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Abstract. Among electrophysiological signals, Local Field Potentials (LFPs) are

extensively used to study brain activity, either in vivo or in vitro. LFPs are recorded

with extracellular electrodes implanted in brain tissue. They reflect intermingled

excitatory and inhibitory processes in neuronal assemblies. In cortical structures,

LFPs mainly originate from the summation of post-synaptic potentials (PSPs), either

excitatory (ePSPs) or inhibitory (iPSPs) generated at the level of pyramidal cells. The

challenging issue, addressed in this paper, is to estimate, from a single extracellularly-

recorded signal, both ePSP and iPSP components of the LFP. The proposed method

is based on a model-based reverse engineering approach in which the measured LFP is

fed into a physiologically-grounded neural mass model (mesoscopic level) to estimate

the synaptic activity of a sub-population of pyramidal cells interacting with local

GABAergic interneurons. The method was first validated using simulated LFPs for

which excitatory and inhibitory components are known a priori and can thus serve as a

ground truth. It was then evaluated on in vivo data (PTZ-induced seizures, rat; PTZ-

induced excitability increase, mouse; epileptiform discharges, mouse) and on in clinico

data (human seizures recorded with depth-EEG electrodes). Under these various

conditions, results showed that the proposed reverse engineering method provides a

reliable estimation of the average excitatory and inhibitory post-synaptic potentials

originating of the measured LFPs. They also indicated that the method allows for

monitoring of the excitation/inhibition ratio. The method has potential for multiple

applications in neuroscience, typically when a dynamical tracking of local excitability

changes is required.

1. Introduction

Local field potentials (LFPs) refer to extracellularly-recorded electrophysiological signals

generated by neuron assemblies (Buzsáki 2004). LFPs are extensively used to monitor

and analyze brain function in brain research as well as in clinical studies in neurology.

LFP recording requires a simple differential amplification coupled with a filtering

montage and a surgical procedure to implant electrodes in or close to the brain regions
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Reconstruction of post-synaptic potentials by reverse modeling of local field potentials 2

of interest. Therefore, the LFP provides critical information on local neuronal activity.

LFPs are used in a wide spectrum of applications, from basic neuroscience to clinics

(Destexhe & Bedard 2013) (e.g., using the LFP as a control signal to trigger stimulation

in closed-loop (Priori et al. 2013), which requires a more sophisticated hardware than

a standard LFP recording setup, due to the stimulation montage and the control

processing).

Physiologically, LFP signals reflect ongoing excitation- and inhibition-related processes

in recorded networks (Buzsáki et al. 2012). Indeed, it is known that the major

contribution to LFPs arises from post-synaptic potentials (PSPs) generated at the

level of pyramidal cells within spatially extended neuronal assemblies. As described

by bioelectromagnetic models (Malmivuo et al. 1995, Ramachandran 2002) and

experimental studies (Buzsáki et al. 2012), the summation of PSPs, either excitatory

(ePSPs) or inhibitory (iPSPs) generated at the level of pyramidal cells located in the

cerebral cortex is the major contribution to LFPs. This PSP summation is explained

by two major factors: (1) synaptic activation leads to the formation of a sink and a

source at the level of neurons, which can then be viewed as elementary current dipoles

(Buzsáki et al. 2012), and (2) when neurons are geometrically aligned (Buzsáki et al.

2012, Harris et al. 2003) (such as pyramidal cells organized ”in palissade” in cortical

structures), then dipole contributions tend to sum up instead of cancelling out (Buzsáki

et al. 2012). In addition, due to the frequency-filtering properties of cerebral tissue, slow

post-synaptic currents are more likely to be recorded further away from the electrode

contacts, as opposed to fast transmembrane ionic currents (involved in action potentials)

which attenuate much faster with space (Bédard et al. 2004). Overall, LFPs mainly

result from an averaging process of synaptic currents, both excitatory (glutamatergic)

and inhibitory (GABAergic). Therefore, LFPs may, in theory, give access to underlying

synaptic currents and, subsequently, provide insights about the excitability level of

recorded neuronal local networks. To reach this goal, the challenging issue is to estimate

from a single extracellularly-recorded signal both ePSP and iPSP components of the

LFP. In this paper, we propose a novel model-based approach to solve this problem.

The method is based on model-based reverse engineering approach in which a neural

mass model (NMM) is used to deconstruct the extracellularly-recorded field activity and

reveal its main excitatory and inhibitory components. This reverse engineering method

involves two main steps. First, the classical NMM was revisited to solve an ill-posed

problem, since two parameters (ePSPs and iPSPs amplitude) are estimated from a single

signal (LFP recording) measured over a finite time window. Second, an optimization

procedure was developed allowing for time tracking of ePSPs and iPSPs over a short-

duration sliding window. From a theoretical viewpoint, our approach makes use of

the neural mass model structure as a constraint to solve an ill-posed problem, i.e. the

identification of two parameters (namely EXC and INH) from one signal measurement

only.

As demonstrated from both simulated and experimental data, the proposed approach

can reliably estimate and monitor the average post-synaptic potentials and the densities
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Reconstruction of post-synaptic potentials by reverse modeling of local field potentials 3

of action potentials (AP) arising from underlying excitatory and inhibitory subsets of

neurons.

It is worth noting that several methods have been proposed to quantify the balance

between excitation and inhibition (excitation to inhibition ratio, EIR). For instance,

a study used the slope of the power spectrum at low-frequencies (Gao et al. 2017)

and identified that the latter was significantly associated with changes in the EIR.

Despite its interest in terms of understanding how excitability shapes subtle features

of the LFP power spectrum, this approach relies mainly of the power spectrum slope

at low frequencies to estimate the EIR, and excitatory/inhibitory components were

indirectly estimated through a multivariate regression model. Another study attempted

to relate the EIR with the transfer function of a neural mass model, (Moran et al.

2007), based on an approximation using a linearized version of the system equation,

without accounting for fine dynamics due to the hypothesis of stationarity. Our method

overcomes these difficulties and provides a direct access to quantified indexes such as

post-synaptic potentials (excitatory/inhibitory, from which the EIR can be derived).

Therefore, the proposed method can be utilized in a wide range of applications that

make use of mesoscopic LFPs, from basic neuroscience (tracking of excitability changes

in neuronal networks) to clinics (analysis of depth-EEG recordings in patients with

epilepsy).

