (d) grasslands and (e) catch crops (mustard).

Table 1. Land use classification.

Winter Land Use Types Winter Land Use Subtypes Main Crops

Winter Crops None
Winter wheat

Rapeseed
Winter barley

Grasslands
Mown grasslands

NoneGrazed grasslands

Catch crops

Catch crops fed to cattle

Oat
Oat and vetch

Fodder cabbage
Fodder radish

Temporary grassland (ryegrass and clover)

Catch crops not used

Phacelia
Phacelia and mustard

Phacelia and oat
Mustard

Meslin (wheat/rye mixture)

Crop residues Cereal stubble Maize stalks

Bare soils None None

We conducted ground surveys every ten days between November 2016 and February 2017 on 257
crop fields to identify land use in order to calibrate and validate the classification of remote sensing
data (Figure 1). Samples were randomly distributed throughout the study site; two-thirds (171 fields)
were used for training and the other one-third (86 fields) for validation. The size of the inventoried
fields ranged from 0.1–65 ha. The objects taken into account in this study for the object-oriented
approach correspond to the 257 fields identified in situ from November 2016 to May 2017. We had a
vector layer of field boundaries on which we reported the ground surveys.

2.3. Satellite Imagery

A series of nine optical Sentinel-2 and nine SAR Sentinel-1 images were acquired from autumn
to spring (August 2016 to May 2017) from the data hub of the European Space Agency and Centre
National d’Etudes Spatiales [41]. Sentinel-1 images were acquired in Single Look Complex (SLC) mode
(delivered with VH and VV polarization states) with an incidence angle of 45–47◦. The associated range
and azimuth spatial resolutions were respectively 2.3 and 13.9 m. Sentinel-2 level 2A images were
acquired (i.e., corrected for geometric and atmospheric effects) with a spatial resolution of 10–60 m
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and a spectral resolution of 13 bands. Characteristics of the optical and SAR images are summarized
in Table 2.

Table 2. Characteristics of the Sentinel-1 Synthetic-Aperture Radar (SAR) and Sentinel-2 optical images.
NIR: near infrared, SWIR: shortwave infrared.
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3. Materials and Methods

The full dataset consisted of parameters derived from the optical and SAR image time-series.
The method developed to identify winter vegetation cover from this dataset had three steps:
(i) pre-processing the SAR and optical image time-series, (ii) selecting the most consistent parameters
and (iii) classifying the optical and SAR time-series.

3.1. Pre-Processing of Time-Series

3.1.1. Pre-processing of Sentinel-1 Images

Backscattering Coefficients

Sentinel-1 images were first radiometrically calibrated (Figure 3) using SNAP (Sentinel
Application Platform) v5.0 software with the following equation [42]:

value(i) =
|DNi|2

Ai
2 , (1)

where DN is the digital number of each pixel (amplitude of backscattering signal) and A is the
information necessary to convert SAR reflectivity into physical units provided in the Calibration
Annotation Data Set in the image metadata. This equation transforms the DN of each pixel into a
backscattering coefficient on a linear scale.
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A refined Lee filter [43,44] was then applied with a window of 7× 7 pixels to reduce speckle noise
using SNAP v5.0 software. This window size was selected to decrease speckle noise while preserving
a suitable spatial scale, which was necessary to ensure identification of winter land use. Sentinel-1
images were then geocoded using Shuttle Radar Topography Mission 3s data to correct topographic
deformations. The accuracy of geometric correction was less than 10 m per pixel. A backscattering
ratio was calculated by dividing σ0

VH by σ0
VV . This ratio highlights differing scattering mechanisms

of each target. The backscattering coefficients σ0
VH and σ0

VV and the backscattering ratio σ0
VH : σ0

VV
were then converted into decibels (db) using the following equation:

σ0(db) = 10× log10(σ
0) , (2)

Polarimetric Parameters

A 2 × 2 covariance matrix (C2) was first extracted from the scattering matrix S of each SLC image
using PolSARpro v5.1.1 software [45]. The elements of the matrix, which are independent of the
polarimetric absolute phase [46], were directly geocoded using SNAP v5.0 software. A refined Lee
filter was then applied using a window of 7 × 7 pixels to reduce speckle noise.

