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ING family genes (Inhibitor of Growth) are tumor suppressor genes that play a vital role in 

cell homeostasis. It has been shown that their expression is lost or diminished in many cancers 

and other diseases. The main mechanisms by which they are regulated in oncogenesis have 

not yet been fully elucidated. The involvement of non-coding RNAs (ncRNAs) and in 

particular microRNAs (miRNAs) in post-transcriptional gene regulation is well established. 

miRNAs are short sequences (18 to 25 nucleotides) that can bind to the 3 'UTR sequence of 

the targeted messenger RNA (mRNA), leading to its degradation or translational repression. 

Interactions between the ING family and miRNAs have been described in some cancers but 

also in other diseases. The involvement of miRNAs in ING family regulation opens up new 

fields of investigation, particularly for targeted therapies. In this review, we will summarize 

the regulatory mechanisms at the RNA and protein level of the ING family and focus on the 

interactions with ncRNAs. 
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Abstract 

ING family genes (Inhibitor of Growth) are tumor suppressor genes that play a vital role in 

cell homeostasis. It has been shown that their expression is lost or diminished in many cancers 

and other diseases. The main mechanisms by which they are regulated in oncogenesis have 

not yet been fully elucidated. The involvement of non-coding RNAs (ncRNAs) and in 

particular microRNAs (miRNAs) in post-transcriptional gene regulation is well established. 

miRNAs are short sequences (18 to 25 nucleotides) that can bind to the 3 'UTR sequence of 

the targeted messenger RNA (mRNA), leading to its degradation or translational repression. 

Interactions between the ING family and miRNAs have been described in some cancers but 

also in other diseases. The involvement of miRNAs in ING family regulation opens up new 

fields of investigation, particularly for targeted therapies. In this review, we will summarize 

the regulatory mechanisms at the RNA and protein level of the ING family and focus on the 

interactions with ncRNAs. 
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Introduction  

p33ING1 was discovered in 1996 and identified as a candidate tumor suppressor gene 

(TSG) (1). The other members of the ING family were identified by homology search, and 

were then named ING2-ING5 (2–4). All INGs proteins share a conserved C-term (Carboxyl-

terminus) structure that contains a Plant HomeoDomain (PHD), known to interact with the 

histone 3 trimethylated on lysine 4 (H3K4me3) (5). They also have a Nuclear Localisation 

Signal (NLS) (6) and therefore, the ING proteins are mainly located in the nucleus. INGs are 

well-conserved from yeast to humans as suggested by phylogenetic studies (6,7), which 

implies an important role in biological processes. Indeed, by regulating the expression of 

genes, they are known to play a role in the cell cycle, senescence, apoptosis (5,8–11) and have 

therefore been classified as “gatekeepers” Tumor Suppressor Genes (TSG). ING proteins are 

able to promote apoptosis in a p53 dependent and independent manner (3,4,12). Moreover, 

ING1 and ING2 KO mice spontaneously develop tumors (13,14). More recently, they have 

also been shown to have “caretakers” properties by participating in DNA repair (15–18) and 

DNA replication (10,19,20).  

Since they are “gatekeeper and “caretaker” TSG, the family of INGs may play a role in 

many types of cancers such as lung, head and neck cancer, breast, ovarian, melanoma or brain 

(17,21–27). Indeed, they are usually lost or down-regulated in these types of cancer.  

Data summarized from The Cancer Genome Atlas and The Human Protein Atlas (Fig. 1) 

show that INGs RNA and protein expression vary according to tissue types and cancers. INGs 

protein are highly expressed in few tissues, and have usually a medium to low expression. 

RNA sequencing seems to be the most reliable method to compare INGs expression.  

The mechanisms that regulate INGs expression are just beginning to be understood. 

Although some mutations (Fig. 2) and LOH have been found (24,28–31), several recent 

studies have shown that non coding RNAs (ncRNAs) such as microRNAs (miRNAs) (32,33) 

can regulate of INGs. 