2. Materials and methods

2.1. Principle of the model-based LFP reconstruction

The method exploits a priori knowledge about the processes (type and kinetics)

underlying LFP generation in order to constrain LFP decomposition. LFPs are mostly

composed of two sub-components (excitatory and inhibitory), and their extraction

is challenging since 1) reconstructing two signals from only one is by definition an

ill-posed problem; and 2) their frequency range is similar. In order to overcome

this roadblock, we used a physiologically relevant NMM as a constraint to enable

this decomposition process. NMM are a well-established computational class of

models of neuronal population activity considering synaptic interactions between the

neuronal assemblies involved in each LFP component: pyramidal cells (excitation)

and interneurons (inhibition). We then used an LFP (experimental or simulated) to

constrain the NMM response, and exploited this NMM to extract information contained

in the LFP, especially to reconstruct excitatory and inhibitory processes. p-values were

calculated using the Welch’s t-test, suited for unequal variances and sample sizes.

2.2. Revised version of the neural mass model (NMM)

The NMM used in this study is an established and validated neural population model

(Jansen & Rit 1995) including two sub-populations corresponding to pyramidal cells

for excitation, and interneurons for inhibition. The corresponding block diagram of the
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Figure 1. Illustration of the reverse modeling approach. (a) Neural mass model

block diagram including two sub-populations: pyramidal cells (P) and interneurons (I).

Excitatory (blue) and inhibitory (green) links between sub-populations are represented

with arrows. (b) Neural mass model diagram where sigmoid functions were modified

and connectivity parameters from the original NMM were removed. Excitatory and

inhibitory loops are represented respectively in blue and green. LFP is the summation

of synaptic inputs onto the pyramidal population (c) Reverse modeling approach

where the new neural mass model is used to estimate PSPs contained in an LFP

signal, the latter being set as an input of the model. A cost function based on

the RMS error between estimated L̂FP (LFP output) and input LFP was introduced

to improve identification of EXC (excitatory) and INH (inhibitory) gain parameters.

ePSPs: excitatory post-synaptic potentials, iPSPs: inhibitory post-synaptic potentials,

h: synaptic impulse response functions, Sn: sigmoid functions, 1/a and 1/b: dendritic

average time constant.

model is presented in figure 1, where excitatory/inhibitory processes are represented

in blue/green, respectively. In order to improve the physiological relevance of the

NMM, we adapted the parameters of the ”wave-to-pulse” sigmoid functions, converting

the mean depolarization of sub-populations into an output firing rate, according to

available neurophysiological data from the literature. We also reduced the number

of parameters to be identified through the reverse modeling process by removing the

connectivity parameters, which were instead integrated in the new sigmoid functions

and in the synaptic gain parameters of the transfer functions. The main difference

with the original Jansen-Rit’s model (Jansen & Rit 1995) is therefore the absence of

connectivity parameters. Table 2 summarizes model parameters values. The resulting

equations were derived following the method presented by Touboul et al. (Touboul

et al. 2011). The synaptic impulse response functions used in the model were under the
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Reconstruction of post-synaptic potentials by reverse modeling of local field potentials 5

Pyramidal cells

References Sigmoid function parameters

e0 r v0

Reid et al. (Reid et al. 2014) 48.9 0.534 5.12

Chen et al. (Chen & Bazan 2005) 26.7 0.721 5.81

Malik et al. (Malik & Chattarji 2011) 20.5 0.435 5.81

Malik et al. (Malik & Chattarji 2011) 112 0.356 6.62

Wang et al. (Wang et al. 2015) 19.1 0.550 6.67

Mean 45.4 0.519 6.00

Interneurons

References Sigmoid function parameters

e0 r v0

Gibson et al. (Gibson et al. 2006) 173 0.166 17.7

Ferguson et al. (Ferguson et al. 2013) 128 0.239 12.0

Fidzinski et al. (Fidzinski et al. 2015) 195 0.320 11.1

Fidzinski et al. (Fidzinski et al. 2015) 154 0.210 13.1

Erisir et al. (Erisir et al. 1999) 66.3 0.376 10.6

Mean 143 0.262 12.9

Table 1. Identified sigmoid function parameters.

standard form: hEXC(t) = EXC · t · e
−t
τe for excitation, and hINH(t) = INH · t · e

−t
τi for

inhibition, leading to a set of 6 differential equations forming the full NMM:

ẏ0(t) = y3(t)

ẏ1(t) = y4(t)

ẏ2(t) = y5(t)

ẏ3(t) = EXC · aS1 (y1(t) − y2(t)) − 2ay3(t) − a2y0(t)

ẏ4(t) = EXC · a [p(t) + S2 (y0(t))] − 2ay4(t) − a2y1(t)

ẏ5(t) = INH · bS3 (y0(t)) − 2by5(t) − b2y2(t)

(1)

Table 1 lists the studies that were used to identify sigmoid function parameters

corresponding to pyramidal cells and interneurons. Since, in these studies, the pulse-to-

wave relation was studied with respect to current, the first step was to convert the data

with respect to voltage. To do so, a current-to-voltage conversion was used according

to Destexhe and Paré’s study (Destexhe & Paré 1999), which used Ohm’s law with the

membrane resistance. Then, a non-linear least square (Levenberg-Marquardt algorithm)
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Reconstruction of post-synaptic potentials by reverse modeling of local field potentials 6

Parameter Interpretation Value

EXC Average excitatory synaptic gain 60

INH Average inhibitory synaptic gain 15

τe = 1/a Dendritic average time constant 1/100 s

in the feedback excitatory loop

τi = 1/b Dendritic average time constant 1/35 s

in the feedback inhibitory loop

V0e Parameters of the sigmoid V0e = 6 mV

e0e function for pyramidal cells e0e = 45.4 Hz

re re=0.519 mV-1

V0i Parameters of the sigmoid V0i = 12.9 mV

e0i function for interneurons e0i = 143 Hz

ri ri = 0.262 mV-1

p(t) Excitatory input noise m = 90 Hz

(Gaussian white noise) s = 30 Hz

Table 2. Model parameters.

was used to fit data from the literature, and an average was made between the two

available sets to obtain sigmoid function parameters used in our model. The three

sigmoid functions that were included in the NMM are:

S1 = S2 =
e0e

1 + ere(v0e−v)
, with


e0e = 45.4

re = 0.519

v0e = 6

S3 =
e0i

1 + eri(v0i−v)
, with


e0i = 143

ri = 0.262

v0i = 12.9

(2)

2.3. Estimation of excitatory and inhibitory post-synaptic currents

We verified that this novel NMM could reproduce the four possible types of activity of

the original model, namely: background activity, sporadic epileptic interictal discharges,

rhythmic discharges and narrow band activity at theta and alpha frequencies (see

Figure S1 ActivityMap in Supplementary materials). The reverse modeling approach

uses LFPs (simulated or recorded experimentally) that are injected in the NMM. The

originality in our approach is to force the NMM state at the node of the associated block

diagram (see figure 1(c)), corresponding to where LFPs are generated (”LFP input”),

forcing other model components to use the LFP that has been injected as an input.