The second (C12) and fourth (C22) elements of the diagonal were compared to the backscattering
coefficients. The SPAN, which corresponds to the total scattered power and the Shannon Entropy (SE),
which corresponds to the sum of two contributions related to the intensity (SEi) and the degree of
polarization (SEp) [46], were then calculated from the matrix. SE measures the disorder encountered in
polarimetric SAR images using the following equation:

SE = log(π2e2|C2|) = SEi + SEp , (3)

A total of 13 polarimetric parameters were derived: the elements of the matrix, the SPAN, SE, SEi
and SEp (Table 3).
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Table 3. Parameters derived from Sentinel-1 Synthetic-Aperture Radar (SAR) and Sentinel-2 optical
image time-series.

Sentinel-2 Optical Parameters Sentinel-1 SAR Parameters

Band 2-blue Matrix element C11 decibels (C11 db)
Band 3-green Matrix element C12 imaginary part (C12 img)

Band 4-red Matrix element C12 real part (C12 rel)
Band 5-vegetation red edge Matrix element C22 (C22)
Band 6-vegetation red edge Matrix element C22 decibels (C22 db)
Band 7-vegetation red edge Shannon entropy (SE)
Band 8-near infrared (NIR) Shannon entropy Intensity (SEi)

Band 8a-narrow NIR Shannon entropy Intensity normalized (SEino)
Band 9-water vapor Shannon entropy normalized (SEno)

Band 10-shortwave infrared (SWIR) (cirrus) Shannon entropy polarization (SEp)
Band 11-SWIR Shannon entropy polarization normalized (SEpno)
Band 12-SWIR Total scattered power (SPAN)

Normalized Difference Vegetation Index
(NDVI = (Band 8 − Band 4)

(Band 8 + Band 4) ) Backscattering coefficient VH (σ0
VH)

Normalized Difference Water Index
(NDWI = (Band 8 − Band 12)

(Band 8 + Band 12) ) Backscattering coefficient VV (σ0
VV)

Soil Adjusted Vegetation Index
(SAVI = (Band 8 − Band 4)

(Band 8 + Band 4 + L) ∗ (1 + L))
VH/VV

Leaf Area Index (LAI)
Fraction of photosynthetically active radiation

(FAPAR)
Fractional vegetation cover (FCOVER)

3.1.2. Pre-processing of Sentinel-2 Images

Sentinel-2 images were pre-processed using the CNES Kalideos processing chain [47,48].
They were corrected for atmospheric disturbances, orthorectified and georeferenced based on the
Universal Transverse Mercator (UTM) reference system (zone 30N). Assessment of Level-2A Sentinel-2
time-series, which were corrected from atmospheric and geometric effects from Sentinel-2 Level-1
time-series, was performed based on a visual interpretation of reference target reflectance (water,
buildings, etc.).

Calculation of Vegetation Indices and Biophysical Parameters

Based on the literature, 2 vegetation indices, 1 water index and 3 biophysical parameters were
computed using SNAP v5.0 software. The two vegetation indices were derived from the near infrared
and red bands: The Normalized Difference Vegetation Index (NDVI; [49]) and the Soil Adjusted
Vegetation Index (SAVI; [50]) that have demonstrated their relevance to study land use [51,52].
The Normalized Difference Water Index (NDWI; [53]) was calculated from the near and middle
infrared bands often used to estimate water in vegetation [54]. Biophysical parameters (Leaf Area
Index, fraction of photosynthetically active radiation and fractional vegetation cover) were calculated
using the PROSAIL radiative transfer model [55,56] implemented in SNAP v5.0 software. These
parameters describe the state of the vegetation cover and provide information on the density of green
vegetation [57].

In total, the number of parameters to be processed was 297: 162 for Sentinel-2 data (18 parameters
× 9 dates) and 135 for Sentinel-1 (15 parameters × 9 dates).

3.2. Processing Sentinel-1 and -2 Time-Series

The method for processing Sentinel-1 and -2 time-series we developed had three steps (Figure 4):
(i) extracting features to yield one parameter value per field, (ii) reducing the optical and SAR
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parameter dataset using a data-mining algorithm and (iii) classifying vegetation cover using RF
and SVM algorithms.
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3.2.1. Feature Extraction

The parameters derived from Sentinel time-series (Table 3) were used to process two classification
approaches: an object-based and a pixel-based approach. Hedgerows, which are considered noisy
features in land use mapping, were removed from the images by applying a 5 m negative buffer
around the 257 field boundaries observed on the study site. Then, two feature extraction sequences
were performed: (i) for the object-based approach, the mean and median values of optical and SAR
parameters were calculated at the field scale; (ii) for the pixel-based approach, 100 pixels were randomly
selected from the 257 ground surveys for each winter land use class (5 classes × 100 pixels), which
represents a total of 500 pixels.

