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IMPORTANCE Deviation from normal adolescent brain development precedes manifestations
of many major psychiatric symptoms. Such altered developmental trajectories in adolescents
may be linked to genetic risk for psychopathology.

OBJECTIVE To identify genetic variants associated with adolescent brain structure and
explore psychopathologic relevance of such associations.

DESIGN, SETTING, AND PARTICIPANTS Voxelwise genome-wide association study in a cohort of
healthy adolescents aged 14 years and validation of the findings using 4 independent samples
across the life span with allele-specific expression analysis of top hits. Group comparison of
the identified gene-brain association among patients with schizophrenia, unaffected siblings,
and healthy control individuals. This was a population-based, multicenter study combined
with a clinical sample that included participants from the IMAGEN cohort, Saguenay Youth
Study, Three-City Study, and Lieber Institute for Brain Development sample cohorts and UK
biobank who were assessed for both brain imaging and genetic sequencing. Clinical samples
included patients with schizophrenia and unaffected siblings of patients from the Lieber
Institute for Brain Development study. Data were analyzed between October 2015 and
April 2018.

MAIN OUTCOMES AND MEASURES Gray matter volume was assessed by neuroimaging and
genetic variants were genotyped by Illumina BeadChip.

RESULTS The discovery sample included 1721 adolescents (873 girls [50.7%]), with a mean
(SD) age of 14.44 (0.41) years. The replication samples consisted of 8690 healthy adults
(4497 women [51.8%]) from 4 independent studies across the life span. A nonsynonymous
genetic variant (minor T allele of rs13107325 in SLC39A8, a gene implicated in schizophrenia)
was associated with greater gray matter volume of the putamen (variance explained of 4.21%
in the left hemisphere; 8.66; 95% CI, 6.59-10.81; P = 5.35 × 10−18; and 4.44% in the right
hemisphere; t = 8.90; 95% CI, 6.75-11.19; P = 6.80 × 10−19) and also with a lower gene
expression of SLC39A8 specifically in the putamen (t127 = −3.87; P = 1.70 × 10−4). The
identified association was validated in samples across the life span but was significantly
weakened in both patients with schizophrenia (z = −3.05; P = .002; n = 157) and unaffected
siblings (z = −2.08; P = .04; n = 149).

CONCLUSIONS AND RELEVANCE Our results show that a missense mutation in gene SLC39A8
is associated with larger gray matter volume in the putamen and that this association is
significantly weakened in schizophrenia. These results may suggest a role for aberrant ion
transport in the etiology of psychosis and provide a target for preemptive developmental
interventions aimed at restoring the functional effect of this mutation.
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T he adolescent brain undergoes substantial structural
change, and deviations from the normal trajectory of
brain development are thought to underlie many psy-

chiatric symptoms.1 Growth patterns of adolescent brain
development have been identified using longitudinal neuro-
imaging studies: decrease (eg, cortical regions, caudate, and
putamen), increase (eg, hippocampus), and inverted
U-shaped (eg, amygdala and thalamus).2-5 Twin studies have
demonstrated regionally specific changes in heritability dur-
ing different phases of brain development,6 and significant
age-by-heritability interactions have been reported for gray
matter volumes (GMV) in cortical and subcortical structures.7

Common genetic associations with both adolescent brain
structures and risks for psychiatric disorders remain to be
uncovered.

Large-scale meta-analysis of genome-wide association
study (GWAS) is the state-of-the-art approach to detect novel
genetic variants associated with brain structure. However, of-
ten these studies are carried out in samples from heteroge-
neous age groups to maximize the overall sample size,8 and
large-scale GWAS on adolescent brain is not available yet. Thus,
much less is known about genetic factors to provide us with
information about normal trajectories of brain development,
and deviations from normal trajectories have been impli-
cated in the pathophysiology of mental disorders.9-11 To in-
crease the statistical power to detect genetic associations in
the developing adolescent brain, it is important to investi-
gate a sample with a narrow age range.10 This has already been
demonstrated in a 2014 twin study,12 in which the heritabil-
ity estimated from 89 twin pairs at the same age resembled es-
timates given by large meta-analysis, with more than 1250 twin
pairs from different age groups.13 Additional limitations in de-
tecting genetic associations might have been caused by using
atlas-based brain segmentation because brain regions such de-
fined can be genetically heterogeneous,14 thus potentially re-
sulting in false-negative observations. To address these limi-
tations, we investigated a cohort of more than 2000 healthy
adolescents aged 14 years (IMAGEN15) and combined voxel-
wise brain imaging with genome-wide association study
(vGWAS16).

