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Abstract. Video and sound acquisition and processing technologies have known great
improvements in the last decades, with many applications in the biomedical area. The
motivation of this paper is to provide an overall state of the art of the advances within these
topics in paediatrics, to evaluate their potential application for monitoring in Neonatal
Intensive Care Unit (NICU). For this purpose, more than 150 papers dealing with video
and audio processing were reviewed. For both topics, clinical applications are described
according to the considered cohorts, either full-term newborns, infants and toddlers, or
preterm newborns. Then, processing methods are presented, in terms of data acquisition,
feature extraction and characterization. The paper is firstly focused on the exploitation
of video recordings, that began to be automatically processed in the 2000s, and we show
that it has been mainly used to characterize infant motion. Others applications, including
respiration and heart rate estimation and face analysis, are also presented. Audio processing
is then reviewed with a focus on cry analyses. We describe that this topic arose earlier, from
first studies focused on induced-pain cries to newest ones dealing with spontaneous cries,
and that they are mainly based on frequency features. Then, some papers dealing with non-
cry signals are also discussed. Finally, we show that, even if recent improvements in digital
video and signal processing allow for an increasing automation of processing, the context
of NICU makes still difficult a fully-automated analysis of long recordings. Propositions to
overcome some limitations are given.

1. Background

The analysis of neonatal and early childhood development is at the center of concerns of the
medical community. Especially, premature babies, having several vital immature functions,
receive a particular attention by the recording, in Neonatal Intensive Care Unit (NICU), of
several physiological signals (Huvanandana et al., 2017), however limited by their fragility.
On the other hand, video and audio acquisitions have the advantage to propose contactless
and non-invasive ways to collect data for patients being cared for in hospital or at home.
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Such technologies having known great improvements in the last decades, they are now used
in many biomedical applications.

The use of audio and video in paediatrics found certainly its roots in sleep analysis
when the Association of the Psychophysiological Study of Sleep (APSS) stated in 1969 the
necessity to develop a guide for scoring sleep in infants, since the criteria of Rechtschaffen
and Kales (Rechtschaffen and Kales, 1968) were "applicable only to the adult" and had "not
taken into account the unique features of the developing infant" (Grigg-Damberger et al.,
2007). In 1971, Anders et al published a manual recommending to support polysomnographic
recordings by behavioral observations (Anders et al., 1971) and then carried out a study with
full-term infants, where behavioral states were scored from video and audio acquisitions,
according to eye state, movements and crying vocalizations (Anders and Sostek, 1976).
Later on, several approaches using audio and video recordings were proposed to analyze
sleep either on premature newborns (Fuller et al., 1978), or on children for the evaluation for
Obstructive Sleep Apnea (OSA) (Morielli et al., 1996; Sivan et al., 1996). Finally in 2011,
ASA/ASTA (Australasian Sleep Association/Australasian Sleep Technologists’ Association)
Paediatric Working Group recommended to record audio and video as additional information
to the electrophysiological signals in the scoring of children sleep (Pamula et al., 2011).

Along with these works, in 1990, Prechtl developed a method to assess the quality of
General Movement (GM) based on video observations as a diagnostic tool for early detection
of brain dysfunction (Prechtl, 1990; Prechtl et al., 1997). From there, General Movement
Assessment (GMA) using video has been applied in several clinical contexts. In the same
way, the detection of neonatal seizures also led to a lot of works including video acquisitions
(Pediaditis et al., 2012). Such analyses relied, in the oldest studies, on manual annotations
of the videos that began to be automatically processed only in the 2000s, thanks to the
improvements in digital video processing.

The development of automated sound processing occurred earlier since studies on
newborn cries began from the 1960s with Wasz-Höckert et al , where it was shown, by
spectrographic analysis, that four different types of cries could be distinguished as birth,
pain, hunger, pleasure (see (Wasz-Höckert et al., 1985) for an historical review). From there,
a huge literature arose, with the analysis of frequency features, in children and newborns.
Several studies performed also detailed analyses of crying behavior in preterm newborns
either solely, either in comparison with full-term newborns.

The objective of the present paper is to synthesize this abundant literature, in the
context of paediatrics, and identify its clinical impacts. Specifically, the motivation of
our work is to offer an overview of the existing audio and video processing methods to
evaluate their potential application for monitoring in NICU. The paper is organized in two
main sections: Section 2 is devoted to video processing, while audio analysis is described in
Section 3. For both topics, clinical applications are first described. Since these applications
differ depending on the studied population age, especially considering audio analysis, they
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are presented first for full-term newborns (0 to 2 months old), infants (2 months to 1 year old)
and toddlers (1 to 4 years old) and then for preterm newborns. Then, processing methods
are presented, in terms of data acquisition, feature extraction and characterization. Finally,
last section draws the main limitations of these studies but also gives some propositions,
in the objective of developing automatic monitoring systems able to meet clinical needs in
NICU.

2. Video analysis

Since the motion of a newborn is one of the most crucial information to describe his physio-
pathological state, it has been the most extracted descriptor from video recordings. The
estimation of other types of information has also been investigated such as respiration, heart
rate and facial expression.

In this section, main clinical applications supported by video recordings are first
presented. However, since, for some applications, video recordings were analyzed manually
(especially for preterm), some studies with manual video analysis are included in order to
present all the potential applications of video analysis. Then, data acquisition and processing
methods are described.

2.1. Clinical applications

2.1.1. Full-term newborns, infants and toddlers General Movement Assessment was used to
support many studies regarding different pathologies. In (Guzzetta et al., 2003), the visual
assessment of motion patterns from video enabled to early detect hemiplegia (complete or
partial palsy) in infants with cerebral infarction (not enough blood supply in a region of the
brain). Mazzone et al found that abnormal GMs were early markers of motor impairment
(partial or total loss of function of a body part) in infants with Down Syndrome (Mazzone
et al., 2004). Nearly ten years after, automatic video processing was applied by different
groups to study Cerebral Palsy (CP), which is a disorder of movements caused by an
abnormal motor control center of the brain (Stahl et al., 2012; Orlandi et al., 2015).

A large part of studies using video recordings was dedicated to the analysis of neonatal
seizures. Whereas first studies focused on observational classifications of seizures from video
recordings (Mizrahi and Kellaway, 1987; Tharp, 2002), later, thanks to the development
of video processing, several approaches were proposed to automatically detect or classify
seizures from motion descriptors (Karayiannis et al., 2001; Sami et al., 2004; Karayiannis
et al., 2004, 2005a,b,c,d; Karayiannis and Tao, 2006; Karayiannis et al., 2006; Ntonfo et al.,
2012). For their part, Cuppens et al focused on the specific case of the epilepsy (Cuppens
et al., 2009, 2010).

Studies regarding physiological monitoring with the support of video processing have
also been conducted. Respiratory frequency has been estimated in order to prevent Sudden
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Infant Death Syndrome (SIDS) (Fang et al., 2015) or to detect repeated apnea events in
the context of Congenital Central Hypoventilation Syndrome (CCHS) (Cattani et al., 2014,
2017). Pulse rate has also been estimated from video acquired during Hammersmith Infant
Neurological Examinations (HINE) (Sikdar et al., 2015).

