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Abstract— Renal cancer is one of ten most common cancers in
human  beings.  The  laparoscopic  partial  nephrectomy (LPN)
becomes a main therapeutic approach in treating renal cancer.
Accurate  kidney  and  tumor  segmentation  in  CT  images  is  a
prerequisite  step  in  the  surgery  planning.  However,  automatic
kidney  and  renal  tumor segmentation  in  CT images  is  still  a
challenge  work.  In  this  paper,  we  propose  a  new  method  to
perform precise segmentation of kidney and  renal tumor in CT
angiography images. The method mainly relies on a  new three-
dimensional  (3D)  fully  convolutional  network  (FCN)  which
combines  the  pyramid  pooling  module  (PPM)  and  gradually
enhanced  feature  module  (GEFM).  The  proposed 3D network
can utilize the 3D spatial contextual information to improve the
segmentation of the kidney as well as the tumor lesion. According
to the experimental results in the CT images of 140 patients, our
proposed method can segment the kidney and renal tumor with a
high accuracy. The average dice coefficients of kidney and renal
tumor obtained  by  the  proposed  method  are  0.923  and  0.826
respectively,  which  are  higher  than  the  other  two  advanced
segmentation  methods.  Furthermore,  our  approach  shows  an
excellent  performance  for  renal  tumor  detection  in  high
sensitivity and specificity. 

Keywords—Kidney segmentation,  renal tumor segmentation,
3D fully convolutional networks, pyramid pooling

I. INTRODUCTION

Renal cancer is one of ten most common cancers in human
beings. Recently, the traditional radical nephrectomy (RN) is
increasingly  replaced  by  minimally  invasive  laparoscopic
partial  nephrectomy (LPN) in  clinic  to  treat  localized  renal
cancer [1]. The LPN surgery can remove the renal tumor and
preserve  the  normal  renal  tissue.  Especially,  the  newly
developed LPN surgery with segmental renal artery clamping
technique  can  optimally  preserve  the  renal  function  by
clamping the tumor feeding artery during LPN surgery [2]. In
order  to  perform  pre-operative  LPN  planning,  major
information such as  the size and the position of  tumor,  the
anatomy of kidney, renal arteries as well as ureter, should be
extracted  from  volumetric  CT  images.  However,  manual
delineation in more than 200 CT slices is too time-consuming

in  clinical  practice.  Thus,  an  automatic  or  semi-automatic
segmentation method is required.

Several approaches have been presented to perform kidney
segmentation  in  CT  or  MR  images.  Cuingnet  et  al.  [3]
proposed a two-step kidney segmentation approach, based on
random forest algorithms by detecting the kidney position and
then by computing a probability map. Yang et al. [4] designed
a  coarse-to-fine  segmentation  by  using  multi-atlas  images.
These methods, however, only addressed the segmentation of
the  whole  kidney  and  not  the  distinction  between  normal
tissue and tumor lesion. In addition, this atlas-based method
using  the  organ  prior  shape  can  fail  in  presence  of  large
exophytic tumors

Few  research  works  focused  on  the  renal  tumor
segmentation. Linguraru et al. [5] developed a level-set based
method  to  extract  the  renal  tumors.  However,  user-defined
points  should  be  provided  interactively  for  each  tumor.
Furthermore, the tumor lesion segmentation was performed in
the venous phase CT image. Considering the limitation of the
radiation  dose,  venous  phase  CT  is  not  essential  to  the
planning of LPN surgery. Only arterial phase CT images are
acquired  for  the  patients  included  in  our  study.  Several
examples of such images are displayed in Fig.1. They show
that the position and the size of the tumors, the intensity and
the texture of the kidneys vary significantly.  This is  why a
precise  automatic  segmentation  of  the  renal  tumors  is  so
challenging.