By comparing the block diagrams in figure 1(b) and 1(c), the LFP input of the reverse

modeling approach (figure 1(c)) corresponds to the LFP output of the NMM (figure

1(b)).
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Reconstruction of post-synaptic potentials by reverse modeling of local field potentials 7

The injected LFP was first normalized to ensure that its magnitude was similar to

simulated LFPs. The physical unit of LFPs, as well as ePSP and iPSP, is in terms of

Volts, and the normalization process is used to avoid considering potential differences

in the amplification gain of the recording hardware. Furthermore, the normalization

was done only once for the entire time course of the analyzed signal, even if the LFP

was split into windows afterwards as explained below. The reverse modeling approach

involved removing the noise input (s=0) to avoid adding a stochastic component to the

process, and also to correctly adapt ÊXC and ÎNH parameters to fit optimally the input

LFP with the estimated L̂FP. Since the model is then in an ”open loop” form, the

noise variance would just add noise onto ePSP. The method only allows the ÊXC and

ÎNH parameters to vary, since all other parameters relate to intrinsic tissue properties.

Therefore, the dendritic average time constants (1/a and 1/b) and the sigmoid function

parameters (V0e, e0e, re, V0i, e0i, and ri) were fixed based on the literature. In order

to ensure that NMM dynamics corresponds to the injected LFP, a key step consists in

comparing the NMM output L̂FP (estimated LFP computed in the reverse modeling

approach) with the injected LFP, and to identify NMM gain parameters maximizing

the match between LFP and L̂FP. The identified gain parameters are ÊXC for the

excitatory loop and ÎNH for the slow inhibitory loop. This identification was performed

using a gradient descent, where the cost function was chosen as the root mean square

(RMS) error between LFP and L̂FP in magnitude (MRMS) and derivative (dRMS):

MRMS =

√√√√∑N
n=1

(
LFPn − L̂FP n

)2
N

, (3)

dRMS =

√√√√∑N
n=1

(
dLFPn

dt
− dL̂FPn

dt

)2
N

, (4)

RMSE = MRMS + dRMS, (5)

where N is the number of samples in the LFP.

Using both the difference in magnitude and derivative between LFP and L̂FP in

the cost function enables evaluating the similarity in magnitude, but also in tendency.

In the gradient descent method, both ÊXC and ÎNH parameters were set to initial

values (in a 2D parameter space) and the estimated L̂FP was computed for different

set of parameters around the initial ones (on an ellipse where both radii were defined

on the 2D parameter space d1 and d2). The gradient descent algorithm ended when

no error lower than the current parameter set was found, and current ÊXC and ÎNH

parameters were then identified as the optimal parameters. It should be noted that this

method does not identify all the basins of attraction in a 2D parameter space. As an

attempt to verify that the set of identified parameters was unique, we also checked if

there was, for a wide range of parameter values for EXC and INH, a unique solution

under the form of a basin of attraction within the parameter space. This is a critical

requirement for our method, since it would be problematic to have multiple potential
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Figure 2. Illustration of the uniqueness of basins of attraction for parameter

reconstruction using different LFP modes. RMSE computed within a 2D grid

parameter space (EXC and INH). Note that only one basin of attraction is found

for each type of activity. Interictal discharges are epileptiform events not associated

with seizure symptoms, alpha corresponds to an alpha rhythm with frequency between

8 and 12 Hz, rhythmic corresponds to periodic ictal periods, and bkg corresponds to

background activity.

parameter values for a single LFP to analyze. Parameters were set to form a 2D grid

where EXC values varied from 0 to 100, and INH values varied from 0 to 50. The

step for EXC was 0.25 and the step for INH was 0.125, leading to a 400x400 grid.

For each parameter set, the RMS value between LFP and L̂FP was computed. We

present in Figure 2 the corresponding result for qualitatively different LFPs (interictal

discharges, alpha, rhythmic and background activity), which highlight the uniqueness of

the parameters set towards which the method converges. Note that this does not prove

that it is impossible to have several basins of attraction, however we only identified one

basin of attraction in all of our tests. The four types of LFP tested were: Interictal

discharges (epileptiform events not associated with seizure symptoms), alpha rhythm

(frequency content between 8 and 12 Hz), rhythmic discharges (periodic ictal periods),

and background activity.

Custom software was designed in Python, integrating a Qt interface (See

Video S1 Software demo in Supplementary materials), dedicated to fitting at best NMM

parameters on an injected LFP along short sliding windows on the time axis (i.e.,

NMM gain parameters are identified once per sliding window). Excitatory (ÊXC)

and inhibitory (ÎNH) gains could therefore be tracked during the LFP time course,

along with the excitation to inhibition ratio (ÊIR, computed as the ÊXC/ÎNH ratio).

Obviously, the NMM provides full access at any time to the intermediate states for each

sub-population, such as the average firing rate of action potentials and average post-

synaptic potentials at the level of pyramidal cells and interneurons. Such signals are

challenging to extract from LFPs with standard signal processing methods, especially

since LFPs originate from the summation of PSPs onto pyramidal cells, and are not

directly related with APs at the soma level. Using our approach, FRs can be directly

deduced from a LFP with the reverse modeling approach, since FRs are intermediate

states in the NMM.
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Reconstruction of post-synaptic potentials by reverse modeling of local field potentials 9

2.4. Goodness-of-fit

The method used to compute the goodness-of-fit between an LFP and a reconstructed

LFP was the zero normalized cross correlation (ZNCC (Nakhmani & Tannenbaum

2013)). This method provides an indication of similarity between two signals, named

γ, which is bound [-1;1]. This indicator is 1 when both signals are identical, -1 when

one signal is the opposite of the other, and is close to 0 when both signals are far from

similar. This indicator neither depends on the length of the LFP nor the amplitude

scales of different LFP measures (different amplifier gains for instance). Therefore, the

ZNCC is especially suited to compare results for different LFP time/amplitude scales.

2.5. Simulated epileptic activity using another published model

In order to compare the performance of our model-based reconstruction of excitatory

and inhibitory post-synaptic potentials, we used an intrinsically different computational

model of LFP, known as the ”Z6 model” (Kalitzin et al. 2010). The Z6 model is a

mathematical phenomenological model, that has been previously used in the context of

epileptic signals interpretation (Koppert et al. 2016). Although it is more abstract than

the NMM, it includes one parameter (’c’) that allows for controlling the excitability of

the system, which provides us a ground truth for assessing the excitation/inhibition ratio

(EIR) estimated with the proposed method. When −1 ≤ c < 0, this model generates

steady-state behavior for values close to -1 (background activity), or a limit cycle for

values close to 0 (ictal activity). All other parameters were fixed: a = -2; b = 2; ωmean

= 1; ωsd = 0.2; ηmean = 0; ηsd = 0.2.