Emotion and facial expression detection also received a particular attention. Face
analyses were performed either to discriminate, between the behavioral states sleep, awake
and cry (Hazelhoff et al., 2009), or to automatically analyze infants emotion during
interactions (Zaker et al., 2013, 2014).

2.1.2. Preterm newborns Like for the previous population, video has been mainly used
for General Movement Assessment regarding preterm infants. Visual general movement
assessment on video recording has been proved successful to determine if infants had brain
dysfunctions, either transient or persistent, and to identify infants at risk for impaired
neurological outcomes (Bos et al., 1998a). Later, Bos et al also observed in videotape
recordings the effects of the dexamethasone therapy on high-risk very preterm infant through
GMA (Bos et al., 1998b). Moreover, Spittle et al showed that abnormal GMs directly reflect
white matter injury (Spittle et al., 2008). Among these applications, no video processing
methods were developed to automatize the assessment. More recently, Adde et al focused
on the automatic prediction of CP by computer-based video analysis of general movements
(Adde et al., 2009, 2010; Rahmati et al., 2014, 2015).

In the meantime, video-based analyses were performed to assess sleep quality, either
visually, where video was used as a support for actigraphy measurement validation (So
et al., 2005; Sung et al., 2009) or to evaluate the influence of light exposure on the sleep
(Kaneshi et al., 2016), or semi-automatically, to detect the eye state in different sleep stages
(Porée et al., 2015).

Other clinical investigations through video processing have been conducted. Among
them, Pulled-To-Sit examination of infants was performed by the use of object tracking
methods (Dogra et al., 2012). Later, with the ambition of a contact-less and non-invasive
monitoring, Villarroel et al elaborated a monitoring solution of vital signs (respiratory
rate, oxygen saturation and heart beat) through video analysis (Villarroel et al., 2014).
Some authors also succeeded to estimate the infants heart rate from video imaging (Aarts
et al., 2013; van Gastel et al., 2018) and Koolen et al estimated respiration rate by motion
extraction (Koolen et al., 2015). Meanwhile, Zamzami et al worked on pain assessment by
classifying infant’s expression (Zamzami et al., 2015).

2.2. Methods for video processing

Automatic video processing in paediatrics has led to a large number of papers, with different
objectives, including motion extraction and characterization, respiration and heart rate
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estimation and face analysis such as depicted, in Figure 1. The next section presents these
works. As a first step, a special attention is paid to video databases.

2.2.1. Video acquisition Recording settings are important quality factors and yet, only one
group observed the impact of the camera set-up on motion analysis, including spatial and
temporal resolutions, compression, illumination and location of moving body parts in the
images (Cuppens et al., 2009, 2010). Nonetheless, all authors usually respected reasonable
values in term of resolution, frame rate or compression and solutions to overcome the impact
of the illumination and location variability were developed (noise reduction techniques,
computation of features independent of the amplitude. . . ).

Two database types can be identified regarding camera/patient positioning. The
more common one contained video recordings performed in a controlled environment where
cameras were located above a mattress and infants were placed in a supine position with no
blanket and fully visible (Karayiannis et al., 2001; Sami et al., 2004; Karayiannis et al., 2004,
2005a,b,c,d; Karayiannis and Tao, 2006; Karayiannis et al., 2006; Adde et al., 2009, 2010;
Stahl et al., 2012; Rahmati et al., 2014, 2015; Orlandi et al., 2015). A marginal positioning
has also been used in (Zaker et al., 2013, 2014) where infants were placed in a baby seat with
only the head and shoulders visible. In the second type, video data collection was integrated
in the medical care routine during scheduled examinations such as HINE (Dogra et al., 2012;
Sikdar et al., 2015) or directly in the bedroom (Hazelhoff et al., 2009; Cuppens et al., 2010;
Ntonfo et al., 2012; Aarts et al., 2013; Villarroel et al., 2014; Cattani et al., 2014; Porée
et al., 2015; Fang et al., 2015; Koolen et al., 2015; Cattani et al., 2017; van Gastel et al.,
2018). This ambition to integrate the care routine has led to a higher variability in camera
positioning. Nevertheless, cameras were mostly placed above one corner of the foot-end of
the bed, recording the full body of the baby (Cuppens et al., 2010; Ntonfo et al., 2012; Porée
et al., 2015; Cattani et al., 2014; Koolen et al., 2015; Cattani et al., 2017).

For studies focused on face analysis or heart rate, camera position may differ and be
on the middle-left of the bed (Aarts et al., 2013). Zoom has been applied to focus on the
head (Hazelhoff et al., 2009; Aarts et al., 2013; Zamzami et al., 2015). Dealing with closed
incubators, Villarroel et al installed their camera above the infant, against the plastic wall
(Villarroel et al., 2014). Profile point of view was adopted for the recordings performed
during HINE (Dogra et al., 2012; Sikdar et al., 2015).

Most of the databases were composed by selected short video sequences from a dozen of
seconds to dozens of minutes. Some exceptions were noted in (Cattani et al., 2014) with more
than one hour and half of recording and in the work on continuous vital signs monitoring
with initial recordings durations between 50 minutes and more than seven hours (Villarroel
et al., 2014).
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The size of the studied population was very varied, from a very small number of infants
(one to three) (Cattani et al., 2014; Orlandi et al., 2015) to a more consequent cohort (more
than 30 patients) (Karayiannis and Tao, 2006; Adde et al., 2009).

2.2.2. Motion extraction Three popular methods have been used to automatically extract
body (global) or limbs (local) movements: frame differencing, optical flow and tracking.

Frame differencing consists in computing the difference between the current and one
or multiple previous frames. The resulting difference image contains the global motion
information, including the infant’s movements. However, this difference image is generally
very noisy, since it is sensitive to very low intensity changes and to the original images
noise. Moreover, since the detection is based on intensity changes, it enables to identify the
contours of the moving parts, but is less sensitive to the motion of areas with homogeneous
intensities. Hence, all the studies have considered post-processing to limit the influence of
noise. Intensity thresholding or median filtering have been widely used to remove small
intensity differences (Karayiannis and Tao, 2006; Ntonfo et al., 2012; Shimizu et al., 2017),
followed by morphological operators or a threshold applied on objects size to remove the
small regions (Adde et al., 2009, 2010). The use of a vector clustering was also proposed
to identify the different regions of interest (Karayiannis and Tao, 2006). Finally, most
authors summarized the resulting images by computing a motion signal, sometimes called
"motiongram", "quantity of motion" or "motion strength signal", corresponding to the area
of the moving parts (Karayiannis and Tao, 2006; Adde et al., 2009, 2010). This signal was
used for further processing in order to characterize the motion (see section 2.2.3).