Recently,  two-dimensional  (2D)  deep  neural  networks
have been applied with success  to natural  images [6-8] and
also  in  medical  imaging  [9-12].  However,  their  2D feature
extraction capability may be limited in discriminating regions
of kidney and tumors with similar intensity distributions and
textures as shown in Fig.1. Several 3D deep neural networks
based on slices of CT or MR images [13-16]. Experimental
results  showed  that  3D  deep  neural  networks  generally
achieve better performance than the 2D convolutional neural
networks in different organ segmentation tasks, such as liver
tumor [13], brain tumor [14], lumbar vertebrae [15], confocal
microscopy  images  [16],  etc.  However,  to  the  best  of  our
knowledge, there are no attempts reported for kidney and renal
tumor segmentation.



Fig. 1. The examples of renal tumors displayed in arterial enhancement CT 
images. The renal tumors are marked by asterisks (*).

In this paper, we propose a framework to perform accurate
segmentation of  kidney  and  renal  tumor in CT angiography
images. The main contribution of this paper is that a new 3D
fully convolutional network incorporating the pyramid pooling
module (PPM) named 3D_FCN_PPM is implemented. Unlike
the other 2D neural networks, this 3D network can extract the
feature maps based on 3D spatial contextual information. Thus
the  morphological  coherence  of  the  kidneys  and  the  tumor
lesions can be improved.  The paper is  organized as follow:
Section  II  describes  the  basic  features  of  our  method;
experimental  results  are  summarized  in  Section  III  before
concluding (Section IV). 

II. METHODOLOGY

Because an abdominal CT image includes more than 300
cross-sectional  slices  of  5122 pixels,  a  direct  feeding of  the
volumetric CT into the 3D convolutional neural network can
require a large amount of graphics memory, which exceeds the
memory capacity of the most recent graphics  cards such as
NVIDIA Titan  X.  Therefore,  the  ROIs  of  the  kidneys  are
cropped  from  original  CT  image  based  on  the  coarse
segmentation  step  used  in  our  previous  multi-atlas-based
approach [4]. The ROIs extraction, with a fixed window size
of 150×150 pixels, is carried out by aligning the image data
with eight low-resolution atlas images. These ROIs are then
used to build the training and testing datasets. In Fig. 2, the
main pipeline of our method is illustrated.

A. Architecture of 3D Fully Convolutional Neural Network

Our  end-to-end  system  mainly  consists  of  a  specially
designed 3D fully convolutional neural network structure as
depicted in Fig.3. 

1. Module design
Inspired by the idea of FCN [6], we designed a new 3D

FCN-based  network.  Considering  that  3D FCN has  a  huge
demand  of  graphics  memory,  it  is  difficult  to  convert  an
existing 2D network, such as SegNet [7], PSPNET [8], into a
3D version by just replacing all 2D layers by 3D ones.  So,
several  modifications  have  been  made  in  our  network
architecture. 

Firstly,  the  residual  block  introduced  in  ResNet  [17]  is
adopted to construct the major part of our network. The usage
of residual blocks can make our network converge faster and
improve the generality of our model. As shown in Fig.3, there
are 13 residual blocks with a total of 39 convolutional layers
in our network. 

Secondly, compared with the other existing networks, less
pooling  layers  are  used  in  order  to  preserve  image  details
important for the segmentation task. It is well known that the
pooling  layer  can  decrease  the  use  of  graphics  memory  by
reducing the size of  feature maps and enlarge the reception
field to enhance perception of global information. FCN will
miss some useful details for the pixel-level segmentation if it
has too many pooling layers, such as the non-maxima in the
max-pooling layer. Considering that the location information
and the semantic information are equally crucial to generate an
accurate  segmentation,  we  decrease  the  number  of  pooling
layers to two, which, however, has some side-effects including
the  increasing  consumption  of  graphics  memory  and  the
reduction  of  the  reception  field.  Thus,  according  to  the
empirical  evidence  that  the  depth  of  the  network  is  more
important  than  its  width,  we  choose  to  limit  the  width  of
network  to  achieve  a  deeper  network  structure.  The dilated
convolution [18] and the pyramid pooling module (PPM) are
incorporated in our 3D network for larger reception fields. The
detail layer settings is displayed in the Fig. 3.