2.6. In vivo recordings

Electrophysiological recordings from N=7 mice were performed in accordance with the

European Community Council Directive of November 24th 1986 (86/609/EEC), and

were approved by the local ethics committee from the University of Rennes (agreement

No 7872-2017031711448150). In all cases, bipolar electrodes (tips 400 µm apart) were

implanted bilaterally in the hippocampus (-2 mm anteroposterior, -1.5 mm mesio-lateral,

-2 mm dorso-ventral from the Bregma) of C57B6j/Rj mice (80 days old). A reference

electrode (monopolar) was placed at the cerebellum level. Mice were made epileptic

following an intra-hippocampal injection of kainic acid that triggered an approx. 4-

week epileptogenesis phase preceding the chronic epileptic phase. LFPs were sampled

at 2048 Hz and hardware highpass filtered (0.16 Hz cutoff frequency). Recordings were

made after the 4-week epileptogenesis period (chronic epilepsy stage). After protocol

completion, mice were euthanized using the CO2 gradient method.

Electrophysiological recordings in rats (N=1) were obtained from the company

Biotrial (http://www.biotrial.com). Ethics approval was obtained for these recordings,

which involved injection of convulsive PTZ doses. A single bipolar electrode was

implanted in the rat cortex, while a reference electrode was placed at the cerebellum
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Reconstruction of post-synaptic potentials by reverse modeling of local field potentials 10

level. A surgically implanted wireless transmitter enabled recording throughout the

entire experiment without any physical manipulation of the rat, avoids movement

artifacts. PTZ injection was performed through perfusion at the dose of 75 mg/kg.

2.7. In clinico recordings

In the context of pre-surgical planning, epileptic patients candidate to surgery undergo

stereoencephalography (sEEG), involving the implantation of multiple intracranial elec-

trodes aiming at improving the identification of epileptogenic zones. sEEG recordings

from N=5 patients in the context of clinical evaluation were obtained from the Epilep-

tology Unit of Rennes University Hospital (CHU Pontchaillou, Rennes, France). sEEG

recordings were sampled at 2048 Hz with a Deltamed EEG acquisition system. Seizure

epochs, involving several minutes pre- and post-seizures, were extracted for each patient

to enable LFP reconstruction pre-, per- and post-seizure.

All the data are available on the following public link https://zenodo.org/deposit/1285630

and with the DOI: 10.5281/zenodo.1285630

3. Results

3.1. In silico validation

The reverse modeling method was first tested on simulated data. In this first validation

step, the input LFP was simulated by the same NMM as the one used in the reverse

modeling algorithm. The unique advantage is the ground-truth: estimated parameters

(denoted by êPSP and îPSP) can be directly compared to actual components (ePSP

and iPSP) of the simulated LFP used as an input signal.

Figure 3 presents the method performance on simulated data. Scatter plots in figure

3(a) display estimated parameter values (ÊXC, ÎNH and ÊIR : excitation to inhibition

ratio) versus reference parameter values (denoted as EXC, INH and EIR) for a set of

35 simulated LFPs. The reverse modeling approach provides an excellent identification

of parameters, since points in the scatter plot are close to the ideal result (represented

by black lines when identified and reference parameters are equal). The method also

provides an excellent ÊIR estimation, represented by the ÊXC/ÎNH ratio. Panels in

figure 3(b) to 3(g) present four qualitatively different types of LFPs generated from the

model, and the corresponding reconstruction computed from the proposed approach.

Panels in figure 3(b) display LFPs, while panels in figure 3(c) display ePSPs,

and panels in figure 3(d) display iPSPs. As depicted in figure 3(b), results revealed

an excellent LFP reconstruction from estimated synaptic components, as shown by

the goodness-of-fit indexes close to 1 (γ =0.998 for interictal discharges, γ=0.968 for

alpha, γ=0.999 for rhythmic and γ=0.894 for background). For background activity,

the goodness-of-fit index was lower (γ=0.894) due to the strong contribution of the

stochastic noise input (p(t)) for this particular type of activity. Reconstructed LFPs
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Reconstruction of post-synaptic potentials by reverse modeling of local field potentials 11

were obtained from estimated postsynaptic potentials, either excitatory (êPSP) or

inhibitory (îPSP), respectively shown in panels in figure 3(c) and 3(d). As depicted,

these estimated components perfectly fit the reference components (ePSPs and iPSPs)

that were summed up to obtain the simulated LFP signal used as an input for the

reverse modeling approach. As for average PSPs, average firing rates (FRs) of neuronal

sub-populations are explicit variables of the NMM. Therefore, it is possible to access to

these signals. As an example, FRs are presented in figure 3(e) for F̂R1, figure 3(f) for

F̂R2 and figure 3(g) for F̂R3. As depicted, both reconstructed and reference FRs are

quasi-identical.

In the previous example, the same model has been used both to generate LFPs and

as the core for the reverse modeling approach. In order to perform a validation using

another model based on a different formalism, we present below the results for LFPs

generated with the Z6 model ((Kalitzin et al. 2010), see Methods section). We generated

150 s long LFP signals, with different values of the parameter c (from -1 to -0.01). Our

method was applied to 4 s windows with 1 s shift. Results are displayed in figure 4. The

overall goodness-of-fit was γ=0.948, which shows an excellent agreement between the

generated LFPs and reconstructed LFPs. Results point at a small decrease of ÊXC and

a more pronounced decrease of ÎNH for increasing c values, leading to an EIR increase.

Note that the ÊIR increases when the c parameter decreases, which in both cases results

in an increase of excitability. In addition, our method also captures the non-linearity

of the Z6 model, as shown in figure 4(c) where an exponential variation is seen. Since

the c parameter controls the excitability of the system, we conclude that our method is

able to capture the same excitability increase from LFP signals generated with another

model of epileptiform activity. In other words, the performance of our method does not

rely on the type of computational model used to generate epileptiform signals.

In the following section, we move from the validation on simulated data to an exper-

imental validation of the proposed method in the specific context of epileptic activity.

This choice was motivated by the fact that the major qualitative changes observed

in LFPs (during the interictal to ictal transition for example) involve drastic changes

in neuronal excitability, potentially quantified by the proposed approach. Typically,

seizures are associated with a significant increase of the excitation to inhibition ratio

(Fritschy 2008).