Optical flow is the velocity field generated by the relative motion between an object
and the camera in a sequence of frames. Contrary to frame differencing which detects the
moving areas but does not compute the displacements, optical flow estimation methods
return a velocity or a displacement vector for each pixel. Many methods for optical flow
have been proposed in the literature (Sun et al., 2014), most of them being based on the
hypothesis that the intensity of one pixel remains constant between any two following frames
and that the motion between two frames is small. Considering infant’s motion extraction, the
original method of Horn and Schunck (Horn and Schunck, 1981) has been used by different
teams (Karayiannis et al., 2005b,c, 2006; Cuppens et al., 2009, 2010). This approach is based
on the minimization of a metric combining two terms, a data term based on the intensity
conservation constraint and a smoothness, or regularization, term modelling the spatial
distribution of the flow field. The importance of formulating an appropriate smoothness
term, e.g. using quadratic functions, and to tune the associated weighting factors has been
demonstrated (Karayiannis et al., 2006). In the same sense, Stahl et al used a method based
on a non-local regularization term, imposing a smoothness assumption within a specified
region of the flow field (Stahl et al., 2012). In order to segment and track infant’s individual
body parts, Rahmati et al proposed, starting from some manual labels in one or more frames,
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to use a multi-scale optical flow combined with a tracking of the segmented parts (Rahmati
et al., 2015). As for the studies based on image differences, a temporal signal was finally
extracted from the computed flow fields. It is generally based, at each frame, on the area of
pixels corresponding to velocity vectors of magnitude higher than a threshold.

Tracking methods rely on the selection (either automatically or manually) of points
or regions of interest and on their tracking over the image sequence. They rely on the
assumption that the considered features keep a constant appearance over time and motion.
This tracking is based either on local intensity differences (template matching methods) or
on higher level descriptors (feature matching methods). Both approaches have been used
to track either specific parts of the infants, generally selected manually (e.g. hands and
feet (Orlandi et al., 2015) or center of the head (Dogra et al., 2012)) or more general points
of interests (e.g. corners (Karayiannis et al., 2001)). Karayiannis et al especially evaluated
different trackers based on block matching. Starting from the Kanade-Lucas-Tomasi (KLT)
tracker (Karayiannis et al., 2001), they considered adaptive block matching (Karayiannis
et al., 2005a), predictive block matching (Karayiannis et al., 2004) and a variety of other
block models associated with the automatic localization of moving body parts (Sami et al.,
2004). If these approaches had the advantage of estimating the motion of specific parts of the
infants, and thus enabled to study precisely their motions, they were sensitive to occlusions,
complex motions (e.g. rotations) and noise (Karayiannis et al., 2005d).

In short, the considered motion estimation methods have shown their ability to estimate
the infant’s motion. However, they most always relied on parameters which have to be
tuned according to the data (e.g. noise, motion amplitude) and are sensitive to occlusions.
Moreover, they generally do not differentiated the infant’s motion from other people’s
(parents, medical staff) motion, thus needing some manual steps to identify regions of
interest, making difficult the use of these approaches on long recordings.

2.2.3. Motion characterization Once the motion signal was extracted, high level features
were computed to characterize movements, sometimes in order to automatically classify
infants’ impairments.

The first step was often to identify motion and non-motion periods (or epochs) from
the motion strength signal. For this purpose, Cuppens et al used two methods: a) a fixed
threshold determined thanks to a receiver operating characteristic curve and b) a variable
threshold adapted to the noise and computed from mean and standard deviation of a selected
non-movement period. They concluded that a variable threshold adapted to each video
recording was the best approach with an average Predictive Positive Value (PPV) value of
94% (Cuppens et al., 2010). Considering a tracking of different limbs, Orlandi et al defined
non-motion periods when all limbs values were lower than a fixed threshold (Orlandi et al.,
2015).

Many features have been considered to describe the resulting epochs. Features
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characterizing the distribution of epochs have been used. Mean, median, maximum, standard
deviation of the quantity of motion have been computed (Adde et al., 2009, 2010), such as
speed and acceleration, skewness of the velocity and kurtosis of the acceleration, the last two
being measurements of the complexity, unintuitive repartition of the speed and acceleration
values (Orlandi et al., 2015). The periodicity of the motion signal has also been investigated,
e.g. using the autocorrelation function, to characterize clonic seizures (Ntonfo et al., 2012).
The maximum spike duration and the number of spikes have been computed (Karayiannis
et al., 2005b; Karayiannis and Tao, 2006). Positioning features of the centroid of motion (the
spatial center of the positive pixels in the motion image) have also been considered (Adde
et al., 2009, 2010): the mean position in the x- and y-directions, the standard deviation,
velocity and acceleration. The motion of individual limbs has also been characterized,
e.g. using wavelet and frequency analysis (Stahl et al., 2012), the periodicity (Rahmati
et al., 2014, 2015), the correlation between trajectories (Rahmati et al., 2014, 2015; Orlandi
et al., 2015), or the deviation from a smoothed version of the movement to characterize its
smoothness (Rahmati et al., 2014). 2-D modeling of the camera scene had also been used to
extract the angle between head and torso during HINE (Dogra et al., 2012).

The next step was to characterize or classify pathological situations based on these
features. Pulled-to-sit scores have been computed by applying decision rules regarding the
relative movement of the head with respect to the infant torso. The comparison with expert
scores led to a sensitivity of 92% along a specificity of 96% (Dogra et al., 2012). Adde at
al. aimed at determining infant with CP (Adde et al., 2009, 2010). By the use of logistic
regression, they evaluated the capacity of each feature to classify the absence or presence
of fidgety movements (classical circular movements, linked with the absence of CP). Best
results were obtained with the standard deviation of the centroid of motion, with a sensitivity
of 81.5% and specificity of 70% while other features showed weak specificities of less than
56% (Adde et al., 2009). Later, a cerebral palsy predictor was proposed, calculated as a
combination of the previous descriptor with the mean and standard deviation of the quantity
of motion. It reached a sensitivity of 85% and a specificity of 88% (Adde et al., 2010). These
works were extended in (Stahl et al., 2012; Rahmati et al., 2014, 2015). Stahl et al classified
infants using Support Vector Machine (SVM) with a linear kernel. They reported an accuracy
of 93.7% along with a sensitivity of 85.3% (Stahl et al., 2012). Combined with an automatic
segmentation of infant limb’s (Rahmati et al., 2014, 2015), the same approach presented
a total accuracy of 87% which was better than the results obtained with electromagnetic
sensors (Rahmati et al., 2015). In (Karayiannis et al., 2005b; Karayiannis and Tao, 2006;
Karayiannis et al., 2006), the goal was to distinguish neonatal seizures from random infant
behaviors and to differentiate between myoclonic and focal clonic seizures. Multiple Feed
Forward artificial Neuronal Networks (FFNN) were trained, using different sets of features.
They reached 85% of specificity and sensibility, with an increase of 5% when a frequency
feature was added (Karayiannis et al., 2006).
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2.2.4. Respiration estimation Several groups aimed to characterize respiration from video
recordings. Authors mostly proposed methods to estimate the frequency rate (Villarroel
et al., 2014; Koolen et al., 2015; Fang et al., 2015; Alinovi et al., 2018; Antognoli et al.,
2018; Brieva and Moya-Albor, 2017) and one group focused on the development of an apnea
detector (Cattani et al., 2014, 2017).