Fig. 2. The pipeline of our proposed method.



2. Pyramid Pooling Module (PPM)
The  PPM was  firstly  introduced  by  2D Pyramid  Scene

Parsing  Network  (2D  PSPNet)  [8]  and  achieved  best
performance in the ImageNet scene parsing challenge 2016.
As shown in Fig.  3,  the PPM includes  a  shortcut  and four
branches, each of which mainly consists of a pooling layer, a
convolution  layer  and  a  deconvolution  layer.  Different
branches which have different kernel sizes in the pooling and
deconvolution  layers  will  lead  to  different  sizes  of  the
reception field. In this paper, the kernel sizes are set to 2, 4, 8
and 16 for four branches respectively. The branch with a larger
kernel  captures  more  global  features  and  conversely  the
branch with a smaller kernel more local features. The input of
PPM and the outputs of all branches are concatenated to be fed
into the following layer. Thus, the combination of global and
local  features  allows  generating  an  accurate  pixel-level
prediction. Meanwhile, the different kernel sizes also improve
the ability to detect the objects at different scales. Thus, the
PPM is efficient in the segmentation task of the dataset with
multi-scale objects. This is important to the segmentation task
in this paper since the size of kidney and renal  tumor vary
significantly among different patients.

3. Weighted cross entropy
In our experimental  dataset,  the volume ratio of  kidney,

tumor  and  background regions  are  16.93%,  2.43%, 80.64%
respectively. For this unbalanced data distribution problem, we
adopt the loss function based on weighted cross entropy [7]
defined as follows, 

(1)

where T is the number of the classes.  and  are the
probabilities of the i-th class of the ground truth and prediction
respectively,  is  the  weight  of  the  i-th  class.  Here,  the
weights ’s are set to 1.0, 2.0 and 0.2 for kidney, tumor and
background  respectively  in  Eq.  (1)  according  to  the
preliminary experiments

B. Post-Processing

Because  of  the  limitation  of  the  graphics  memory,  our
network can only accept input volume of 64 slices. Thus, one
ROI should be separated into several sub-volumes to be fed
into the network. The segmentation results of all sub-volumes
obtained by our network are later concatenated to generate the

final segmentation results. The segmentation results of the
overlapped regions were generated by majority voting. The 3D
conditional  random  field  [19]  was  adopted  to  improve  the
segmentation  results,  such  as  filling  the  small  holes.
According  the  anatomy  of  kidney,  the  voxels  classified  as
renal tumor and kidney are connected together. The connected
component  analysis  with  an  18-connectivity  in  3D  is
performed to remove isolated misclassified voxels without the
connection to the region of kidney. Only the largest connected
component  including  voxels  classified  as  kidney  or  renal
tumor by our network is kept as the final segmentation result.

III. EXPERIMENTAL RESULTS

A. Experimental datasets

The abdominal  CT angiographic  images  of  140 patients
who underwent a  LPN surgery between Jan.,  2013 to Dec.,
2015 were included in this study. The images were acquired
on a Siemens dual-source 64-slice CT scanner. The pixel size
of these CT images is between 0.59mm 2 to 0.74 mm2. The
kidney segmentation results of our previous method [4] were
used  to  generate  the  initial  contours  of  kidneys.  One
radiologist (X. Zhu) checked the contours of the kidneys and
corrected them if needed. The contours of tumors were drawn
by the same radiologist manually in the cross-sectional slices.
After  the  manual  delineation,  another  radiologist  (L.  Tang)
joined to perform a joint review of the contours and amended
the contours by consensus if need. Patients with four different
pathological  renal  tumor  subtypes  were  included  in  this
dataset. These renal cell carcinoma subtypes cover: clear cell,
chromophobe, papillary and angioleiomyolipoma. The volume
of the renal tumors ranges from 2.11 ml to 144.82 ml and the
mean volume is 33.58 ml. The volume of the kidneys ranges
from 85.76 ml to 262.78 ml and the mean volume is 156.37
ml. 