3.2. In vivo and in clinico evaluation of the proposed approach

3.2.1. PTZ-induced seizure (rat). In vivo results obtained in rats following PTZ

(pentylenetetrazol) intra-peritoneal injection are reported in figure 5. Results indicated

that the proposed method leads to a reconstructed L̂FP signal (red line, figure 5(a)) that

was in excellent agreement (normalized goodness-of-fit between 0.85 and 0.97) with the

experimentally-recorded LFP (black line, figure 5(a)) for the entire recording duration

(130 seconds), as depicted on the 4 selected epochs (figure 5(a)). This illustrates the
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Reconstruction of post-synaptic potentials by reverse modeling of local field potentials 12

robustness of our estimation method, which provides accurate estimates for epochs

featuring qualitatively different dynamics. In addition to close replication of LFP

dynamics, the estimation of the excitation/inhibition ratio (ÊIR) presented in figure

5(b), was in agreement with the expected excitability changes during the seizure time

course: the ÊIR transiently increased at the onset of the PTZ-induced seizure, and

then dramatically increased again during the seizure. It gradually decreased back to

baseline as the seizure terminated. Interestingly, a decrease in the excitation level

is observed during the seizure (figure 5(b)), which is however more modest than the

drastic drop in inhibition, therefore still resulting in an increased EIR. Furthermore,

since P̂SPs are computed in the NMM, they can be estimated through the proposed

method as presented in figure 5(c). The gradual decrease in inhibitory post-synaptic

potentials associated with the seizure is clearly visible from epoch 1 to epoch 3, with

a slight recovery in epoch 4 (figure 5(c)). Overall, there is satisfactory qualitative and

quantitative agreement of LFP dynamics on the one hand, and of estimated ÊIR and

P̂SPs on the other hand. This supports the validity of our model-based reconstruction

of excitatory and inhibitory components in data obtained in vivo. In addition, our

method points at a result that is non-intuitive, namely the slight excitation decrease at

the seizure onset.

3.2.2. Interictal activity in the kainate model of epilepsy (mouse). The proposed

method was also tested in epileptic mice (kainate model, see Materials and Methods

section). Based on our method applied to 53 epochs of interictal events (hippocampal

paroxysmal discharges, HPD) in N=7 mice, a reconstruction of excitatory and inhibitory

components along with the ÊIR was performed. As depicted in figure 6(a), the model-

based reconstruction of the L̂FP (red line) was in excellent agreement (goodness-of-

fit index γ between =0.89 and 0.94) with the experimental LFP (black line) for the

four considered epochs (see numbered panels in figure 6(a)). The reconstructed L̂FP

accurately matched the experimental LFP not only during background activity (panel 3

in figure 6(a)), but also during HPD (panel 4 in figure 6(a)). In addition, the time course

of the estimated ÊIR (figure 6(b)) was consistent with the occurrence of HPD within the

signal: the ÊIR remained low during background activity, transiently increases during

HPD, before returning rapidly to background values (figure 6(b)). Interestingly, as

can be seen in figure 6(b), there was both a reduction of ÊXC and ÎNH components

(and not a decrease of ÎNH only as could be intuitively deducted in this case), which

was however greater for ÎNH, still resulting in a major ÊIR increase. This is similar

to the results obtained in the case of the PTZ-induced seizure (see Section 3.2.1). In

addition, figure 6(c) presents reconstructed post-synaptic potentials (êPSP and îPSP)

corresponding to each of the four LFP epochs in figure 6(a). The reconstructed iPSP

points at a drastic inhibition decrease during an interictal discharge (epoch 2 in figure

6(c)) or HPD (epochs 1 and 4 in figure 6(c)), as compared to background (epoch 3 in

figure 6(c)). The slight decrease in the reconstructed excitatory PSPs during interictal

events (interictal discharges or HPD) is also apparent (panels 1, 2 and 4 as compared
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Reconstruction of post-synaptic potentials by reverse modeling of local field potentials 13

to panel 3 in figure 6(c)). Figure 6(d) presents results at the group level (N=53 epochs)

regarding the excitation and inhibition levels during HPD as compared to background

activity epochs. We observed significant decreases in excitation and inhibition (p <

0.001) during HPD as compared to background activity, with a lesser excitation decrease

as compared to the inhibition decrease, which still results in a drastic ÊIR increase.

3.2.3. LFP recordings after injection of a sub-convulsive dose of PTZ (mouse). In the

third in vivo experiment, a non-epileptic mouse was injected with a sub-convulsive dose

of PTZ, aiming at validating our model-based method when LFP changes are subtler

(i.e., where no seizures are present). The LFP recorded over the entire experiment

(approx. 2200 seconds long) is presented in figure 7(a). Estimated ÊXC and ÎNH

components of the LFP are presented in figure 7(b) and 7(c), and illustrate a significant

increase (p < 0.001) of the ÊIR (figure 7(d)) shortly after injection, as compared to

pre-injection levels. Consistent with the PTZ-induced rat seizure, the ÊIR increased

(figure 7(d)) due to a joint decrease of ÊXC and ÎNH components, which is more

pronounced for the ÎNH component than ÊXC. Furthermore, the ÊIR followed an

exponential decay past the first 500 seconds after injection (the 500 s immediately

after injection are discarded to avoid contamination by movements of the mouse due to

manipulation by the experimenter), which is consistent with a pharmacokinetic response.

The decay curve of the ÊIR was fitted with an exponentially decaying curve, and the

time constant optimizing the fit was estimated to be 370 seconds, in agreement with

the PTZ pharmacokinetic time constant found in the literature (Wendling et al. 2016,

Mandhane et al. 2007).

3.2.4. In clinico validation of the method in epileptic patients. Our method was

validated using intracranial recordings from N=5 epileptic patients undergoing

stereoencephalography (sEEG) in the context of pre-surgical evaluation. Among the

available recordings, we extracted a total of 47 spontaneous seizures, which featured

artifact-free epochs pre- and post-seizures, so that the ÊIR evolution could be tracked

over the entire seizure time course. Figure 8 presents an example of human seizure and

associated L̂FP reconstruction (figure 8(a)) along with ÊIR estimation (figure 8(b)), and

reconstruction of PSPs (figure 8(c)). L̂FP reconstruction is illustrated in figure 8(a),

with the four zoomed panels emphasizing qualitatively different portions of the signal,

illustrating the excellent agreement between the recorded intracranial signal (black line)

and the reconstructed L̂FP (red line), as quantified by the goodness-of-fit index ranging

between 0.92 and 0.98. In the seizure presented as an example in figure 8(a), the

estimated ÊIR over the seizure time course (see figure 8(b)) was physiologically plausible,

with a drastic ÊIR increase during the seizure itself, with a return to pre-ictal values

after seizure termination. The reconstructed post-synaptic components (figure 8(c)) for

each of the four panels presented in figure 8(a) also pointed at a gradual decrease in

the inhibition level as the seizure progresses, consistently with the in vivo PTZ-induced

seizure studied (figure 5). Figure 8(d) presents the group results (N=5) and compares
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Reconstruction of post-synaptic potentials by reverse modeling of local field potentials 14

reconstructed excitation and inhibition levels during interictal and ictal epochs. The

estimated ÊIR increase during seizure was driven by a significant ÊXC increase (p <

0.001), combined with a significant ÎNH decrease (p < 0.001). Reconstructed L̂FPs

for this database matched closely actual sEEG signals (analogous to LFPs), with an

average goodness-of-fit γ=0.893 ±0.56.