Eulerian video magnification has been used to magnify the motion of low amplitude
related to respiration (Koolen et al., 2015; Cattani et al., 2017; Brieva and Moya-Albor,
2017; Antognoli et al., 2018). It is based on the amplification of pixel color variation
in a specified frequency band. This was followed by motion extraction, e.g. using frame
differences (Cattani et al., 2014, 2017) or optical flow estimation (Koolen et al., 2015), to
generate a motion signal which was further processed to characterize the periodicity of the
motion. A periodic model whose parameters were estimated using a maximum-likelihood
method (Cattani et al., 2014, 2017; Alinovi et al., 2018) or a short-time Fourier transform
(Koolen et al., 2015) was used. If this process generally considered the whole image, one
group performed the magnification in several ROIs before selecting the best ones, i.e. with the
higher amplitudes of the estimated periodic variations (Alinovi et al., 2018). Respiratory
rate detection was successful for most patients during quiet sleep stages (Koolen et al.,
2015). Authors succeeded to identify 90 to 100% of the apneas detected by polysomnography
(Cattani et al., 2014).

For their part, Fang et al revealed slight movements by the use of accumulative sum of
difference images. Respiratory signals were then obtained from the frame by frame evolution
of the intensity of automatically selected pixels in the accumulative sum. The method showed
good results in 46 video sequences (Fang et al., 2015).

Villarroel et al based their method on four steps: a) automatic identification of stable
periods (with no interaction between the infant and the medical staff) by the use of
a non-parametric statistical background image estimation; b) computation of the mean
intensity of Regions of Interest on each channel RGB; c) calculation of the reflectance
photoplethysmogram by independent component analysis; d) identification of regular
frequencies using auto regressive models e) estimation of vital signals by filtering the
frequencies according to physiologically realistic ranges. Respiratory rate was obtained after
the application of a band pass filter cutting of at 0.33 Hz and 1.67 Hz (i.e. between 20
and 100 breaths per minute) and oxygen saturation was calculated from respiratory signal.
Respiratory rate and oxygen saturation estimation were comparable with the Philips monitor
values (Villarroel et al., 2014).

2.2.5. Heart rate estimation Four studies proposed non-contact heart rate monitoring
utilizing camera in preterm infant. These techniques were entirely contactless and used
the principle known as pulse-oximetry. In fact, light is more absorbed by blood than
by surrounding tissues so that variations in blood volume affect light transmission and
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reflectance. This phenomenon can be measured by observing slight color variations in a
region of interest.

First, a study showing interesting results to monitor heart rate in NICU was presented
by Aarts et al in 2013 (Aarts et al., 2013). They proposed a method based on four steps:
a) tracking of a manually selected contrasted ROI (e.g. eye, eye brow) that also contained a
skin area; b) computation of the average green channel pixel values into the skin area ROI;
c) computation of the joint time frequency diagrams (called plethysmograph); d) extraction
of the dominant frequency, related to pulse rate. In all 19 infants, heart rates were estimated
but not continuously. In fact, low ambient light level and infant motion still remained
challenging conditions.

Later, as mentioned above (see section 2.2.4), Villarroel et al developed a non-contact
vital signs monitoring, among them heart rate estimation based on the same steps as
respiratory rate estimation, except that they used a different band pass filter between 1.3
Hz and 5 Hz (corresponding to 78 beats per minute and 300 beats per minute) (Villarroel
et al., 2014). Resulting signals showed a great correlation with ECG-derived measurements
from the Philips monitor.

Pulse rate was also extracted within a manually chosen region of the trunk of the infant
by the mean of a set of different color (RGB) decomposition (Sikdar et al., 2015). Authors
found that the RG and GB channel combinations were more accurate in comparison to the
RGB or RB channel combination. This observation confirmed that photophlethysmography
signal is strongest on the green channel.

It is important to notice that these methods, based on the analysis of slight color
changes, were not adapted to acquisitions with low light levels. Recently, a method adapted
to infrared illumination was thus proposed, showing a good estimation of heart rate 87% of
the time (van Gastel et al., 2018).

2.2.6. Face analysis Infant’s facial expression was analyzed to detect the presence of
discomfort (Hazelhoff et al., 2009). Authors automatically segmented the face from the
background by skin color modelling and localized the eye, eye-brow and mouth region
thanks to shape assumptions. Then, they classified behavioral states by the use of a
hierarchical classifier (Hazelhoff et al., 2009). However, the study showed weakness in eye-
brow segmentation under lighting and viewpoint deviations.

Recent studies on facial analysis presented different features extraction methods (Zaker
et al., 2013; Zamzami et al., 2015; Zaker et al., 2014; Porée et al., 2015). Zamzami et al
detected the nose first and then expanded the mask to include the eyes and surrounding
areas. A facial strain algorithm was applied on the remaining area in order to extract
strain magnitude. K Nearest-Neighbors (KNN) and SVM classifier have been trained to
discriminate expression between two states: pain and no-pain. KNN approach showed an
higher accuracy of 96% (Zamzami et al., 2015). Facial features were also extracted by the
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mean of Active Appearance Models (AAM) combined with Histogram of Oriented Gradients
(HOG) to detect spontaneous facial Actions Units (AUs). Firstly, authors trained classifier
for each AU and the best results were given by a SVM classifier with intra-class correlation
values up to 0.73 (Zaker et al., 2013). Then, they improved the results by training classifiers
to detect multi-AUs and reported F-scores between 0.58 and 0.91 (Zaker et al., 2014). Finally,
Porée at al. proposed an algorithm estimating the eye state in videos of premature babies
combining tracking with segmentation and characterization steps (Porée et al., 2015). The
proposed approach gave more than 95% of concordance with a sensitivity and specificity,
respectively ranging from 78.5% to 100.0% and from 97.69% to 100.0%.

3. Audio analysis

Acoustic analyses in paediatrics mostly relied on cry analysis. In fact, several studies have
been conducted for the analysis of the cries of newborn and small infants, healthy or with
various diseases, but also of premature newborns. Four research groups largely contributed
on infant cry analyses: the group of Wasz-Höckert in Helsinki (Finland), the group of Lester
in Providence (USA), the group of Manfredi in Firenze (Italy) and the group of Reyes-
Garcia in Tonantzintla (Mexico). If first studies concerned induced pain cries, spontaneous
cries have also been considered.

Following sections are organized as follows. First, we present a non-exhaustive list of
studies realized in the analysis of infant cries according to their clinical context. Then,
we focus on the methods of data acquisition and acoustic signal processing encountered in
these studies. To a lesser extent, other sounds processing methods (pre-linguistic infant
vocalizations, NICU alarms, EEG sonification and lung sound classification) have been
proposed and are compiled at the end of this section.

3.1. Clinical applications

3.1.1. Full-term newborns, infants and toddlers Infant cries were largely studied for the
differentiation between normal and pathological cries. In (Lester, 1976), authors compared
the cries of typically developing infants and infants possibly suffering from central nervous
system insult due to malnutrition. They showed that the cry of the malnourished infant had
an initial longer sound, higher pitch, lower amplitude, more arrhythmia, and a longer latency
to the next cry sound than the cry of the well-nourished infant. The similarity between the
cry of the malnourished infant and the cry of the brain-damaged infant suggested that
malnutrition might affect the regulatory function of the central nervous system. Similar
conclusions were obtained by a computerized analysis in (Donzelli et al., 1994). It was
shown that cries of healthy newborns with prenatal and perinatal complications have different
acoustical properties than cries of low-complications newborns (Zeskind and Lester, 1978).
Abnormalities were searched in the cries of newborns with multiple or severe problems during
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the neonatal period, such as low birth weight, respiratory symptoms, jaundice, apnea, but
also infants subsequently victims of presumed sudden infant death syndrome (Golub and
Corwin, 1982). In the 2000s, normal and pathological cries began to be automatically
labeled thanks to a wide variety of machine learning approaches in the context of deafness
(Orozco-García and Reyes-García, 2003; Suaste-Rivas et al., 2004; Rosales-Pérez et al., 2015),
hypoxia-based Central Nervous System (CNS) diseases (Ortiz et al., 2004), cleft palate
(Lederman et al., 2008) and asphyxia (Suaste-Rivas et al., 2004; Hariharan et al., 2011;
Rosales-Pérez et al., 2015).