In  this  study,  only  the  kidneys  with  tumor  lesion  were
selected to build the training and testing dataset. Thus, in total,
90  ROIs  including  the  lesioned  kidney  were  used  for  the
training set  and  50  ROIs  for  the  testing dataset.  Each  ROI
comes from different patient. 

B. Implementation details

Our  work  is  implemented  based on  pytorch  [20].  The
network training and testing experiments were performed on a
workstation with the CPU of i7-5930K, the RAM of 128GB
and one graphic cards of TITAN X of 12GB memory. 

Fig. 3. The network architecture of our 3D_FCN_PPM network.



1. Data preprocessing
As it is done in other studies, images should be normalized

before  being fed  into  the  network.  Due to  the  existence  of
bones and air in the intestinal tract, the range of CT value in
the image could change from -1000HU to more than 800HU.
A  thresholding  step  should  be  performed  before  the
normalization. Because of the injection of contrast media, the
CT  values  of  the  kidney  and  renal  tumor  have  the  same
distribution,  ranging approximately from 100HU to 500HU.
Considering that the surrounding tissues have relatively lower
CT  value,  the  minimum  and  maximum  thresholds  for  CT
value are fixed to be -200HU and 500HU respectively. The CT
values below or above these thresholds were set respectively
to  -200HU  or  500HU.  The  pixel  values  in  all  images  are
normalized to 0~1 and subtracted by the mean value of the
dataset.

2. Data augmentation
Since  the  manual  delineation  of  the  kidneys  and  renal

tumors  is  a  time-consuming  work,  too  few  images  were
available to train the network well. To expand the dataset, the
ROIs were flipped and random cropped. Though each ROI has
about 200 slices, the kidney and subsequently the tumor don’t
appear in all slices. In order to get a good discrimination of the
kidney and the tumor, the data augmentation manipulation was
more focused on the region including kidney and renal tumor.
Experimental results show that it is effective for training our
3D network. In total, the number of images for the network
training reaches about 90000, which is about 1000 times larger
than the number of original ROIs.

3. Network training
Our network was trained end-to-end by back-propagation

and  stochastic  gradient  descent  (SGD).  The  momentum  of
SGD is  set  to  0.9.  The  L2 regularization  is  also  used,  the
weight decay of which is 0.00001. The basic learning rate is
0.001.  We adopt  the  multistep  learning  rate  policy  and  the
steps are set to [3, 5, 7] epochs. Fourteen thousand iterations
were performed in each epoch when batch size is  set  to  4.
Experiments show that our network can quickly get converged
with these settings. The settings are used in all experiments.

C. Evaluation results

Fifty ROIs obtained from 50 patients in the testing dataset
were used by our 3D_FCN_PPM network. We used the same
training dataset  to train two networks,  i.e.  2D_PSPNet  [10]
and  3D_UNet  [16],  to  evaluate  the  performance  of  our
method. The segmentation results are evaluated quantitatively
by dice coefficient and mean surface-to-surface distance. . The
dice coefficient is defined as follows,

(2)

where   and    are the voxels of the l-th label  in the
ground truth x and in the segmentation result  y, respectively.

 is the number of the overlapped voxels of  and  .
 is the sum of of  and  . The dice coefficient and

surface distance are calculated per patient.

In Fig. 4, two examples of the original image, the ground
truth and the comparison of segmentation results of different
networks are displayed. From figures of 3D views displayed in
Fig.4,  the  2D_PSPNet  generated  some false  positive  tumor
classification. In addition, as shown in the 2D cross-sectional
image  of  the  second  example,  the  tumor  region  is
misclassified as background because the region of renal tumor
has  similar  image  appearance  with  the  adjacent  tissue  in
displayed cross-sectional 2D image. Obviously, comparing to
the other two 3D networks, the renal tumor is difficult to be
segmented accurately by the 2D_PSPNet due to the lack of the
contextual information in the z-direction. 