Genetic associations on brain structures can emerge in a
particular developmental period or can present across the
life span.6,7 Thus, genetic factors might cause pervasive neu-
roanatomical aberrations that are linked to psychopathology
during a defined developmental period or across the life
span.9-11 To validate our findings and extend them to a wider
age range, we used 4 additional cohorts of healthy partici-
pants to characterize patterns of the identified associations
across the life span including the Saguenay Youth Study
(SYS17), Lieber Institute for Brain Development sample
(LIBD18), UK Biobank (UKB19), and Three-City Study (3C20).
For the identified genetic variants, we tested their cisregula-
tions on the expressions of nearby genes in brain tissues. To
test whether genetic associations of adolescent brain are dis-
rupted by psychopathology, we compared the identified
associations among patients with psychiatric disorder, unaf-
fected siblings, and healthy control individuals in clinical
sample.

Method

Participants
Discovery Sample and Samples Across the Life Span
The IMAGEN study,15 a population-based longitudinal imaging
genetics cohort, recruited 2087 healthy adolescents aged 14
years, of which 1721 entered the vGWAS (eMethods 1 and 2 in
the Supplement). We also investigated 971 healthy partici-
pants from the adolescent SYS sample,17 272 healthy partici-
pants from the clinical LIBD sample,18 6932 participants from
the population-based UKB cohort,19 and 515 healthy elderly par-
ticipants from the 3C sample,21 a population-based cohort study
(eMethods 3-6 in the Supplement).

Clinical Sample
In the LIBD study of schizophrenia,18 we investigated 157
treated patients with chronic schizophrenia and 149 unaf-
fected siblings of patients (eMethods 4 in the Supplement). The
IMAGEN project had obtained ethical approval by the local eth-
ics committees, including King’s College London, University
of Nottingham, Trinity College Dublin, University of Heidel-
berg, Technische Universität Dresden, Commissariat à l'Energie
Atomique et aux Energies Alternatives, and University Medi-
cal Center, University of Hamburg, Hamburg, Germany. For SYS,
the institutional review boards of all participating institu-
tions approved all studies reported herein. The participants of
the LIBD study were recruited as part the Clinical Brain Dis-
orders Branch Sibling Study of schizophrenia at the National
Institute of Mental Health (Daniel R. Weinberger, principal in-
vestigator). The study was approved by the institutional re-
view board of the Intramural Program of the National Insti-
tute of Mental Health. The 3C study was approved by the Ethics
Committee of the Hôpital de Bicêtre. All adult participants pro-
vided written informed consent after information on the re-
search procedures by each cohort study. For adolescent par-
ticipants in IMAGEN and SYS, all participants’ parents provided
written informed consent after information on the research pro-
cedures and adolescents provided their assent after written
information.

Key Points
Question Is there any genetic variant associated with adolescent
brain development that can inform psychopathology of
schizophrenia?

Findings In this imaging genetics study of brain structure, a
significant association between a missense mutation in SLC39A8
(a gene previously associated with schizophrenia) and gray matter
volume in putamen was discovered and replicated using 10 411
healthy participants from 5 independent studies. Compared with
healthy control individuals, such association was significantly
weakened in both patients with schizophrenia and unaffected
siblings.

Meaning Common genetic variant indicates an involvement of
neuronal ion transport in both pathophysiology of schizophrenia
and structural development of putamen.
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Measures
Genome-Wide Genotype Data
The IMAGEN blood samples were genotyped using either
Illumina Human610-Quad Beadchip or Illumina Human660-
Quad Beadchip. After quality control, 466 114 single-
nucleotide polymorphisms (SNPs) entered the following analy-
sis. Details of the genotyping and quality control are available
in a publication22 and in eMethods 1 in the Supplement.