3.2.2. Reduction of the Parameter Dataset

A two-step approach was used to remove noise and inconsistent data from the parameter
datasets used for the classification. First, a correlation matrix was computed and a threshold of
0.95/−0.95 was applied to find the most correlated parameters (268 out of 297 parameters). Then, the
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choice of parameters to be removed was made based on a current state-of-the-art to select the most
relevant parameters for the study of inter land use [27,51,52]. At this stage, the dataset consisted of
144 parameters (90 optical and 54 radar parameters). In a second step, an analysis of the parameter
relevance was performed using the RF significance function to further reduce the number of parameters
to be classified. A measure of variable importance was provided for each candidate predictor using
this heuristic method based on the Gini Index [36,58,59]. The break in the histogram was used as
the threshold for selecting the more relevant parameters, that is, 15 optical and 15 SAR parameters
(Figure 5). These 30 parameters were used for winter land use classifications.
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3.2.3. Land Use Classification

The RF and SVM algorithms, which are supervised classification methods, were used to classify
land use during winter 2016–2017. These algorithms were chosen for their consistently strong
performance and the accuracy with which they classify LULC [60,61]. The RF algorithm is an ensemble
algorithm that uses a set of classification and regression trees to make a prediction [36]. The package
randomForest developed by [62] and implemented in R (v.3.3.2) was used to perform winter land
use classifications. Two Random Forest parameters, namely the number of trees (ntree), which was
created by randomly selecting samples from the training dataset [28] and the number of variables
used for tree nodes splitting (mtry) were tuned and randomly determined using the tune function
implemented in the randomForest package. For this study, the ntree parameter was set at 1.000, few
articles having demonstrated that beyond the creation of 1.000 classification trees, the number of errors
produced remains stable [63]. The SVM algorithm is based on statistical learning theory that aims to
determine the location of decision boundaries that produce an optimal separation of classes [37]. In a
two-class pattern-recognition problem in which classes can be separated linearly, the SVM selects the
linear decision boundary that creates the greatest margin between the two classes. The margin is the
sum of distances to the hyperplane from the closest points of the two classes [37]. Thus, it initially
extracts the best linear boundary between two classes of the training set; however, it is not restricted
to linear discrimination, since one of its main advantages is its extension to nonlinear discrimination
via the kernel trick [19]. The package e1071 (v 1.7-0) developed by [64] and implemented in R (v.3.3.2)
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was used to perform SVM classifications. A set of four SVM parameters (gamma, cost, degree, nu)
was randomly tuned using the tune function integrated in the e1071 package. Then, several tests
were carried out to determine the optimal kernel for winter use classification. At the end of the
selection process the polynomial kernel was selected. Results obtained with RF and SVM algorithm
were compared to evaluate their suitability for classifying vegetation cover into land use classes.
Classification performance was estimated using a cross-validation test. The classification was applied
to a varying subset of 257 fields (500 pixels): two-thirds (171 fields or 332 pixels) were used for training,
one-third (86 fields or 168 pixels) for validation [19]. This process was repeated by changing the
training/validation subsamples. Classification accuracy was assessed using OA and the Kappa index,
which expresses the proportional decrease in error generated by the classification compared to the
error of a completely random classification [65]. Finally, the vegetation cover used to map land use
was classified using the algorithm with the highest OA. The classification process was tested for the
two approaches: object-based and pixel-based. Sentinel-1 and Sentinel-2 parameters were classified
separately and by combining optical and SAR data in the same dataset, that is, we realized a fusion at
the lowest processing level (pixels level) referring to the merging of measured physical parameters [66].
The combination of Sentinel-1 and -2 parameters were then classified.

4. Results and Discussion

4.1. Importance of Optical and SAR Parameters for Identifying Winter Land Use

The correlation analysis computed with a threshold of 0.95/−0.95 was applied to find the most
correlated parameters (268 out of 297 parameters), which resulted in the suppression of 153 parameters.
However, correlation matrix was not displayed because the number of parameters (297) is too large
and it would not be readable.