Non coding RNAs were discovered about 23 years ago in Caenorhabditis elegans (34). 

The discovery of several ncRNAs followed: microRNAs (miRNAs), transcribed ultra-

conserved regions (T-UCR) (35) and circular RNAs (circRNAs) which are highly conserved, 

and others which are less conserved such as long ncRNAs (lncRNAs) (36). miRNAs are 

short, about 18-25 nucleotide-long, and usually modulate the post-transcriptional gene 

expression by binding to seed sequences in the 3’-untraslated regions (3’-UTR) (37), thus 

suppressing mRNA translation and reducing mRNA stability. Since their discovery, miRNAs 
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have been implicated in many signaling pathways and various diseases (38–42) including 

cancers (43). In fact, some miRNAs can act as cancer enhancers and are usually called 

oncomiR, on the other hand, other can repress a cancerous phenotype and are classified as 

tumor suppressor miRNAs (44). For example, the miR-17-92 has been shown to be up-

regulated in several solid and hematopoietic cancers (45–48). Indeed, by targeting TSG, such 

as PTEN (49), miR-17-92 cluster containing miR-17-5p, miR-17-3p, miR-18a, miR-19a, 

miR-20a, miR-19b-1 and miR-92a-1, can promote oncogenesis, is associated with poor 

survival and thus is considered an oncomiR (46,47,50,51). In contrast, miR-217 is considered 

as tumor suppressor because its overexpression decreases cancer invasion and migration by 

targeting Enhancer of Zeste Homolog 2 (EZH2) in gastric cancer (52), known to enhance cell 

cycle or PTPN14, which modulates epithelial-to-mesenchymal transition (53).  

Recently, some lncRNAs have also been described as deregulated in cancer. In fact, the 

antisense RNA of the HOX transcript (HOTAIR) is a lncRNA which has been shown to be 

upregulated in several cancers such as brain, lung, colorectal, breast, ovarian, renal, 

hepatocellular and hematopoietic (54). Besides, its upregulation would enhance tumor 

progression (55) and lead to resistance to paclitaxel and doxorubicin in gastric cancer (56) by 

targeting the miR-217 tumor suppressor (57).  

This review describes the mechanisms responsible for the regulation of INGs and in 

particular the loss of expression of INGs in tumors and other diseases with a particular interest 

for the role that ncRNAs could play. 

 

I. INGs alteration in cancer and regulation of expression mechanisms 

Various causes explaining the loss or down regulation of the INGs protein in cancer such 

as mutations, Loss of Heterozygosity (LOH), hypermethylations, phosphorylations or 

SUMOylations have been described. However, those are not sufficient to explain the majority 

of INGs down regulation. It suggests that post-translational regulation such as ncRNA 

regulation could have an important impact on INGs regulation. 

 

1. INGs alteration of expression in cancer 

INGs expression is lost or decreased in several types of cancer, such as non-small cell 

lung cancer, breast, ovarian, hepatocellular cancer or osteosarcoma (21,23,58). Some 

mutations have been reported in the TCGA database, (0,2 %-9,43 % for ING1, 0,10 %-2,45 % 

for ING2, 0,2%-8,3% for ING3, 0,2-3,21% for ING4 and 0,2-5,85% for ING5), and are 
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summarized in Figure 1. Interestingly, mutations are more frequent in uterine and colorectal 

cancers, and no hotspot mutations have been found. Moreover, few silent mutations of ING2 

were found (59) and a study found 9.6 % of mutations of ING5 in oral squamous cancer (60). 

Overall, mutations of ING genes are not frequent in human tumors. 