Structural Image Data
Structural magnetic resonance imaging (MRI) was performed
on 3-T scanners from 3 manufacturers (Siemens: 5 sites; Philips:
2 sites; and General Electric: 2 sites) following the Alzhei-
mer’s Disease Neuroimaging Initiative protocol modified for
the IMAGEN study. All data were preprocessed in Statistical
Parametric Mapping, version 8 using the Voxel-Based Mor-
phometry, version 8 toolbox, including segmentation, nor-
malization, modulation, and smoothing (eMethods 2 in the
Supplement).

Brain Expression Quantitative Trait Loci Database
In the UK Brain Expression Consortium (UKBEC23) database,
gene expression data are available for 10 brain regions from
134 neuropathologically free participants. For any vGWAS-
identified mutation on a gene, we first tested whether this
SNP was associated with expression of this gene. Second, we
went on to test whether such an association was tissue spe-
cific and whether this SNP also had cisregulations on expres-
sions of nearby (±1 Mb) genes. For this extended exploration,
we corrected for multiple comparisons between the number
of nearby genes and the number of brain areas (eMethods 7 in
the Supplement).

Statistical Analysis
Voxelwise and Genome-Wide Association Study
On the discovery sample, we performed a GWAS on GMV of each
voxel in the brain (ie, 438 145 voxels labeled as per the Automati-
cally Anatomical Labeling template24). A significant association
was identified if a cluster had more than 217 (approximately
4/3 × π × [3.3970 × 1.645]3/1.53 voxels falling into the 90% con-
fidence interval of the smoothing kernel) voxels with 2-sided
P values surviving a Bonferroni correction (P < 2.4483 × 10−13,
calculated by 0.05/438 145/466 114; eMethods 8 in the Supple-
ment). Regions of interest were then established from the iden-
tified clusters, and GMV of each region of interest was calculated
by adding the volumes of all voxels within this region. Replica-
tions were mainly conducted for the significant clusters using
eachreplicationsample(eMethods9intheSupplementformeta-
analysis). We established the 95% confidence interval of the sta-
tistics by 3000 bootstraps.

Summary-Databased Mendelian Randomization
For the identified brain structure, we conducted summary-
databased Mendelian randomization (SMR) analysis by a web-
based application (MR-Base25; eMethods 10 in the Supple-
ment). Using Psychiatric Genomics Consortium 2014 GWAS
results for schizophrenia26 as the outcome, we tested whether
the association between the identified brain structure and

schizophrenia was significant and free of nongenetic
confounders.27 A significant SMR result may suggest an asso-
ciation between the exposure (brain volume) and the out-
come (schizophrenia) using the exposure-associated genetic
variant as an instrument because the random nature of ge-
netic variation mimics the design of randomized clinical
trials.25 Although significant SMR results require further bio-
logical validation, nonsignificant results at least indicate a lack
of association.28

Comparison Among Patients, Unaffected Siblings,
and Healthy Control Individuals
We first conducted power analysis to test whether we had
enough sample size to detect the previously identified ge-
netic associations in our clinical sample (eMethods 11 in the
Supplement). To compare the identified association in pa-
tients with schizophrenia or unaffected siblings with that in
healthy control individuals, we estimated its effect size using
correlation coefficient. Partial correlations between GMV of the
regions of interest and SNPs were estimated controlling for age,
age × age, sex, IQ, total intracranial volume, and ratio of gray
and white matter volume over total intracranial volume. Be-
tween independent samples, we compared effects sizes (ie, par-
tial correlation coefficient) after transforming them into z sta-
tistics. The 95% 1-sided upper bound was established by 3000
bootstraps for the difference between 2 partial correlations in
patients and their paired unaffected siblings, respectively.

Results
Demographics
In the discovery sample of 1721 healthy adolescents (of whom
873 were girls [50.7%]), the participants were a mean (SD) age
of 14.44 (0.41) years, while the replication samples of 8690
healthy participants (of whom 4497 were girls [51.8%]) had a
larger age range between 12 and 92 years. The clinical sample
used in this study had 157 patients with schizophrenia (of
whom 35 were female [22.2%], with a mean [SD] age of 34.82
[9.91] years) and 149 unaffected siblings of patients (of whom
85 were female [57.1%], with a mean [SD] age of 36.60 [9.44]
years). Further demographics and clinical features are listed
in eTable 1 in the Supplement.