Several studies relied on pain-induced cries. Fuller et al differentiated them from
fussy and hunger cries, as well as non-cry cooing vocalizations (pre-linguistic vocalizations
occurring around 3 months of age) in 30 infants ranging in age from 2 to 6 months (Fuller and
Horii, 1986, 1988). This study was based on the amplitude of high-frequency components,
the fundamental frequency and the spectral energy levels. Formants (vocal tract resonance
frequencies) and tenseness were first added in (Fuller, 1991) and acoustic cry measures
were correlated with four pain levels and four ages (between 0 and 12 months) (Fuller
and Conner, 1995). Analysis of pain-induced cries was combined (Grunau et al., 1990)
with a (manual) coding of the facial expressions (Neonatal Facial Coding System, NFCS)
(Grunau and Craig, 1987), in order to discriminate behavioral reactions between invasive
and non-invasive procedures. The objective was to test if a newborn infant’s cry could be
used to measure pain, after heel-prick stimulus (Runefors et al., 2000). The analysis showed
that the crying sound after the painful stimulus of the heel-prick had a significantly higher
fundamental frequency and lasted longer at the first than at the fifth cry. However, while the
first cry was more like a cry of pain, the fifth cry more resembled crying for other reasons.
The conclusion was that crying could be used to measure pain in newborn infants only when
the cause of crying was known. Different pain levels were also applied (Bellieni et al., 2004)
and relations between cry characteristics and a pain score on the DAN (Douleur Aiguë du
Nouveau-né, newborn acute pain) scale were evaluated. Results showed that a correlation
existed when the DAN score was greater than 8 (on a 0 to 10 scale), and could be used as
an alarm threshold.

Analysis of cries was also developed in other contexts. Characteristics of infant cries
were correlated with perception and responses of adults, parents or non-parents in (Zeskind,
1980; Green et al., 1987; Zeskind and Marshall, 1988). Acoustic characteristics of the
cries of newborn of marijuana users and non-users were compared (Lester and Dreher,
1989). Differences observed between both suggested that heavy marijuana use affected the
neurophysiological integrity of the infant. The separation distress call in the absence of
maternal body contact was evaluated by quantifying the amount of crying during the first
90 minutes after birth when the baby was placed either skin-to-skin with the mother, in a
cot, or first in a cot and then skin-to-skin (Christensson et al., 1995).

Spontaneous cries were also processed: i) in the context of profound hearing loss and/or
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perinatal asphyxia (Pearce and Taylor, 1993a,b; Schönweiler et al., 1996; Suaste-Rivas et al.,
2004; Reyes-Galaviz et al., 2004; Galaviz and García, 2005; Reyes-Galaviz et al., 2005;
Barajas-Montiel and Reyes-García, 2006; Verduzco-Mendoza et al., 2012; Wahid et al., 2016),
ii) to find possible early signs of autism (Sheinkopf et al., 2012; Orlandi et al., 2012b) iii) in the
context of monitoring (Orlandi et al., 2015), iv) to better understand vocal development and
early communication (Zeskind et al., 1993; Wermke and Mende, 2009; Borysiak et al., 2016).
Cries of hard-of-hearing and healthy infants were compared through duration, amplitude
and melody (fundamental frequency fluctuations along a cry) description (Várallyay et al.,
2004; Várallyay, 2006, 2007). Recently, baby emotional cries have also been studied in order
to be integrated in a robotic baby caregiver (Yamamoto et al., 2013).

3.1.2. Preterm newborns Characterization of the premature crying episodes and their
differences with cries of full-term infants were also largely explored, in order to explain
differences observed in their neurophysiological maturity, and the subsequent impact on
their speech development.

First studies focused on the analysis of induced-pain cries. The influence of
neurophysiological maturity on induced-pain cries was firstly deducted when full-term
newborns cries spectral variability was found to be more complex than for preterm newborns
(Tenold et al., 1974). Later, a comparison between cries of premature and full-term newborns
showed that the cries of smallest premature newborns compared with the controls were
shorter, with higher fundamental frequency, and included bi-phonation and glide more often
(Michelsson et al., 1983; Goberman and Robb, 1999). However, the cry characteristics
changed with increasing conceptual age and the older the child the more the cry pattern
resembled that of the full-term (Thodén et al., 1985). Evaluation of pain from facial
expression and crying was performed in premature infants, but also in full-term and 2- and 4-
month-old infants, each group receiving a dedicated stimulus (Johnston et al., 1993). Results
from this multivariate analysis showed that premature infants were different from older
infants, that full-term newborns were different from others, but that 2- and 4-month-olds
were similar. Later, Stevens et al included two variables, severity of illness and behavioral
state (sleep or awake) in the analysis (Stevens et al., 1994). Behavioral state was found to
influence the facial action variables and severity of illness modified the acoustic cry variables.
As for non-premature newborns, some of these works coupled the cry analysis with the facial
activity coding NFCS (Craig et al., 1993; Johnston et al., 1993; Stevens et al., 1994).

Analysis of spontaneous cries of preterm infants has been recently investigated (Wermke
et al., 2002; Orlandi et al., 2012a; Shinya et al., 2014; Manfredi et al., 2009; Orlandi et al.,
2016). A comparison between spontaneous cries of six premature newborns (three pairs of
twins) recorded at different ages (8th-9th week, 15th-17th week and 23rd-24th week) was
performed (Wermke et al., 2002). Essential changes in the cries were observed from the
8th-9th week of life up to the 23rd-24th week of life, and were interpreted as an intentional
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articulatory activity. The distress during cry was also shown as correlated with central
blood oxygenation (Orlandi et al., 2012a). Results indicated that a similar decrease in
oxygenation level occurs in both groups of patients, but the recovery time after the crying
episode was more stable and rapid in full-term newborns than in preterm ones. An acoustic
analysis of cries before feeding in both healthy preterm infants at term-equivalent ages and
full-term newborns was performed (Shinya et al., 2014). Effects of gestational age, body
size at recording and IntraUterine Growth Retardation (IUGR) were then investigated, and
showed that shorter gestational age was significantly associated with a higher fundamental
frequency, although no relation was found with smaller body size at recording nor IUGR.
Fundamental frequency and formants of preterm newborns were shown to be related to an
increasing gestational age (Manfredi et al., 2009) and generally higher for full-term newborns
(Orlandi et al., 2016).