Other mechanisms such as LOH (Loss of Heterozygosity) are involved in the regulation of 

ING genes in cancer. For instance, ING1 loss of expression occurs mainly at the RNA level, 

and LOH (between 55,7 % and 61,1%) have also been observed (24,28,29,61). Shen et al. 

reported that hypermethylation of ING1 promoter  in ovarian cancer (28% of the cases) is 

associated with ING1 down-regulation (62). With respect to ING2, high frequencies of LOH 

in the chromosomal region 4q32-35.1 in ameloblastoma, sporadic basal cell carcinoma and 

squamous cell carcinoma of the head and neck (30%, 46.1% and 54.6%, respectively) (24, 30, 

64) have been described. Finally, no increased methylation of ING2 promoter have been 

found in NSCLC (22). Loss of ING3 by LOH was observed in 10,2% of HHNSC (31) and in 

68% of ameloblastomas (24). The expression ING4 can also be lost by LOH, which can occur 

in 5% to 66% of cases depending on the cancer (63,64) , by abnormal transcription (65) or 

post-transcriptionnal regulation (66). In some cases it has also been reported that ING4 is 

more expressed in the cytoplasm than in the nucleus, leading to tumorigenesis, but the exact 

reason of this change of location remains to be explained (67). Various causes have been 

described to explain the dysregulation of ING5 gene expression in cancer. One of them being 

the LOH occurring in up to 68 % of cancers (24,68). In addition, it has been shown that the 

nucleocytoplasmic translocation of ING1 and ING5 may play a role in cancers (69,70). 

Indeed, ING1 and ING5 overexpression in the cytoplasm rather than in the nucleus prevents it 

from fulfilling its tumor suppressive roles such as regulating the chromatin or the DNA 

replication. Cytoplasmic expression of ING5 was positively correlated with tumor size in 

breast cancers (70).  

Thus, mechanisms for explaining loss of expression of ING genes have been described in 

cancers. However, they are not enough to explain the loss of expression of ING in the vast 

majority of cases. 

 

2. INGs post-translationnal regulation 

Several mechanisms of regulation of INGs proteins have been discovered. For example, 

SUMOylation of ING1b has been shown to affect the regulation of gene transcription such as 

ISG15 (Interferon-Stimulated Gene 15) and DGCR8 (DiGeorge Syndrome Critical Region 8) 
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(71). Moreover, Garate et al. showed that p33ING1 phosphorylation would inhibit cyclin B1 

activity, and therefore cyclin B1 dependent cell proliferation in melanoma cells (72). It also 

has been shown that Src tyrosine kinase can phosphorylate ING1 and leads to its nuclear to 

cytoplasmic relocalization resulting in an inhibition of its tumor suppressive effects (73). In 

addition, SUMOylation of ING2 enhances its association with Sin3a, leading to gene 

repression or activation (20). Another study has shown that p53 can repress ING2 promoter 

activity and its expression (74). This could be a negative feedback mechanism in response to 

p53 activation. Indeed, ING2 can interact with the acetylase p300 to enhance p53 acetylation 

and its action in apoptosis, senescence, and the cell cycle (75). Besides, Jing et al. showed that 

the degradation of ING2 can be mediated by the Smad 1 ubiquitination regulatory factor 1 

(Smurf 1) (76). Smurf1 has been reported to be upregulated in lung and gastric cancer and 

may promote oncogenesis by regulating cell cycle-related proteins such as Wee1 (77–79). 

Thus, the strong expression of Smurf1 in cancer could contribute to the degradation and 

downregulation of ING2. Concerning ING3, one study showed that it can be degraded 

through the CFSkp2-mediated ubiquitin–proteasome pathway (80). Since Skp2 expression is 

increased especially in melanoma (81,82), it could contribute to ING3 loss of expression in 

that type of cancer. Guo et al. showed that ING4 citrullination increases its degradation, 

disrupts its interaction with p53 (83). ING4 protein degradation occurs through the 

ubiquitin/proteasome pathway, and no dysregulation of it has been found in cancer (84). ING5 

can be phosphorylated by CDK2 although it has a minor effect on cell proliferation (85). 

ING5 degradation remains to be studied. 