Association of Schizophrenia Risk SNP rs13107325
With Putamen Volume
Applying voxelwise and GWAS (vGWAS) to the discovery
sample, we found that the minor T allele (a missense muta-
tion in gene SLC39A8) of SNP rs13107325 was associated with
larger volumes in bilateral putamen (left hemisphere:
t1705 = 8.66; P = 5.35 × 10−18; variance explained [VE] = 4.21%;
right hemisphere: t1705 = 8.90; P = 6.80 × 10−19; VE = 4.44%
right hemisphere), and these clusters were asymmetric be-
tween left and right hemispheres (Figure 1A-C). In addition,
we found an association of the minor G allele of SNP rs7182018
(an intron variant on lncRNA RP11-624L4.1) with greater GMV
of 2 clusters in bilateral central sulcus (left hemisphere:
t1705 = 9.86; P = 1.25 × 10−22; VE = 5.39%; right hemisphere:
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t1705 = 9.96; P = 4.54 × 10−23; VE = 5.50%; Figure 1D and E;
Table; eTables 2-4 in the Supplement; eFigure 1 for Manhat-
tan plots and QQ plots in the Supplement; eFigure 2 for dis-
tributions and bootstraps in the Supplement).

rs13107325 has been associated with schizophrenia in a
2014 Psychiatric Genomics Consortium (phase 2) GWAS.26 The
SMR using Psychiatric Genomics Consortium (phase 2) re-
sults as outcome identified the associations between GMVs of
the putamen clusters and schizophrenia (left putamen clus-
ter: b = 0.9388; SE = 0.1329; P = 1.61 × 10−12; right putamen
cluster: b = 3.444; SE = 0.4875; P = 1.607 × 10−12; eFigure 3 in
the Supplement). Considering that the SMR analysis identi-
fied no association between the central sulcus and schizophre-
nia using any SNP within the neighboring region (±1 Mb) of
rs7182018 as an instrumental variable (eFigure 4 in the Supple-
ment), we concluded that rs7182018 is not associated with
schizophrenia. Analyses on rs7182018 are found in eTables 2-12
and eFigures 5-13 in the Supplement.

Independent Replications Across the Life Span
In the SYS sample of 971 healthy adolescents with a mean (SD)
age of 15.03 (1.84) years, we replicated the positive associa-
tion of SNP rs13107325 in the left putamen (t964 = 3.70;
P = 1.16 × 10−4) but found no such association in the right pu-
tamen (t964 = −1.73; P = .08). The right putamen cluster was af-
fected by a greater variation of the insula in the SYS sample be-
cause a part of the insula was mapped into this cluster
(eFigure 14 in the Supplement).

Using the UKB sample (mean [SD] age, 62.64 [7.41]
years; n = 6932), we replicated the positive associations of
rs13107325 with GMV of the putamen clusters (left hemi-
sphere: t6885 = 4.80; P = 8.16 × 10-7; VE = 0.33%; right hemi-
sphere: t6885 = 4.80; P = 8.16 × 10-7; VE = 0.60%). Given the
large sample size of this cohort, we further confirmed the
significance of the identified clusters using a SNP to whole-
brain approach with 10 000 permutations at a cluster level
(eTable 11 in the Supplement). In another 2 independent

Figure 1. Significant Associations Identified by Voxelwise and Genome-Wide Association Study

Association with putamenA

Brainwide association of rs13107325B Significant clustersC Brainwide association of rs7182018D

Association with central sulcusE
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20

8 23 28 38

The significance level of the
association (-log10 P) between the
gray matter volume of each voxel of
the brain and the SNPs rs13107325
(A and C) or rs7182018 (D and E).
Red represents stronger association,
while blue represents weaker
association. B, Four clusters of voxels
survived the Bonferroni correction
(P < 2.45 × 10−13, calculated by 0.05 /
466 114 [number of SNPs] / 438 145
[number of voxels]). Two clusters
around the left and right central
sulcus are marked in red and orange,
respectively. Two clusters in the left
and right putamen are marked by
yellow and green, respectively.
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samples with mean (SD) ages of 31.92 (9.50) years (LIBD
sample, n = 272) and 77.48 (5.12) years (3C sample, n = 515),
we again confirmed the identified positive associations
(LIBD sample, left putamen: t264 = 4.93; P = 7.22 × 10−7;
VE = 8.38%; right putamen: t264 = 5.33; P = 1.05 × 10−7;
VE = 9.65% ; 3C sample, left putamen: t507 = 2.34; P = .01;
VE = 1.07%; right putamen: t507 = 2.28; P = .01; VE = 1.02%;
Table; eTables 9 and 10 in the Supplement; and eFigures 7-12
and 15-17 in the Supplement).