4. Discussion

We developed a novel model-based method enabling the plausible reconstruction

of excitatory and inhibitory post-synaptic potentials involved in LFP generation as

measured experimentally by extracellular electrodes. This method can be applied in

a wide range of applications (in in vivo/in vitro studies conducted in animals or in

patients with implanted electrodes), typically when local neuronal network dynamics

and excitability need to be assessed from recorded electrophysiological signals. To our

knowledge, this is the first study solving the ill-posed inverse problem of LFP to estimate

its main synaptic components based on a neural mass model. In this regard, it differs

from two previously-published studies (Einevoll et al. 2007, Gratiy et al. 2011), where the

authors introduce a method called laminar population analysis (LPA) to estimate firing

rates and evoked synaptic activity from multi-electrode laminar recordings. First, the

LPA is based on a detailed description of the laminar structure of the cortex. Second, it

assumes that the observed LFP can be decomposed as a linear sum over LFP population

templates and that synaptic connection patterns can be extracted from the fitted weights

of the linear sum. Here, the neural mass nonlinear input-output functions are kept in

the proposed reverse modeling method. Third, LPA was applied to stimulus-averaged

data that consist in evoked responses which are relatively stereotyped and which differ,

in this regard, from the spontaneous patterns analyzed in this study which show higher

diversity.

The method is based on a neural mass model, since this modeling approach captures

crucial physiological components such as the dendritic average time constants, or wave-

to-pulse sigmoid non-linear functions. While obviously such models do not capture all

biophysical aspects (e.g., neuron orientation with respect to the recording electrode as

mentioned in (Einevoll et al. 2013) or cell morphology (Gratiy et al. 2011)), it stills

features the two main excitatory (Glutamate) and inhibitory (GABA) post-synaptic

currents, which are generic and widespread among cortical structures. Furthermore,

this model is able to generate LFP signals with only a limited number of parameters.

The proposed method was tested at several levels: from in silico (using the method on

LFPs generated using a NMM, providing a ground truth, as well as LFPs generated with

another computational model, the Z6 model), to in vivo (rat and mouse LFPs), and

finally to in clinico (sEEG recordings in epileptic patients). In both in silico tests, the

method was able to track excitability changes controlled by parameters EXC and INH for

NMM-based LFPs, and by parameter c for Z6 model. Regarding experimental data, we

found plausible and relevant results emphasizing an ÊIR increase during the generation
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Reconstruction of post-synaptic potentials by reverse modeling of local field potentials 15

of interictal events and during seizures. Furthermore, the reconstructed L̂FP, using

our model-based decomposition, matched accurately experimentally recorded LFPs,

suggesting that the assumption according to which excitatory and inhibitory post-

synaptic potentials constitute the major contribution to LFP is reasonable. In addition,

using a subconvulsive dose of PTZ in mice, we were able to provide an estimate of

the PTZ time constant consistent with the literature (Wendling et al. 2016, Mandhane

et al. 2007). Therefore, a major advantage of our technique is that it enables the

detection of subtle variations in neuronal excitability; such as those induce by sub-

convulsive doses of PTZ. The increase of EIR is mainly explained by the major drop

of GABAergic inhibition, already observed in computational modeling study (Wendling

et al. 2002), animal model of epilepsy (Trevelyan et al. 2007, Wenzel et al. 2017) and in

human epilepsy (Schevon et al. 2012). In addition, it is worth noting that the proposed

method consistently pointed at a counter-intuitive decrease of excitation (minor as

compared to the decrease of inhibition) in all in vivo recordings (PTZ-induced seizure,

epileptiform events in the kainate model). At least the PTZ-model directly affects the

function of type A GABAergic receptors and is likely to interfere with the inhibitory

synaptic barrage. The slight decrease of excitation, predicted by the model, was not

found during human seizures from our available database. A possible explanation is

that the model focused only on post-synaptic potentials but not the overall excitation

(e.g extrasynaptic ligand-receptors activation, potassium induced direct depolarization,

paroxysmal depolarization shift, and other mechanisms). Moreover, slightly different

pathophysiological mechanisms might be involved in the generation of epileptiform

activity in the PTZ/Kainate in vivo models as compared to human seizures.

The possibility to reconstruct, from an experimentally recorded LFP, the time

course of excitatory (glutamatergic) and inhibitory (slow GABAergic) post-synaptic

contributions, is especially appealing. Our method provides full access to fundamental

variables such as ePSPs and iPSPs for each subpopulation. These signals are challenging

to extract from LFPs, since the problem is underdetermined. The identification of NMM

parameters to optimize the fit of simulated LFPs with experimental LFPs has been

addressed in several studies, using methods based on genetic algorithms (Wendling et al.

2005), Kalman filter (Bellanger et al. 2005), synaptic conductance estimation (Rudolph

et al. 2004), or Hodgkin-Huxley parameters estimation (Zheng et al. 2012). However,

none of these methods provides access to PSP signals from experimentally recorded

LFPs. Our method should have applications in numerous areas of neuroscience, since

LFP is a very common electrophysiological recording modality, from in vivo to in clinico,

and ranging from neurophysiology to diagnostic applications. In addition, the method

is sensitive enough to capture subtle changes in excitability, as shown in the case of

the sub-convulsive PTZ dose experiment, and was able to estimate successfully PTZ

pharmacokinetics.

One limitation is that our method currently features only slow, dendrite-targeting

GABAergic synapses, and neglects fast soma- or axon-targeting GABAergic synapses;

which limits the possible frequency range of LFPs that can be reconstructed. This

Page 15 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Reconstruction of post-synaptic potentials by reverse modeling of local field potentials 16

simplification was done for three reasons. First, we aimed at providing a proof-of-

concept that a method based on a physiologically-based NMM can provide meaningful

excitatory and inhibitory components from an experimentally recorded LFP. Second,

due to its very generic structure, the NMM used should be general enough to analyze

LFPs from any brain region. Third, if a sub-population of fast GABAergic interneurons

was added in the model, the proposed reverse modeling approach would require to

identify three parameters respectively related to ePSPs, slow iPSPs and fast iPSPs by

optimization in a 3D parameter space. In this case, the computational cost associated

with the search of the global minimum would dramatically increase and an optimization

algorithm different from the gradient descent should be used. This absence of fast

GABAergic activity explains why the epochs where higher frequencies (beta band -13

to 30 Hz- and above) were present in the LFP were more challenging to reconstruct

using our approach. This specific point explains why the goodness-of-fit is better in

the case of HPD in mice (figure 6) as compared to epochs of relatively fast activity

during the rat PTZ-induced seizure (figure 5): HPD are mainly characterized by slow

activity, as compared to the relatively fast activity occurring at the onset of seizures.