 

II.  INGs function and interaction with ncRNAs 

 

1. ING1 and ING2 interactions with miRNAs and ncRNAs 

a. Functions of ING1 and ING2  

ING1 has a role in cell proliferation by regulating cell cycle arrest, apoptosis or 

senescence (13) and subsequently is involved in cancer development (1). Moreover, ING1 can 

regulate chromatin regulation through its interaction with the mSin3a/HDAC1/2 complex 

(86), and plays a role in DNA repair (87). One report suggests that ING1 would participate in 

angiogenesis, but its involvement is less clear (27). Finally, our group showed that ING1 can 

regulate the hypoxic response by triggering hypoxia inducible factors α (HIF1α) degradation 

(88). 
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ING2 is the closest ING1 homolog leading to common properties between ING1 and 

ING2. In fact, ING2 is involved in cell cycle, senescence and apoptosis regulation (3,89). It 

also interacts with the mSin3a/HDAC1/2 complex to modulate gene expression (20), and 

participates in DNA repair through Nucleotide Excision Repair (NER) regulation (90). 

 

 

b. Regulation of miRNAs by ING1 

Interestingly, ING1 can regulate the expression of miRNAs in order to regulate gene 

expression with two discovered mechanisms. First, ING1 can play a role in miRNAs 

synthesis. Indeed, it has been shown in osteosarcoma cell lines that ING1 can regulate and 

increase through chromatin modification, the miR-203 expression (91). mir-203 has notably 

been described as a tumor suppressor in several cancer type (92–94). It also account for a 

significant proportion of the inhibitory effects of ING1 on cell proliferation by targeting 

several common mRNAs such as c-Abl oncogene 1, RB1 (RB transcriptional corepressor 1), 

or BRCA1 (BRreast CAncer 1) (91). Those genes are known to be part of cancer pathway and 

their inhibition is consistent with tumor suppressive functions of ING1. 

Furthermore, epigenetic is not the only way for ING1 to control miRNAs expression. In fact, 

a study has shown that DGCR8, a miRNA regulator protein involved in the early stages of the 

majority of miRNA processing, is negatively controlled by ING1 (95). Since miRNAs are 

usually deregulated in cancer (43), this could contribute to neoplastic transformation 

following ING1 dysfunction. Besides, ING1 is involved in apoptosis in a p53 dependent and 

independent way (12,96,97). Tran et al. demonstrated that ING1 and p53 interact to increase 

levels of large intergenic long non-coding RNA p21 (lincRNA-p21) involved in apoptosis 

(98). This could explain in part the p53-independent apoptosis mediated by ING1. Thus, the 

close relationship between ING1 and miRNAs emphasizes their role in oncogenesis and needs 

to be further explored. 

 

c. Regulation of ING1 and ING2 by miRNAs 

It has been shown that ING1 can be regulated by miRNAs. Indeed, one report described 

that ING1 is a target of the miR-371-5p in pancreatic cancer, which is associated with 

tumorigenesis and poor survival (33). However, ING1 regulation by miRNAs remains unclear 

and would require further investigation.  
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Only one recent study described ING2 regulation by a miRNA. In fact, Gao et al. 

demonstrated in silico and in vitro that ING2 is the first reported putative target of miR-8084 

in breast cancer (99). mir-8084 has been found to be upregulated in serum from breast cancer 

patient (100) and promotes the migration and invasion of breast cancer cells (99). It has been 

shown that miR-8084 down-regulates ING2, and by thus can suppress the p53 signaling 

pathway (99). miR-8084 would act as an oncomiR at least by targeting ING2 and inhibiting 

its tumor suppressive functions.  

 

2. ING3 role and ncRNAs involvement 

ING3 differs with other members of ING family in its chromosomal location (which is 

central and not telomeric) and in fact it is considered as a phylogenetic branch distinct from 

the other INGs (6). However, ING3 is also considered as a TSG since it plays a role in cell 

cycle regulation, senescence and apoptosis (10,101,102). ING3 can modulate chromatin 

modification and gene expression by interacting with the hNuA4/Tip60 complex (10). Our 

group has also shown that ING3 can also participate in the DNA damage response signaling 

(unpublished results). 