Association of rs13107325 With Lower Expression Level
of SLC39A8 in Putamen
Using the expression quantitative trait loci (eQTL) database
from the UKBEC (n = 134, with 112 CC genotypes, 22 CT geno-
types, and 0 TT at the SNP rs13107325), we found that the car-
riers of the risk allele (T) at rs13107325 showed lower expres-
sion of SLC39A8 (t127 = −3.87; 95% CI, −6.51 to −1.73; P = .0002)
in the putamen (Figure 2A and B). Furthermore, we found that
despite brainwide expression of SLC39A8 (Figure 2C), this eQTL
association was specific for the putamen and was not de-
tected in any of the other brain regions (P < .0008, Bonfer-
roni correction for 10 types of brain tissues and 6 neighboring
genes) (Figure 2D). In addition to gene SLC39A8 (eTables 13 and
14 in the Supplement), we also found associations of rs13107325
with lower gene expressions of NF-κB1 in the hippocampus
(t120 = −3.62; 95% CI, −6.31 to −1.28; P = .0004), MANBA in the
frontal cortex (t125 = −3.73; 95% CI, −5.93 to −1.84; P = .0003),
and higher expression of CENPE in the occipital cortex
(t127 = 3.69; 95% CI 1.72 to 6.10; P = .0003).

Gene-Brain Association Weakened by Genetic Risk
for Schizophrenia
Despite inconsistent structural neuroimaging results of the pu-
tamen in schizophrenia (no difference,29,30 reduction,31 or
enlargement32-36 of structure have been reported), this structure
has long been associated with both elevated dopamine synthe-
sis capacity37,38 and frontostriatal dysconnectivity39 in schizo-
phrenia and is key to the effects of antipsychotic treatment40-43

byvariousmethodologicapproaches.38,39,44,45 Toreducethecon-
founding effects, we used unaffected siblings (carrying a higher
genetic risk for schizophrenia46 but free of the clinical phenotype
and treatment effects18) of patients with schizophrenia to further
validate the involvement of the rs13107325-putamen association
in schizophrenia. We hypothesized that the rs13107325-putamen
association was significantly weakened in both patients and un-
affected siblings compared with healthy control individuals.
Given a large effect size (r = 0.3117; n = 272) in the healthy con-
trol individuals, power analysis (eMethods 11 in the Supplement)
estimated a sample size of 102 for 95% power assuming a 5% sig-
nificance level and a 1-sided test. Therefore, we had enough pa-
tients (n = 157) and unaffected siblings (n = 149) in the LIBD study
to detect such an association. We found that the rs13107325-
putamen association in the right hemisphere became insignifi-
cant in both patients and unaffected siblings (Table). This dis-
rupting effect might be specific because the rs7182018-CEN
association remained significant in all 3 groups (eTable 5 in the
Supplement). Compared with healthy control individuals, pa-
tients had a significantly weakened rs13107325-putamen asso-
ciation (z = −3.05; P = .002). Next, we confirmed that such as-

Table. Associations of a Schizophrenia-Risk SNP rs13107325 With the Gray Matter Volumes
of 2 Putamen Clusters in Multiple Cohortsa