3.2. Methods for acoustic signal processing

Acoustic signal processing in paediatrics dealt with different objectives: extraction of
features, cry segmentation, cry classification and assessment of other sounds (Figure 2).
This section covers all these topics and is supplemented by a paragraph dedicated to feature
definition. But first, as for the video analysis section, a particular attention has been paid
to audio acquisition methods.

3.2.1. Audio acquisition Most of the studies have been conducted on real audio signals
where microphones were placed from 10 to 30 centimeters of the infant’s mouth. In case of
pain-induced cry analysis, recordings have been performed from the stimulus to the end of the
cry event (Golub and Corwin, 1982; Grunau et al., 1990; Michelsson and Michelsson, 1999;
Várallyay et al., 2004) whereas in other clinical contexts, no further details about recording
period were usually reported. In fact, recordings were annotated by experts resulting into
small cry signals (few seconds) database. Thus, all authors constructed their own cry signals
database supported by specific clinical annotations. Among them, we can cite the Baby
Chillanto cry signals database, property of the Instituto Nacional de Astrofisica Optica y
Electronica (Mexico). It was composed by five types of annotated cries (pain, hunger, normal,
asphyxia and deaf) and on which relied the work of Reyes-Garcia group (Orozco-García and
Reyes-García, 2003; Ortiz et al., 2004; Suaste-Rivas et al., 2004; Reyes-Galaviz et al., 2004;
Galaviz and García, 2005; Reyes-Galaviz et al., 2005; Barajas-Montiel and Reyes-García,
2006; Hariharan et al., 2011; Verduzco-Mendoza et al., 2012; Díaz et al., 2012; Rosales-Pérez
et al., 2015; Wahid et al., 2016). Cohort size varied from few infants (Lederman et al., 2008;
Yamamoto et al., 2013) to more than three hundred babies (Várallyay, 2007) or more than
120 premature babies in (Stevens et al., 1994).
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Several types of noise can affect the audio recordings (e.g. alarms, voice). Their
occurrence directly depends on the acquisition environment. Authors usually did not mention
where the recording took place except when it was performed at home (Várallyay, 2007;
Yamamoto et al., 2013; Pokorny et al., 2016). However, we reported two types of acoustic
environments: i) with low energy noise (e.g. background noise) (Várallyay, 2006, 2007;
Orlandi et al., 2012a; Díaz et al., 2012; Orlandi et al., 2012b; Reggiannini et al., 2013;
Orlandi et al., 2013, 2015, 2016; Manfredi et al., 2018) and ii) with high energy noise (e.g.
medical device sounds, adults’ voices) (Yamamoto et al., 2013; Abou-Abbas et al., 2015;
Lavner et al., 2016; Abou-Abbas et al., 2017b; Naithani et al., 2018).

Only Manfredi’s group dealt with synthetic crying signals (Orlandi et al., 2013), and
recently, synthetic signals of the melody of cries have been also constructed (Orlandi et al.,
2017; Manfredi et al., 2018). It was also proposed to create a simulated database to
reproduce realistic acoustic scenarios (Ferretti et al., 2018). Noisy conditions have been
created by synthetically adding four noises (human speech, interfering cries, beep sounds
and background noise) to a clean set created by convolving 64 infant cry recordings with
synthetic impulse responses.

3.2.2. Feature definition The analysis of cries mainly relied on the computation of features
in two domains: time and frequency (see (LaGasse et al., 2005) for a review). In addition,
several studies investigated the variations of the fundamental frequency along a cry event.

Time features The most common time features were naturally computed to characterize
the duration of cries (Golub and Corwin, 1982; Lester and Dreher, 1989; Grunau et al.,
1990; Donzelli et al., 1994; Stevens et al., 1994; Fuller and Conner, 1995; Christensson et al.,
1995; Michelsson and Michelsson, 1999; Goberman and Robb, 1999; Runefors et al., 2000;
Várallyay, 2006; Díaz et al., 2012). Among them, we found the total time in crying (Runefors
et al., 2000; Várallyay, 2006), the ratio between duration of cry and total audio segment
duration (Goberman and Robb, 1999; Várallyay, 2006), the mean (Donzelli et al., 1994;
Várallyay, 2006) or the variation coefficient (Donzelli et al., 1994) of cry durations. Non-cry
episodes were also examined through similar duration metrics (Várallyay, 2006). In the case
of induced-pain, latency time (interval between the painful stimulus and the first cry) has
been considered (Grunau et al., 1990; Stevens et al., 1994; Michelsson and Michelsson, 1999;
Runefors et al., 2000).

In addition, intensity, or loudness, features such as average amplitude (Golub and
Corwin, 1982) or amount of energy (Abou-Abbas et al., 2017a,b) of cries have been proposed.
Zero Crossing Rate (ZCR) has also been quantified to characterize cries (Abou-Abbas et al.,
2017a).
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Frequency features The first way to describe the spectral composition of a signal is to
compute spectral energy features. Authors proposed different approaches such as the
computation of the overall spectral energy of the signal (Johnston et al., 1993; Stevens
et al., 1994; Fuller and Conner, 1995; Reggiannini et al., 2013) or the energy only induced
by low or high frequencies (Fuller and Horii, 1988; Fuller, 1991; Goberman and Robb, 1999).

Fundamental frequency (F0) ‡ was investigated by virtually all the cited works. In fact,
it is a direct measurement of vocal development since it corresponds to the rate of glottal
opening and closing in the vocal tract. F0 has been characterized through different statistical
features computed from several cries such as mean (e.g. (Michelsson and Michelsson, 1999;
Orlandi et al., 2015; Borysiak et al., 2016)), but also maximum and minimum (Shinya et al.,
2014), standard deviation (Orlandi et al., 2016) or variation coefficient (Donzelli et al., 1994).

Formants, or resonance frequencies, are produced by the instantaneous shape of the vocal
tract and have also been statically analyzed. Most of the studies that examined resonant
frequencies were focused on the first two formants F1 and F2 (Wermke et al., 2002; Fuller,
1991; Donzelli et al., 1994; Orlandi et al., 2015), but some authors also proposed to assess
F3 (Donzelli et al., 1994; Manfredi et al., 2009; Orlandi et al., 2016).

However, the difficulties met to extract resonance frequencies led to the computation of
other coefficients to describe the spectral envelop such as Mel Frequency Cepstral Coefficients
(MFCCs) (Lederman et al., 2008; Rosales-Pérez et al., 2015; Pokorny et al., 2016; Abou-
Abbas et al., 2017b) or Linear Prediction Cepstral Coefficients (LPCCs) (Suaste-Rivas et al.,
2004; Wahid et al., 2016). MFCCs are obtained through the projection of the signal on a
mel-scale inspired by psychoacoustic model of human auditory perception whereas LPCCs
are computed from the modelling of the vocal tract.

Time-varying frequency features The most common time-varying frequency descriptor is
the pattern of F0 over a cry, or melody shape. Four main melodic shapes have been defined
by Schönweiler et al (Schönweiler et al., 1996): falling, rising, falling-rising (or rising-falling)
and flat. They were then reduced to three fundamental units (falling, rising and flat) and
have been shown as the basis of 77 melodic shapes (Várallyay, 2007). A fifth melody shape,
called "complex shape", was also considered to cover all melodic patterns composed by more
than two fundamental units (Wermke and Mende, 2009; Orlandi et al., 2017; Manfredi et al.,
2018).