ING3 overexpression has been shown to inhibit the migration and proliferation of 

hepatocytes (103,104) and the expression of ING3 is decreased in colorectal cancer or in head 

and neck squamous cell carcinoma (HNSCC) (31,105). This suggests that ING3 plays a role 

in the progression of cancer. Indeed, decreased ING3 expression has been shown to be a 

marker of poor prognosis in several cancers (104,106,107). However, the involvement of 

ING3 in carcinogenesis has not been completely elucidated yet. Indeed, several studies 

suggest that ING3 would act as an oncogene in prostate cancer by increasing expression of 

androgen-regulated genes and is associated with poor prognosis in ERG-negative prostate 

cancer (108–110). 

The interactions between ING3 and miRNAs have been poorly documented. In colorectal 

cancer (CRC), Zhang et al. observed in CRC tissues that the lncRNA CASC7 (CAncer 

Susceptibility Candidate 7) expression was low whereas miR-21 expression was high (111). 

Moreover, they have shown in CRC cell lines that ING3 is a direct target of miR-21, known to 

act as an oncomiR in several types of cancer by targeting genes with an important role in cell 

migration, such as FZD6, or in cell proliferation such as PTEN (111–114). They demonstrated 

that CASC7 can indirectly increase ING3 expression and have tumor suppressive effects by 

sponging miR-21. 
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One report showed that in periodontitis, a non-oncogenic disease, ING3 would play a role 

and be targeted by miR-494 and miR-522, however these in silico results have not been 

confirmed in vitro (115).  

Thus, further studies concerning ING3 regulation by miRNA or ncRNAs would be needed 

in order to document their interactions in cancer and other diseases. 

 

3. ING4 and miRNAs in cancer and other diseases 

Reports show that ING4 has tumor suppressive functions. Indeed, it can regulate cell 

proliferation (116), chromatin modification since it belongs to the HBO1/JADE complex 

(117,118) and DNA replication (119). Moreover, ING4 can inhibit both cell migration 

(120,121) and neoangiogenesis (27,122). Therefore, ING4 is characterized as both a type I « 

caretaker » and type II « gatekeeper » Tumor Suppressor Gene (TSG). 

Several miRNAs have been found to decrease the expression of ING4 in cancers by 

binding to its mRNA, especially in its 3’-UTR region. ING4 has been characterized as a target 

of miR-650 which is upregulated in gastric cancer, leukemia, hepatocellular cancer, 

osteosarcoma cells and lung adenocarcinoma (123–127). In the latter case, it has been 

demonstrated that miR-650 confers chemoresistance to docetaxel, an anti-cancerous drug 

(127). miR-650 can also trigger epithelial to mesenchymal transition in breast cancer by 

targeting ING4 and NDRG2 (128). Furthermore, several other miRNAs are able to inhibit 

ING4 expression in cancers. It is the case of mir-214 in pancreatic cancers (129,130), mir-761 

in NSCLC (131), mir-330 in hepatocellular carcinoma (132) and miR-423-5p in glioblastoma 

(133). 

Beside cancers, studies have shown that miRNAs are involved in many other pathologic 

processes. For instance, miR-214 which plays a role in the development of pancreatic cancers 

is also more expressed in cardiac injuries in response to carvedilol, a drug that has protective 

properties in ischemic injuries. Overexpression of miR-214 decreases the apoptosis of 

cardiomyocytes by inhibiting ING4 (134). Moreover, one study showed that miR-361-3p, 

miR-1910-5p, miR-3691-3p could target ING4 in chronic idiopathic urticaria and active hives 

and could be used as biomarkers (135). There are some limitations to studying the interaction 

between miRNAs and ING4. In fact, one study showed by a luciferase assay, that ING4 is not 

a target of miR-2478 despite being characterized as a putative one by in silico analysis (135). 