Figure 5 shows the parameter contribution to land use classifications, ranked by importance for
optical and Synthetic-Aperture Radar image time-series. The break in the histogram (after band 5 in
May for Sentinel-2; after polarized Shannon Entropy in April for Sentinel-1) was used as the threshold
for selecting the most relevant parameters, that is, 15 optical and 15 SAR parameters.

The most important SAR parameter was the ratio VH/VV in May, which highlights crop growth,
especially of winter crops [27]. Similarly, the backscattering coefficients were also important. Results
show the importance of parameters derived from the May and April images due to their sensitivity to
variations in double-bounce and volume-scattering mechanisms [67]. The backscattering coefficient VH
calculated from the November image was also important due to its sensitivity to direct contributions
from the ground and the canopy [68]. These parameters highlight the difference between bare soils
and crops.

Concerning optical parameters, the two most important parameters were band 2 in December
2016 and SAVI in May 2017 with a Gini index above 70. One can notice that the best NDVI parameter
came in 14th position, which is not in accordance with the current literature [52]. Results also show the
importance of parameters derived from the May image, 11 parameters out of the 15 most important
parameters being derived from this image. This is due to the fact that this period is the main phase of
highly dynamic plant growth: vegetation peaks in May (the end of spring), when grasslands are easily
detected (Figure 5).

The spectral distributions of two of the most pertinent parameters, that is, SAVI in May 2017 and
VH/VV ratio in May 2017, were computed for the five classes of winter land use (Figure 6). SAVI
was selected over Band 2 based on the current literature, which demonstrated the potential of this
vegetation index to discriminate and characterize crop dynamics [28,54,69].

The Figure 6a shows the potential of SAVI to discriminate winter crops and grasslands from
catch crops and crop residues in May -when the phenological stages and land use changes are most
pronounced. Conversely, results highlight the difficulty to discriminate bare soils from the other classes,
due to a high intra-class variance. To a lesser extent, Figure 6b shows the potential of the VH/VV
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ratio to further separate winter crops and grasslands from catch crops and crop residues. However,
like the SAVI parameter, the VH/VV ratio is not sufficient to separate bare soils from other classes
due to a very high intra-class variance. These results are consistent with the existing literature, which
demonstrated the importance of using backscattering coefficients alone (σVH or σVV) or in combination
(VH/VV) to identify land use [70].
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4.2. Winter Land Use Classification

Accuracy of the winter land use classification obtained from optical and SAR parameters varied
significantly depending on (i) the classification approach (i.e., pixel-based or object-based), (ii) the
classification algorithm (i.e., RF or SVM) and (iii) the time-series dataset (i.e., Sentinel-1, Sentinel-2 or a
combination of both).

Results of the pixel-based and object-based approaches to identifying winter land use had similar
accuracy for the Sentinel-2 dataset and the combined Sentinel-1 and -2 dataset. The object-based
approach had a slightly higher OA (68–83%, Kappa = 0.64–0.77) than the pixel-based approach
(55–81%, Kappa = 0.51–0.77) (Figure 7). Although this is consistent with other studies of LULC [71],
few studies have presented advantages of using the object-based approach instead of the pixel-based
approach to identify and characterize LULC [72,73]. In contrast, results obtained with the Sentinel-1
data showed the superiority of the object-based approach, due to the heterogeneity of SAR values
within fields in winter.
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Concerning the classification techniques, the RF algorithm had higher OA than the SVM algorithm
(median OA = 81% and 79%, respectively). The RF algorithm also had less variation in OA than SVM
(72–83% (Kappa = 0.67–0.77) and 68–80% (Kappa = 0.64–0.76), respectively). The potential of SVM and
RF algorithms for remote sensing studies has been widely demonstrated [59–61]. Our results show
that the RF algorithm is slightly more accurate effective than the SVM algorithm, which is consistent
with results of other studies [59,61,74].