Several other features have been defined to assess the F0 variations along a cry unit
or during a cry event (succession of cry units). Among them, we can cite jitter (cycle-to-
cycle variations of F0) (Fuller and Horii, 1986), shift (sudden change in F0) (Michelsson
and Michelsson, 1999; Díaz et al., 2012; Runefors et al., 2000), glide (rapid variations in

‡ The term "pitch" is also employed by some authors. However, in speech production, fundamental frequency
and pitch are not identical since pitch strictly refers to the perceptual quality of the frequency i.e. how our
auditory system perceives different frequencies.
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F0) (Michelsson and Michelsson, 1999; Runefors et al., 2000; Verduzco-Mendoza et al., 2012;
Díaz et al., 2012), vibrato (series of waves with remarkable frequency variations) (Michelsson
et al., 1983; Verduzco-Mendoza et al., 2012) or glottal roll (phonation of weak intensity
and low F0, below the normal average measurement of the tone) (Michelsson et al., 1983;
Verduzco-Mendoza et al., 2012).

3.2.3. Feature extraction This section provides an overview of the extraction methods used
to estimate acoustics features. They have been organized regarding the three types of feature
targeted: time, frequency and time-varying frequency. In addition, a paragraph has been
dedicated to tools that were developed and/or used by the different authors.

Time features Computation of duration features relied on a segmentation step in order to
extract cry and non-cry epochs. It has been performed either manually (Golub and Corwin,
1982; Lester and Dreher, 1989; Grunau et al., 1990; Donzelli et al., 1994; Stevens et al.,
1994; Fuller and Conner, 1995; Christensson et al., 1995; Michelsson and Michelsson, 1999;
Goberman and Robb, 1999; Runefors et al., 2000) or automatically (Várallyay, 2006; Díaz
et al., 2012; Orlandi et al., 2015) (cf. section 3.2.4). For their part, ZCR or energy were
computed directly from the signal by windowing (Abou-Abbas et al., 2017a).

Frequency features Three types of methods have been employed to estimate frequency
features: temporal, spectral and cepstral.

Regarding time domain methods, autocorrelation function has been largely used to
approximate the fundamental frequency (Grunau and Craig, 1987; Díaz et al., 2012; Shinya
et al., 2014; Borysiak et al., 2016; Naithani et al., 2018). In practice, a window, encompassing
several pitch periods (F0 was usually searched between 150 Hz and 1000 Hz), was used to
calculate short-term autocorrelation sequence and the fundamental frequency was obtained
at the maximum of this sequence. Sometimes, it has been supported by correction of the
F0 estimation tracking errors (Borysiak et al., 2016). Manfredi et al also proposed a tuned
method of the Simple Inverse Filter Tracking (SIFT) algorithm (Markel, 1972) which gave
better F0 estimation (Manfredi et al., 2009).

In early studies, frequency feature extraction was generally based on a spectrographic
analysis (Grunau et al., 1990; Michelsson and Michelsson, 1999; Runefors et al., 2000),
but more recent ones developed automatized estimations methods using Fourier Transform
(Fuller and Horii, 1988; Fuller, 1991; Donzelli et al., 1994; Goberman and Robb, 1999; Bellieni
et al., 2004; Várallyay et al., 2004; Várallyay, 2007) or Wavelet Transform (Hariharan et al.,
2011; Orlandi et al., 2015; Abou-Abbas et al., 2017a). Most of the time, energy features
were directly computed from spectrum and peak-picking procedures were implemented to
extract F0 or resonance frequencies (Fuller, 1991; Bellieni et al., 2004). The main limit of
this approach was the presence of noise parts due to silence during crying episodes. To
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overcome this issue, several authors worked with Long Time Average Spectrum (LTAS) that
was the average spectrum computed from all selected cry periods of interest (e.g. without
pauses or silences) (Fuller and Horii, 1988; Donzelli et al., 1994; Goberman and Robb, 1999).
For their part, Varallyay et al used Smoothed Spectrum Method (SSM). In fact, resulting
spectrum only contained cry components thanks to an initial statistical processing removing
noise parts induced by silence (Várallyay et al., 2004; Várallyay, 2007). Recently, Continuous
Wavelet Transform (CWT) approaches, known for their robustness to noise, have also been
considered to estimate F0 and formants (Orlandi et al., 2015) or to extract energy feature
from different component levels (Hariharan et al., 2011; Abou-Abbas et al., 2017a).

As mentioned in Section 3.2.2, cepstral coefficients (MFCCs and LPCCs) have also been
extracted to describe audio signals (Lederman et al., 2008; Wahid et al., 2016; Pokorny et al.,
2016; Abou-Abbas et al., 2017b; Naithani et al., 2018). MFCCs were traditionally computed
in six steps: a) partitioning the signal into short frames, b) computing the power spectrum
density, c) projecting the power spectra on mel-filter bank (simulation of human auditory
perception) and sum the energy in each filter, d) taking the logarithm of all filter bank
energies e) calculating the Discrete Cosinus Transform (DCT) of the log filter bank energies
f) keeping DCT coefficients as MFCCs. However, Abou-Abbas et al recently proposed to
compute similar MFCCs features after applying Energy Mode Decomposition (EMD) (Abou-
Abbas et al., 2017a,b) or by using Discrete Wavelet Transform (DWT) instead of DCT
(Abou-Abbas et al., 2017b). For their part, LPCCs were computed from the Smoothed
Auto Regressive (AR) power spectrum where AR coefficients were estimated by Levinson-
Durbin algorithm.

Time-varying frequency features Melody shapes have been identified by two methods based
on the projection of F0 pattern into a grid: Five-Line Method (FLN) (fixed 5-lines grid from
330 Hz to 700 Hz) (Várallyay, 2007) and dodecagram (variable grid depending on the first
F0 estimation of the cry) (Díaz et al., 2012). The dodecagram method showed better results
due to its adaptability. Melody shapes have also been synthetically constructed by the mean
of rules on F0 variations (e.g. the falling shape was obtained setting a maximum frequency
of 650 Hz at 0.4 second, followed by a slow decrease towards 450 Hz) in order to compare
tool abilities to estimate F0 patterns (Orlandi et al., 2017). Recently, an approximation of
melody shapes by quadratic and fourth order polynomial functions was added (Manfredi
et al., 2018).

The other F0 variations features (e.g. jitter, shift, glide) were mainly defined by decision
rules on the F0 contour, either visually noticed (Michelsson et al., 1983; Michelsson and
Michelsson, 1999) or automatically computed (Manfredi et al., 2009; Verduzco-Mendoza
et al., 2012; Díaz et al., 2012). As an example, in (Díaz et al., 2012), a shift was detected
when a sudden change of ascends or descends in the F0 between 100 Hz and 600 Hz within
0.1 second occurred.
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Tools Some software tools for the acoustic analysis of infant cries were developed and/or
used. The most popular one is PRAAT, initially proposed for adult’s voice by Boesrma in
2002 (Boersma, 2002). It was used in (Suaste-Rivas et al., 2004; Reyes-Galaviz et al., 2005;
Galaviz and García, 2005; Barajas-Montiel and Reyes-García, 2006; Díaz et al., 2012; Shinya
et al., 2014; Rosales-Pérez et al., 2015; Borysiak et al., 2016; Abou-Abbas et al., 2017a).
Acoustic parameters have also been extracted by the mean of the openSMILE toolkit (Eyben
et al., 2013; Pokorny et al., 2016, 2018). Both softwares provided automatic computation of
a wide variety of features (e.g. F0, formants, MFCCs, LPCCs, jitter, shimmer) but had to
be manually tuned to give relevant analysis of infant cries.