 

4. ING5 regulation by miRNAs 
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Several studies have shown that ING5 has tumor suppressive functions. Indeed, ING5 is 

involved in the regulation of cell proliferation (136), chromatin modification since it belongs 

to the HBO1/JADE or MOZ/MORF complexes (118,137), DNA replication (10) and repair 

(138) and cell migration (139). 

Numerous reports have shown that the overexpression of miRNAs is of key importance in 

the development of several cancers. In fact, miRNA can bind to the 3’UTR of ING5 to 

degrade its mRNA and thereby increase cell proliferation. Various miRNAs are involved such 

as miR-196a in pancreatic cancer (140), miR-1307 in ovarian cancer (32), miR-24 in breast 

cancer (141) and miR-27-3p in osteosarcoma (142). In addition, two reports have shown that 

miR-331-3p and miR-181b both of which target the 3’UTR of ING5 are upregulated by the 

hepatitis B virus protein X (143,144). This overexpression can promote the proliferation of 

hepatocarcinoma cancer cells. Moreover, it has been shown that miRNAs are involved in 

chemoresistance to anti-cancerous drugs by degrading ING5 which, on the contrary, promotes 

chemosensitivity to these drugs. This is the case of miR-193a-3p in bladder cancer (138) and 

of miR-1307 in ovarian cancer (32). 

 Nevertheless, the upregulation of miRNAs is not specific to cancers. In fact, a report 

has demonstrated that miR-193 is overexpressed in response to low-level laser irradiation 

(LLLI) in multipotent stem cells resulting in ING5 inhibition and thus cell proliferation (145). 

The LLLI technique could increase the proliferation of stem cells, especially those used in 

stem cell therapy. 

 

III.  Conclusion 

The members of the ING family play a critical role in cell homeostasis and their 

dysregulation can maintain oncogenesis. As a matter of fact, they appear to be down-regulated 

in several cancer (21), and associated with poor prognosis or chemoresistance 

(32,106,107,127,146,147). Moreover INGs dysregulation may have a role in other diseases. 

For instance, ING4 KO mice don’t spontaneously develop tumors but regulation of NF-κB–

mediated innate immunity is impaired (148). Thus we could hypothesize that ING4 may be 

involved in inflammatory or immunity diseases. INGs regulation in cancer and diseases has 

not been totally elucidated yet. We reported that INGs protein can be mutated (28,59–61),  

have LOH (24,30,31), or be degraded (76,77,80,84), which make them both class I TSG 

(which are lost due to mutation or deletion), and class II TSG (which are not altered at the  

DNA level) (149). Nonetheless, those mechanisms are not sufficient to explain the frequent 
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loss of expression or down-regulation of INGs in cancer. Recently, some reports described 

INGs regulations by ncRNAs. As a matter of fact, ncRNAs, and more especially miRNAs, 

have been described to be dysregulated in cancer and other diseases, with pro-oncogenic or 

tumor suppressor effects (43,44). Of note, some reported miRNA studies need to be taken 

with caution. Indeed, some studies considered candidate miRNAs based on in silico analysis 

(115,135). However, in vitro experiments did not confirm these analyzes. Thus, to 

characterize INGs as a target of a newly-found miRNAs, in silico analysis should 

systematically be confirmed by in vitro experiments.  