From the 3D visualization of the results displayed in Fig.4,
two 3D networks, i.e.,  3D_UNet and our proposed network,
yielded similar segmentation results. However, our proposed
network,  i.e.  3D_FCN_PPM,  can  generate  more  accurate
segmentation  than  the  3D_UNet  according  to  the  2D
visualization of the results, especially in or near the tumors. 

The comparison of dice coefficients and surface distances
of  different  networks  obtained  in  the  testing  dataset  are
summarized in Table I. In the testing dataset of 50 kidneys,
3D_FCN_PPM can achieved the highest dice coefficients and
minimal mean surface-to-surface distance for both the kidney
and the renal tumor. The average dice coefficients are 0.931
and  0.802  for  kidneys  and  tumors  respectively.  The  dice
coefficients vary from 0.871 to 0.961 for kidneys and 0.440 to
0.938  for  tumors.  The  average  mean  surface-to-surface
distance  is  4.21  and  2.65  pixels  for  kidneys  and  tumors
respectively.

Table I. The comparison of Dice coefficients and surface distances of
different networks obtained in the testing dataset.

Dice coefficient
Average and standard

deviation of mean surface-to-
surface distance (pixel)

Kidney Tumor Kidney Tumor
2D PSPNET-[10] 0.902 0.638 4.47±1.55 12.0.8±12.82

3D NET [16] 0.927 0.751 4.28±1.53 2.86±0.94
3D_FCN_PPM 0.931 0.779 4.24±1.55 2.65±0.91

The lowest dice coefficient for renal tumor in the testing
dataset was 0.440. However, according to the results shown in
Fig. 5, the kidney and the tumor in this case were correctly
detected  but  with some under-segmentation.  The volume of
this renal tumor is about 6ml and its diameter is less than 40
pixels.  Thus,  it  is  easy  to  understand  that  the  under-
segmentation of such small renal tumor is the major reason to
have such a low dice coefficient. 

More segmentation results of 3D_FCN_PPM are given in
Fig.  6.  Although  the  location,  intensity  and  texture  of  the
kidneys  and  the  tumors  in  these  examples  are  diverse,  the
predicted  kidney  and  tumor  regions  are  in  good agreement
with  the  ground  truth.  Another  observation  worth  to  be
mentioned  is  that  the  3D_FCN_PPM can  produce  the  bias
prediction  near  the  renal  hilum  compared  to  the  reference
standard labeled by the radiologists, as pointed by the yellow
arrows in Fig. 6.



Fig.4  The  comparison  of  the  segmentation  results  with  2D  and  3D
visualization in three examples. For each example, the original ROI image,
ground  truth  and  the  segmentation  results  of  2D  PSPNet,  UNet-3D  and
3D_FCN_PPM are displayed in  the  first  to  the  fifth  columns respectively.
Both the segmentation results of a 2D cross-sectional image and of the whole
3D ROI are given. The regions of renal tumors are displayed in white of 2D
view and in red of 3D view.

Fig.  5  The image with  the  lowest  dice  coefficient  of  tumor  region in  the
testing dataset. The dice coefficients of kidney and tumor are 0.901 and 0.440
respectively.  (a)  the  original  slice,  (b)  the  ground  truth  and  (c)  the

segmentation results of 3D_FCN_PPM.

IV. CONCLUSION

In  this  paper,  we  proposed  a  3D  fully  convolutional
network with pyramid pooling module specially designed for
kidneys and renal lesions segmentation. Experimental results
and comparisons with other approaches demonstrate that our
method  achieves  a  very  competitive  performance  with  an
average  dice  coefficient  equal  to  0.931  for  kidney
segmentation and to 0.802 for tumor. In addition, our proposed
network is inherently general and can be easily extended to
other  applications.  An  important  issue  however  in  medical
imaging  will  be  how  to  get  large  data  sets  together  with
ground truth in order to efficiently train such network.

 
Fig. 6. The segmentation results of 3D_FCN_PPM. The images in the first to
third columns are the original image, the ground truth and the segmentation
results of 3D_FCN_PPM. The slice in each row comes from different patients.
Yellow arrows mark the difference at renal hilum between the segmentation
result and the ground truth.
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