Therefore, agreement between reconstructed and experimentally measured LFPs is lower

when higher frequencies (beta range and above, i.e. > 13 Hz) are present in the signal.

Finally, it should also be mentioned that in the case where extracellular micro-electrodes

(like microwires or micro-array electrodes) are being used to record multi-unit activity,

the proposed method can only be applied to the LFP component of recorded signals

(that can be obtained from low-pass filtering of recorded signals), regardless of the

electrode geometry. This limits its range of application if the goal is to analyze action

potentials in addition to recovering the post-synaptic components of the LFP.

Using our model-guided approach to unveil the time course of excitatory and

inhibitory post-synaptic currents is promising, especially since the algorithm provides

excitability tracking with a performance in real-time (Video S1 Software demo in

Supplementary materials): on average, 2 s of LFP sampled at 1024 Hz requires 0.7

s using a single core on a PC equipped with an Intel Xeon E5-2637 3.5 GHz CPU and

64 GB of 1866 MHz RAM. Furthermore, there is still ample room for computation time

optimization, since the algorithm is currently programmed in Python, which is known

for not being optimal in terms of computation time. The possibility to automatically

track neuronal excitability in real-time could be implemented on-chip, for example, in

a neuromodulation device, to trigger stimulation when excitability exceeds a certain

threshold. Another immediate application would be the monitoring of epileptic patients

undergoing sEEG for pre-surgical evaluation.
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of cell assemblies in the hippocampus’, Nature 424(6948), 552.

Jansen, B. H. & Rit, V. G. (1995), ‘Electroencephalogram and visual evoked

potential generation in a mathematical model of coupled cortical columns’, Biological

cybernetics 73(4), 357–366.

Kalitzin, S. N., Velis, D. N. & da Silva, F. H. L. (2010), ‘Stimulation-based anticipation

and control of state transitions in the epileptic brain’, Epilepsy & Behavior 17(3), 310–

323.

Koppert, M., Kalitzin, S., Velis, D., Lopes Da Silva, F. & Viergever, M. A. (2016),

‘Preventive and abortive strategies for stimulation based control of epilepsy: A

computational model study’, International journal of neural systems 26(08), 1650028.

Malik, R. & Chattarji, S. (2011), ‘Enhanced intrinsic excitability and epsp-spike coupling

accompany enriched environment-induced facilitation of ltp in hippocampal ca1

pyramidal neurons’, Journal of neurophysiology 107(5), 1366–1378.

Malmivuo, P., Malmivuo, J. & Plonsey, R. (1995), Bioelectromagnetism: principles and

applications of bioelectric and biomagnetic fields, Oxford University Press, USA.

Mandhane, S. N., Aavula, K. & Rajamannar, T. (2007), ‘Timed pentylenetetrazol

infusion test: a comparative analysis with sc ptz and mes models of anticonvulsant

screening in mice’, Seizure-European Journal of Epilepsy 16(7), 636–644.

Moran, R. J., Kiebel, S. J., Stephan, K. E., Reilly, R., Daunizeau, J. & Friston, K. J.

(2007), ‘A neural mass model of spectral responses in electrophysiology’, NeuroImage

37(3), 706–720.

Nakhmani, A. & Tannenbaum, A. (2013), ‘A new distance measure based on generalized

image normalized cross-correlation for robust video tracking and image recognition’,

Pattern recognition letters 34(3), 315–321.

Priori, A., Foffani, G., Rossi, L. & Marceglia, S. (2013), ‘Adaptive deep brain stimulation

(adbs) controlled by local field potential oscillations’, Experimental neurology 245, 77–

86.

Page 18 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



REFERENCES 19

Ramachandran, V. S. (2002), Encyclopedia of the Human Brain, Four-Volume Set.,

Academic Press.

Reid, C. A., Leaw, B., Richards, K. L., Richardson, R., Wimmer, V., Yu, C., Hill-

Yardin, E. L., Lerche, H., Scheffer, I. E., Berkovic, S. F. et al. (2014), ‘Reduced

dendritic arborization and hyperexcitability of pyramidal neurons in a scn1b-based

model of dravet syndrome’, Brain 137(6), 1701–1715.

Rudolph, M., Piwkowska, Z., Badoual, M., Bal, T. & Destexhe, A. (2004), ‘A method

to estimate synaptic conductances from membrane potential fluctuations’, Journal of

neurophysiology 91(6), 2884–2896.

Schevon, C. A., Weiss, S. A., McKhann Jr, G., Goodman, R. R., Yuste, R., Emerson,

R. G. & Trevelyan, A. J. (2012), ‘Evidence of an inhibitory restraint of seizure activity

in humans’, Nature communications 3, 1060.

Touboul, J., Wendling, F., Chauvel, P. & Faugeras, O. (2011), ‘Neural mass activity,

bifurcations, and epilepsy’, Neural computation 23(12), 3232–3286.

Trevelyan, A. J., Sussillo, D. & Yuste, R. (2007), ‘Feedforward inhibition contributes to

the control of epileptiform propagation speed’, Journal of Neuroscience 27(13), 3383–

3387.

Wang, H.-Y., Hsieh, P.-F., Huang, D.-F., Chin, P.-S., Chou, C.-H., Tung, C.-C., Chen,

S.-Y., Lee, L.-J., Gau, S. S.-F. & Huang, H.-S. (2015), ‘Rbfox3/neun is required for

hippocampal circuit balance and function’, Scientific reports 5, 17383.

Wendling, F., Bartolomei, F., Bellanger, J. & Chauvel, P. (2002), ‘Epileptic fast activity

can be explained by a model of impaired gabaergic dendritic inhibition’, European

Journal of Neuroscience 15(9), 1499–1508.

Wendling, F., Gerber, U., Cosandier-Rimele, D., Nica, A., De Montigny, J.,

Raineteau, O., Kalitzin, S., da Silva, F. L. & Benquet, P. (2016), ‘Brain (hyper)

excitability revealed by optimal electrical stimulation of gabaergic interneurons’,

Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation

9(6), 919–932.

Wendling, F., Hernandez, A., Bellanger, J.-J., Chauvel, P. & Bartolomei, F. (2005),

‘Interictal to ictal transition in human temporal lobe epilepsy: insights from a

computational model of intracerebral eeg’, Journal of Clinical Neurophysiology

22(5), 343.

Wenzel, M., Hamm, J. P., Peterka, D. S. & Yuste, R. (2017), ‘Reliable and elastic

propagation of cortical seizures in vivo’, Cell reports 19(13), 2681–2693.