 

IV.  Hypotheses and perspectives 

 

One intriguing hypothesis would be that ING proteins could be targeted by a same 

miRNA. miRNAs which measure approximately 20 bases bind preferentially to the 3’UTR 

sequences of transcripts thanks to a seed sequence that measures at least 6 bases (150). This 

means that theoretically a miRNA could target different INGs, but that has never been 

reported yet. When 3’ and 5’ UTR sequences of INGs are compared with Blast or Ensembl, 

3’UTR regions of several INGs share some common sequences of around 10-25 (Table 2) 

whereas not a single sequence match is observed for the 5’UTR regions. For instance, ING3 

and ING5 3’UTRs have 9 small sequences in common. Although the INGs share some small 

sequences in their 3’UTR, it should be noted that there are no significant homologies when 

looking at the whole 3’UTRs. In fact, there is a diversity of the 3’UTR sequences even when 

comparing different isoforms of the same ING gene. For instance, the ING1b 3’UTR 

sequence is included within the ING1a 3’UTR sequence but the latter is more than ten folds 

longer than the former. This variability could explain the variable expressions of the different 

ING isoforms between different tissues. When 3’UTR of ING genes are compared with other 

sequences in the genome, it is observed that the 3’UTR of ING1 shares approximately a 

hundred bases with INGX sequence. INGX is an ING1 pseudogene (2) which has never been 

shown to be translated. Its role has never been described yet. Thus, we could speculate that 

INGX could be involved in ING1 regulation of expression. However, it should be taken into 

account that INGX is much less transcribed than ING1 according to databases like ensembl.  

It has been reported that RNA hybridization within the CDS has a qualitatively similar 

effect than the 3’-UTR sites, and can induce translational repression (151). When comparing 

coding sequences of the different ING genes transcripts according to their closest homologue 
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(ING1/ING2, ING4/ING5, ING1/ING3 and ING1/INGX), homologies are more present within 

the C-terminal region of the INGs (>70%) (Fig. 3). Interestingly, the NCR (Novel Conserved 

Region) of ING1b and ING2 transcripts share 56% of homologies, which is consistent with 

the fact that they both interact with the mSin3a/HDAC complex through this NCR domain. 

Consequently, some INGs CDS could also be targeted by common miRNAs. 

Finally, whereas INGs protein can be regulated by miRNA, at least ING1 can interfere 

with miRNA synthesis (91,95), which raises the question of the other INGs involvement in 

miRNA regulation. 

Recently, therapeutics targeting miRNAs have emerged (152), hence the importance to 

understand their mechanisms of action. Indeed, since INGs proteins are TSG and are down-

regulated in many types of cancer, restoring their functions by inhibiting miRNAs could be a 

therapeutic possibility. Some studies showed that ING reintroduction mediated by adenovirus 

suppresses tumor growth, angiogenesis, enhance apoptosis and can have a synergistic effect 

with radiation therapy (153–155). Moreover, ING4 reintroduction through photothermal 

combined gene therapy showed in vitro and in vivo decreased cell viability and tumor growth 

(156). 
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Figures legends : 

 

Figure 1. INGs levels of expression in normal tissues and cancers. A) RNA level of 

expression of INGs in normal tissues and cancers based on RNAseq, according to The Human 

Protein Atlas (https://www.proteinatlas.org/) database. RNA level is expressed in RPKM 

(Read Per Kilobase per Million) in the normal tissues graph and in FPKM (number of 

Fragment Per Kilobase of exon per Million read) in the cancers graph. The size of each 

colored plot is related to each ING expression. B) Protein level of expression of INGs in 

normal tissues and cancers based on immunochemistry, according to THPA (normal tissues) 

and TCGA (cancer tissues) databases. In normal tissues, protein expression is described as 0 

(none), 1 (low), 2 (medium) or 3 (high). In cancers, each colored plot represents the 

percentage of patients with high or medium protein expression. Few antibodies have been 

validated and are reliable.  

 

Figure 2. ING genes mutation rate. Mutation rate for the different INGs according to TCGA 

database (https://portal.gdc.cancer.gov/) with tissue location. 

 

Table 1. ncRNAs targeting the INGs. Summary of the ncRNAs targeting the INGs with 

their functional consequences (oncomiR or tumor suppressor), the analysis used to associate 

miRNAs with the INGs (in silico or in vitro), and the tissue or disease studied. 