This study evaluated the respective advantages of Sentinel optical and SAR time-series to identify
winter land use. Classification was better using a combination of Sentinel-1 and -2 parameters (median
OA = 81%, Kappa = 0.77) (Table 4), with OA ranging from 75–82% (Kappa = 0.68–0.77). Conversely,
classifications based on either Sentinel-1 or Sentinel-2 parameters alone had OAs of 68–78% and 74–80%,
respectively (Figure 7). While the results highlight the utility of Sentinel-1 and Sentinel-2 individually,
they also emphasize that classification using the Sentinel-2 dataset always outperformed that using the
Sentinel-1 dataset. The classification results highlight the advantages of using the combined Sentinel-1
and -2 datasets, with OA ranging from 68–83% (Kappa = 0.64–0.77). Therefore, our study confirms
the effectiveness of Sentinel-1 and -2 time-series for identifying land use, as previous studies have
demonstrated [26,27] and also shows the potential of using the combined Sentinel-1 and -2 datasets for
this purpose. Additionally, the originality of this study is the identification of land use in winter.

Table 4. Median accuracy of winter land use classifications obtained for the best Sentinel-1, Sentinel-2
and combined Sentinel-1 and -2 parameters using the Random Forest (RF) and Support Vector Machine
(SVM) algorithms. OA: overall accuracy, Kappa: Kappa index.

Algorithms Datasets
Object-Based Approach Pixel-Based Approach

OA Kappa OA Kappa

RF
Sentinel-1 72% 0.67 58% 0.52
Sentinel-2 78% 0.75 72% 0.67

Sentinel-1 & -2 81% 0.77 79% 0.76

SVM
Sentinel-1 73% 0.67 59% 0.53
Sentinel-2 79% 0.76 65% 0.54

Sentinel-1 & -2 78% 0.75 64% 0.54

The best classification, with OA of 81% and Kappa of 0.77, used an object-based approach and
30 parameters derived from a combination of Sentinel-1 and -2 parameters. Misclassification errors
were observed between bare soils (under- and over-estimation rates of 64% and 94%, respectively) and
the other classes (Table 5). This agrees with the study’s difficulty in discriminating bare soils from the
other classes (Figure 6).

Table 5. Confusion matrix of the best winter land use classification obtained using a parameter
dataset derived from a combination of Sentinel-1 and -2 time-series. Overall accuracy = 81%,
Kappa index = 0.77.

Catch Crops Winter
Crops Grasslands Crop

Residues Bare Soils Commission
Errors

Catch crops 310 42 19 0 83 68.3 %
Winter crops 1 410 20 0 23 90.3 %
Grasslands 20 56 310 0 68 68.3 %

Crop residues 0 3 0 389 62 85.7 %
Bare soils 16 7 5 0 426 93.8 %

Omission errors 89.3 % 79.2 % 87.6 % 100 % 64.4 % 81 %

The spatial distribution of winter land uses mapped at the 1:100,000 scale from the best
classification (Figure 8) shows that bare soils and crop residues covered less than 5% of the UAA, while
a high percentage was covered with grasslands (30%) or winter crops (35%). In general, catch crops
and winter crops were located on the largest fields, while bare soils and grasslands were located on the
smallest fields.
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The distribution of membership probabilities associated with this classification indicates that
accuracy decreased at the edges of the study site (Figure 9). Fields smaller than 1 ha had the lowest
membership probability (0.47), while those larger than 10 ha had the highest (0.84), indicating that
classification accuracy increased with field size. These results agree with the confusion matrix (Table 5),
in which misclassification was greatest for bare soils.Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 20 
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5. Conclusions

This study evaluated the respective advantages of using Sentinel optical and SAR time-series to
identify winter land use, using SVM and RF algorithms with pixel-based and object-based approaches.
Our study used high spatial and temporal resolutions of Sentinel data to identify land use types in
winter and to our knowledge, this is the first time such a study has been undertaken.

Results show that winter land use can be identified accurately using combined Sentinel-1 and -2
time-series with a pixel-based approach using an RF algorithm. Analysis of using Sentinel-1 and -2
parameters to identify winter land use led to recommendations for extracting features when mapping
winter land use. Results reveal the advantage of using backscattering coefficients alone or combined
with the NDVI.

Our results also demonstrated limits of this approach to identifying winter land use in small fields,
due to the spatial resolution of Sentinel sensors. Thus, future research could evaluate the use of very
high spatial resolution optical and SAR images, such as ALOS-2 or TerraSAR-X data, to improve the
accuracy of classifying land use types during winter. Better understanding of optical and SAR signal
behaviours of different agricultural practices and environmental conditions would help to identify
and monitor winter land use. This has important implications for developing sustainable agriculture
that decreases the risk of transferring pollutants to the environment.
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