Sample and Cluster
Volume,
mean (SD), mL t (95% CI) P Value

Variance
Explained, %

IMAGENb

Left PUT 1.93 (0.35) 8.66 (6.59 to 10.81) 5.35 × 10−18 4.21

Right PUT 0.75 (0.09) 8.90 (6.75 to 11.19) 6.80 × 10−19 4.44

SYSc

Left PUT 1.60 (0.22) 3.70 (1.85 to 5.60) 1.16 × 10−4 1.40

Right PUT 0.81 (0.11) −1.73 (−3.54 to −0.04) .08d 0.31

LIBD HCe

Left PUT 1.59 (0.22) 4.93 (2.86 to 7.11) 7.22 × 10−7 8.38

Right PUT 0.65 (0.06) 5.33 (3.29 to 7.48) 1.05 × 10−7 9.65

UKBf

Left PUT 1.37 (0.28) 4.80 (2.97 to 6.72) 8.16 × 10−7 0.33

Right PUT 0.53 (0.09) 6.46 (4.48 to 8.41) 5.44 × 10−11 0.60

3Cg

Left PUT 1.11 (0.14) 2.34 (0.62 to 4.45) .01 1.07

Right PUT 0.48 (0.06) 2.28 (0.45 to 4.31) .01 1.02

LIBD SZh

Left PUT 1.57 (0.28) 2.01 (0.60 to 3.55) .02 2.00

Right PUT 0.65 (0.09) 0.17 (−1.46 to 1.78) .43 0.02

LIBD SBi

Left PUT 1.53 (0.21) 2.27 (0.23 to 4.09) .01 3.47

Right PUT 0.63 (0.06) 1.30 (−0.93 to 3.11) .10 1.16

Abbreviations: 3C, Three-City Study;
HC, healthy control individuals;
LIBD; Lieber Institute for Brain
Development; PUT, putamen;
SYS, Saguenay Youth Study;
SZ, patients with schizophrenia;
SB, unaffected siblings of patients;
SNP, single-nucleotide
polymorphism; UKB, UK biobank.
a Validations of positive associations

in different age groups. P values
were given by 1-tailed test. The
associations were estimated for the
volumes of the significant clusters
identified by our voxelwise
genome-wide association study.
The volume of a cluster was
calculated by adding up the volume
of each voxel within that cluster.

b n = 1721; Mean age, 14 years.
c n = 971; Mean age, 15 years.
d Two-tailed P value test because the

association went to an opposite
direction compared with the
hypothesis.

e n = 272; Mean age, 32 years.
f n = 6932; Mean age, 62 years.
g n = 515; Mean age, 77 years.
h n = 157; Mean age, 35 years.
i n = 149; Mean age, 37 years.
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sociation was weaker in the unaffected siblings compared with
the healthy control individuals (z = −2.08; P = .04). In patient-
sibling pairs (n = 49), we found that the SNP-volume association
wasweakerinpatientscomparedwithunaffectedsiblings(rpatient-
rsibling = −0.25; 95% upper 1-sided bound; −0.0143; P = .04).

Discussion
In this vGWAS, we discovered an rs13107325-putamen asso-
ciation in adolescent brains and confirmed this association

across the life span. Mendelian randomization analysis dem-
onstrated a significant association between putamen volume
and schizophrenia free of nongenetic confounders. Unaf-
fected siblings of patients showed a significant weakening of
the rs13107325-putamen association that may be owing to the
genetic risk for schizophrenia. Together, these findings pro-
vide a new and testable hypothesis of an interaction between
the pathology of schizophrenia and the mechanism determin-
ing the putamen volume.

Single-nucleotide polymorphism rs13107325 (located in an
exon of SLC39A8, chromosome 4) encodes a solute carrier

Figure 2. Gene Expression of SLC39A8 at Putamen and Gray Matter Volume at Putamen Shared Common Genetic Controls
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starting base at chromosome 4). B, Comparison between gene expression
levels of SLC39A8 at putamen with different genotypes at SNP rs13107325.
C, Comparison on gene expression levels (mean value and 95% confidence
interval) of SLC39A8 across 10 brain regions, including inferior olivary nucleus
(MEDU; subdissected from the medulla), putamen (PUTM; at the level of the