 

 

Table 2: INGs’ 3’ and 5’UTRs blast of small similar sequences. We have reported the 

length of the INGs’ 3’ and 5’ UTRs, the number of small similar sequences (10-25bp) 

between the ING transcripts and the homologies (>80%) with other gene sequences 

(https://blast.ncbi.nlm.nih.gov and http://www.ensembl.org). 

 

 

Figure 3. Homologies between different INGs transcripts. Homologies between INGs  

transcripts have been analyzed between ING1/ING2, ING1/ING3, ING1/INGX and ING4/5. 

The red color indicates an homology superior to 70%, orange an homology between 50% and 

70%, and grey an homology inferior to 50%. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Length
Number of small similar sequences (10-

25bp) BLAST (> 

80%)
3’UTR ING1 ING2 ING3 ING4 ING5

ING1 (NM_198218) 243 0 0 0 2
5 (INGX 

included)

ING2 (NM_001564) 144 0 1 0 1 2

ING3 (NM_019071) 2373 0 1 1 9 4

ING4 (NM_016162) 915 0 0 1 2 1

ING5 (NM_032329) 4447 2 1 9 2 100

Length
Number of small similar sequences (10-

25bp) BLAST (> 

80%)5’UTR ING1 ING2 ING3 ING4 ING5

ING1 (NM_198218) 198 0 0 0 0 2

ING2 (NM_001564) 202 0 0 0 0 1

ING3 (NM_019071) 148 0 0 0 0 2

ING4 (NM_016162) 47 0 0 0 0 2

ING5 (NM_032329) 26 0 0 0 0 0

Table 2.
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INGs ncRNAs Mechanisms of 

action
In silico 
analysis

In vitro analysis Tissue/disease Refs

ING1 miR-371-5p oncomiR Yes Yes Pancreas (33)

ING2 miR-8084 oncomiR Yes Yes Breast (94)

ING3

miR-21 oncomiR Yes Yes Colon (106-109)

miR-494 oncomiR Yes No Saliva (110)

miR-522 oncomiR Yes No Saliva (110)

ING4

miR-650 oncomiR Yes Yes gastric, B cells, lung, liver, 
bone, breast

(118–123)

miR-214 oncomiR Yes Yes pancreas (x2), heart (124, 125, 
129)

miR-761 oncomiR Yes Yes lung (126)

miR-330 oncomiR Yes Yes liver (127)

miR-423-5p oncomiR Yes Yes glioma cells (128)

miR-2478 Absence of 
interactions 
demonstrated by in 
vitro analysis

Yes Yes HEK293T cell (130)

miR-361-3p upregulated (could 
be used as 
biomarker)

Yes No Plasma (chronic idipathic 
urticarial)

(130)

miR-1910-5p upregulated (could 
be used as 
biomarker)

Yes No Plasma (chronic idipathic 
urticarial)

(130)

miR-3691-3p upregulated (could 
be used as 
biomarker)

Yes No Plasma (chronic idipathic 
urticarial)

(130)

ING5

miR-193 Promotes
mutipotent stem 
cells proliferation 
in response to LLLI

Yes Yes Mutipotent Stem Cells (140)

miR-193a-3p oncomiR Yes Yes Bladder (133)

miR-196a oncomiR Yes Yes Pancreas (135)

miR-331-3p oncomiR Yes Yes Liver (138)

miR-181b oncomiR Yes Yes Liver (139)

miR-1307 oncomiR Yes Yes Ovary (32)

miR-24 oncomiR Yes Yes Breast (136)

miR-27-3p oncomiR Yes Yes Bone (137)

Table 1.
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Highlights 

 

− INGs are tumor suppressor genes playing a crucial role in cell homeostasis 

− Multiple mechanisms may be involved in INGs loss or downregulation  

− INGs regulation is still unclear and can involve ncRNAs 

− ncRNAs may play an important role in cancer and other disease notably through INGs 

regulation. 

 