Zheng, Y., Luo, J. J., Harris, S., Kennerley, A., Berwick, J., Billings, S. A. & Mayhew,

J. (2012), ‘Balanced excitation and inhibition: Model based analysis of local field

potentials’, NeuroImage 63(1), 81–94.

Page 19 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



REFERENCES 20

50 60 70 80 90
EXC

50

60

70

80

90

EX
C

10 15 20 25
INH

5

10

15

20

25

IN
H

4 6 8
EIR

3

4

5

6

7

8

9

EI
R

a

0 2 4

20

0

LF
P 

[a
.u

.]

Interictal
discharges

0 2 40

20

40

eP
SP

 [a
.u

.]

0 2 40

20

40

iP
SP

 [a
.u

.]

0 2 4
6

7

8
alpha

0 2 40

20

40

0 2 40

20

40

0 2 4

20

0

20 rhythmic

0 2 40

20

40

0 2 40

20

40

0 2 4

-2.00

-1.50

-1.00 bkg

Original LFP
Reconstructed
LFP

0 2 40

20

40
Original ePSP
Reconstructed
ePSP

0 2 40

20

40

b

c

d
Original iPSP
Reconstructed
iPSP

0 2 4
0

20

40

FR
1 

[H
z]

0 2 40

20

40

FR
2 

[H
z]

0 2 4
Time [s]

0

50

100

150

FR
3 

[H
z]

0 2 4
0

20

40

0 2 40

20

40

0 2 4
Time [s]

0

50

100

150

0 2 4
0

20

40

0 2 40

20

40

0 2 4
Time [s]

0

50

100

150

0 2 4
0

20

40
Original FR1
Reconstructed
FR1

0 2 40

20

40
Original FR2
Reconstructed
FR2

0 2 4
Time [s]

0

50

100

150

e

f

g
Original FR3
Reconstructed
FR3

Figure 3. Results for simulated LFPs obtained using the same model as the reverse

modeling approach. (a) Scatter plots for 35 simulated LFPs where ideal parameters vs

identified parameters are displayed. Columns of combined panels b to e represent

four types of activities. (b) LFP signals generated with the model (black) and

L̂FP signals reconstructed with the reverse modeling approach (red). Goodness-of-fit

indexes are: γ=0.998 for interictal discharges, γ=0.968 for alpha, γ=0.999 for rhythmic

and γ=0.894 for background (bkg), (c) ePSP signals generated with the model (black)

and êPSP signals extracted from the reverse modeling approach (blue). (d) iPSP

signals generated with the model (black) and îPSP signals extracted from the reverse

modeling approach (green). (e-g) show respectively FR1, FR2 and FR3 generated

with the model (black) and F̂R1, F̂R2 and F̂R3 signals extracted from the reverse

modeling approach (in color).

Page 20 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



REFERENCES 21

-1
-0.

90
-0.

80
-0.

70
-0.

60
-0.

50
-0.

40
-0.

30
-0.

20
-0.

10
-0.

05
-0.

01

c

75

80

85

90

95

EX
C

-1
-0.

90
-0.

80
-0.

70
-0.

60
-0.

50
-0.

40
-0.

30
-0.

20
-0.

10
-0.

05
-0.

01

c

0

5

10

15

20

IN
H

-1
-0.

90
-0.

80
-0.

70
-0.

60
-0.

50
-0.

40
-0.

30
-0.

20
-0.

10
-0.

05
-0.

01

c

0

10

20

30

40

50

60

EI
R

a b c

Figure 4. Results obtained with the Z6 model with different c values (duration: 150

s per LFP signals for each value of c). ÊXC and ÎNH were identified using our reverse

modeling approach. (a) Boxplot of ÊXC, (b) ÎNH , and (c) ÊIR.
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Figure 5. In vivo validation of the model-based LFP reconstruction in a PTZ-induced

seizure (rat, N=1). (a) LFP signals recorded during a PTZ-induced seizure in rat (black

line) and L̂FP signals reconstructed using the reverse modeling approach (red line) for

different types of activity (panels numbered from 1 to 4). The normalized goodness-

of-fit index γ is presented for each activity type. (b) Identified model parameters:

excitatory ÊXC (blue line), inhibitory ÎNH (green line), and the excitability ratio ÊIR

(brown line). (c) Reconstructed êPSP and îPSP extracted from the NMM for each

numbered panel presented in (a).
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Figure 6. In vivo validation of the model-based LFP reconstruction in kainate mice

(N=7). (a) LFP signals recorded in mouse where HPD are present (black line) and

L̂FP signals reconstructed with the reverse modeling approach (red line) for different

types of activity (panels numbered from 1 to 4). The normalized goodness-of-fit index

γ is presented for each activity type. (b) Identified model parameters: excitatory ÊXC

(blue line), inhibitory ÎNH (green line), and the excitability ratio ÊIR (brown line).

(c) Reconstructed êPSP and îPSP extracted from the NMM for each numbered panel

presented in (a). (d) Boxplot of ÊXC, ÎNH, and ÊIR over background activity vs.

HPD segments of 53 LFPs (≈ 500s long each) in seven mice. ∗ ∗ ∗ stands for p<0.001.

Statistical significance was assessed using a Welch’s t-test (sample size: Bkg=1856 and

HPD=2255 values.
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Figure 7. In vivo estimation of the excitation to inhibition ratio (ÊIR) after injection

of a subconvulsive dose of PTZ (mouse, N=1). (a) LFP recording. (b) Estimation

of the ÊXC parameter. (c) Estimation of the ÎNH parameter. (d) ÊIR. Dashed line

corresponds to the average of three first boxplots. The continuous line corresponds to

an exponential decay model (ae
t−1000

b + c, with a=4.1, b=-370 and c=6.3) on the five

last boxplots. ∗ ∗ ∗ stands for p<0.001. Statistical significance was assessed using a

Welch’s t-test (sample size: 250 values per window). (e) RMS values computed for

each time window.
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Figure 8. Validation on human seizure data (epileptic patients, N=5) obtained

through intracranial recordings. (a) LFP signals recorded in human where a seizure

is present (black line) and L̂FP signals reconstructed with the reverse modeling

approach (red line) for different types of activity (panels numbered from 1 to 4). The

normalized goodness-of-fit index γ is presented for each activity type. (b) Identified

model parameters: excitatory ÊXC (blue line), inhibitory ÎNH (green line), and the

excitability ratio ÊIR (brown line). (c) Reconstructed êPSP and îPSP extracted from

the NMM for each numbered panel presented in (a). (d) Boxplot of ÊXC, ÎNH, and

ÊIR ratio over interictal vs ictal segments of 47 LFPs in five patients. ∗ ∗ ∗ stands

for p<0.001. Statistical significance was assessed using a Welch’s t-test (sample size:

Interictal=2283 values and Ictal=2255.
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