anterior commissure), substantia nigra (SNIG), cerebellar cortex (CRBL),
thalamus (THAL; at the level of the lateral geniculate nucleus), temporal cortex
(TCTX), intralobular white matter (WHMT), occipital cortex (OCTX), frontal
cortex (FCTX), and hippocampus (HIPP). D, Association patterns between SNP
rs13107325 and gene expressions in 10 brain regions. Genes with significant
associations (P < .0008, calculated by 0.05/10/6 by Bonferroni correction)
were labeled with gene names. bp Indicates base pairs.
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transporter ZIP8 expressed in the plasma membrane and mi-
tochondria. SLC39A8 has been associated with schizophre-
nia by both large-scale GWAS47,48 and genetic genome-wide
DNA methylation analysis (brain tissues collected from 24 pa-
tients along with 24 healthy control individuals49). The pos-
sible involvement of this gene in the psychopathology of
schizophrenia has been discussed since 201248 and has been
shown to involve immunologic processes, glutamatergic neu-
rotransmission, and homeostasis of essential metals in the
brain.50-53 In the literature,50 it has been hypothesized that the
association between SLC39A8 and schizophrenia may be as-
sociated with its involvement in proinflammatory immune re-
sponse during brain development. Our findings highlight a
negative regulation of SLC39A8 on the nuclear factor-κ B
(NFκB) pathway54 as a putative causal mechanism. The NFκB
pathway induces the expression of proinflammatory genes (eg,
cytokines),55 which have been associated with schizophrenic
symptoms.56 In healthy populations, the strong association be-
tween SLC39A8 and putamen volume may be associated with
the regulatory role of NFκB in the growth and morphology of
neurons during brain development.57 In patients with schizo-
phrenia, the weakened association may be owing to dysregu-
lation of NFκB in terms of gene and protein levels, and nuclear
activation in brain tissues of patients.58 rs13107325 is a mis-
sense mutation substituting alanine (apolar) with thyronine
(polar) (Ala391Thy), resulting in ZIP8-Thy391 transporting sig-
nificantly less metal ion into the cell.59 Therefore, after the dis-
covery of SNP rs13107325 associated with schizophrenia risk
by large-scale GWAS,47,48,50,51 our findings indicate that mo-
lecular pathologies of schizophrenia may disrupt neuronal
ion-mediated regulations in the development of putamen
volume.53

The IMAGEN sample of 1721 homogenous 14-year-old
healthy adolescents gave us an effect size (r = 0.21 between
rs13107325 and the left putamen clusters; r = 0.21 between
rs13107325 and the right putamen clusters) 3 times larger than
that of the UKB sample of 6932 adults heterogeneously aged
between 46 and 79 years (r = 0.06 for the left putamen clus-
ters; r = 0.07 for the right putamen clusters). The genetic fac-
tors could explain up to 80% of the heritability of brain anatomy
(ie, GMV), of which up to 54% could be captured by a large num-
ber of SNPs.60 However, percentage of variance explained by
a single genetic variant was only 0.52% according to literature.8

In this study, the identified genetic variant explained more than

4% of the variance in the observed volumes. Such a large uni-
variate genetic influence on the adolescent brain may be ow-
ing to less cumulative environmental impact (eg, exercises,61

stresses,62 and illnesses63,64) at a younger age. Perhaps the
analysis of adolescents could also help explain why this novel
association failed to be identified by previous large-scale meta-
analyses with heterogeneous age groups.65,66

Limitations
A limitation of this study is that we adopted a conservative
strategy in terms of Bonferroni correction for the discovery of
significant vGWAS signal. We acknowledge that this conser-
vative procedure may give false-negative findings owing to the
sample size of the discovery study. However, if we used
the meta-analysis for the discovery by combining both the
IMAGEN sample with the replication samples, we might have
missed those associations that were significant in adoles-
cents only. Given that the IMAGEN participants were of simi-
lar age, future imaging genetic cohorts of healthy adolescents
may help us to identify more gene-brain associations with
smaller effect sizes. Second, the identified brain associations
of the other SNP rs7182018 were more stable across the life
span, but there is no evidence to our knowledge to date that it
is involved in the pathology of schizophrenia. Third, the iden-
tified gene-level eQTL result did not reach a genome-wide sig-
nificance level in the UKBEC database, and rs13107325 was not
associated with expression of SLC39A8 in the GTEx (http://
www.gtexportal.org). This may be partially owing to differences
in the sex ratio and racial/ethnic composition between these
2 databases. Furthermore, other levels (expression of exon,
junction, and transcripts) of eQTL analyses should also be
conducted in the future. Animal studies to test these possible
molecular mechanisms are also warranted.

Conclusions
In summary, using an innovative method, we identified a gene
that points to a potential new mechanism associated with both
ion transporter and immune reaction for development of psy-
chopathology, in particular associated with schizophrenia. Given
that the major function of the SLC39A8 gene is accessible to phar-
macologic manipulation,67-69 we believe that these results are
crucial for discovering novel treatment for schizophrenia.
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