For their part, Manfredi et al developed BioVoice (Manfredi et al., 2009; Orlandi et al.,
2016) and WInCA (Orlandi et al., 2017), two softwares adapted to infant cry analysis,
where different estimation methods of F0 (respectively, SIFT and wavelet) and resonance
frequencies (respectively, peak picking in the power spectral density and wavelet) were
implemented. When comparing the two approaches with PRAAT, where F0 was computed
by autocorrelation method and formants were approached by LPCCs, authors found out
that PRAAT gave better results to approximate fundamental frequency whereas BioVoice
was more accurate for formant estimation (Orlandi et al., 2017).

3.2.4. Automatic cry segmentation In the analysis of sound, one of the problems relies on
the segmentation of the recordings into Voiced/UnVoiced (V/UV) parts, also called detection
of Cry Units (CU), in order to extract relevant acoustic parts. If in a large majority of papers,
the cry segments were manually selected, some recent studies, described below, proposed
solutions to perform this segmentation automatically.

A V/UV detection procedure, based on SIFT, where an interval was selected as voiced if
the maximum of the autocorrelation function is greater than a fixed threshold was proposed
(Orlandi et al., 2012b). Methods based on thresholding the Short-Term Energy (STE)
function were also investigated (Díaz et al., 2012; Orlandi et al., 2012a, 2013, 2015, 2016;
Manfredi et al., 2018). In (Orlandi et al., 2013), authors proposed to automatically compute
the threshold using Otsu method (Otsu, 1979). Cry segmentation was also performed by
combining two short-time methods: STE and ZCR (Várallyay, 2006). In fact, STE provided
a distinction between audible sounds and silence while ZCR permitted to detect V/UV
parts. Then, a threshold was applied to extract CU. Later, authors added a third step to
distinguish harmonic and non-harmonic audio segments (Várallyay, 2007). It was based on
the hypothesis that spectral structure of a crying segment is harmonic since it only contains
the fundamental frequency and its harmonics. Nevertheless, no quantitative evaluation was
performed. A marginal method has been proposed by Yamamoto et al (Yamamoto et al.,
2013) where a baby cry was detected if at least one of the two following conditions was
respected: the word reliability computed by the adult word detection tool "Julius" (Lee
et al., 2001) was under a threshold or the change of the fundamental frequency for a time
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period was superior to another threshold. A detection accuracy of only 69.4% was obtained.
A few recent approaches considered the cry segmentation as a classification problem.

Reggiannini et al proposed an automatized classification in three classes: voiced part,
unvoiced part and silence. By the use of KNN, they achieved to discriminate the three
states with an Area Under Curve (AUC) of 0.88 (Reggiannini et al., 2013). Expiratory
and inspiratory phases of the cries were separated in some studies. Hidden Markov Model
(HMM) based approaches led to 83.79% of accuracy (Abou-Abbas et al., 2015) when six
classes (expiratory phases, inspiratory phases, noise, adult speech, silence and beeps) were
considered. Later, these results were improved by formulating the problem with three classes:
expiratory phases, inspiratory phases and others (Abou-Abbas et al., 2017b) or residuals
(Naithani et al., 2018) (a class regrouping all previous mentioned noisy sounds). HMM and
Gaussian Mixture Model (GMM) methods were compared and GMM gave the best results
with a classification error rate of 8.9% (Abou-Abbas et al., 2017b). A total accuracy of
89.2% was also reached with HMM in (Naithani et al., 2018).

Newly, deep learning approaches have been considered to detect cries in a domestic
environment (Lavner et al., 2016; Torres et al., 2017) or in NICU (Ferretti et al., 2018). In
all studies, log mel-frequency features were computed on windows and combined to construct
the Convolution Neural Network (CNN) input layer. Such methods requiring large dataset,
authors proposed to introduce normalization and regularization to adapt CNN to modest
dataset (Torres et al., 2017) or to enhance dataset by adding simulated data (Ferretti et al.,
2018). CNN slightly outperformed classification methods in order to detect cries. In fact,
CNN gave lower false-positive rate than logistic regression (Lavner et al., 2016) and an AUC
upper than 90% was reached (Torres et al., 2017). In NICU, an average accuracy of 86.58%
was obtained (Ferretti et al., 2018).

3.2.5. Automatic cry classification Automated cry classification have been performed after
a manual (Grunau et al., 1990; Fuller, 1991; Johnston et al., 1993; Stevens et al., 1994;
Fuller and Conner, 1995; Goberman and Robb, 1999; Orozco-García and Reyes-García, 2003;
Bellieni et al., 2004; Suaste-Rivas et al., 2004; Ortiz et al., 2004; Reyes-Galaviz et al., 2004,
2005; Galaviz and García, 2005; Barajas-Montiel and Reyes-García, 2006; Lederman et al.,
2008; Hariharan et al., 2011; Verduzco-Mendoza et al., 2012; Shinya et al., 2014; Rosales-
Pérez et al., 2015; Borysiak et al., 2016; Wahid et al., 2016) or an automated (Manfredi et al.,
2009; Orlandi et al., 2015, 2016) segmentation step. First studies used classical statistical
approaches such as Student T-test (Manfredi et al., 2009; Verduzco-Mendoza et al., 2012),
ANOVA (Grunau et al., 1990; Fuller, 1991; Goberman and Robb, 1999; Shinya et al., 2014)
and MANOVA (Johnston et al., 1993; Stevens et al., 1994; Fuller and Conner, 1995) or
regression (Bellieni et al., 2004; Borysiak et al., 2016). It was applied either to compare
infant ages (Johnston et al., 1993; Goberman and Robb, 1999; Manfredi et al., 2009; Shinya
et al., 2014) and gender (Fuller, 1991; Borysiak et al., 2016), to evaluate pain (Fuller and
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Conner, 1995; Stevens et al., 1994; Bellieni et al., 2004) or to recognize pathologies (Grunau
et al., 1990; Verduzco-Mendoza et al., 2012).

More recent papers investigated classification approaches using a high number of
features. Different numbers of cry classes were considered according to the clinical target:
two classes (normal vs abnormal (Orozco-García and Reyes-García, 2003; Ortiz et al., 2004;
Lederman et al., 2008; Hariharan et al., 2011; Rosales-Pérez et al., 2015) or preterm vs full-
term (Orlandi et al., 2015, 2016)), three classes (normal, hypo acoustic and asphyxia (Reyes-
Galaviz et al., 2004; Suaste-Rivas et al., 2004; Galaviz and García, 2005; Reyes-Galaviz et al.,
2005; Barajas-Montiel and Reyes-García, 2006), hunger, pain and sleep (Chang and Li, 2016)
or hunger, pain and no-pain-no-hunger (Barajas-Montiel and Reyes-García, 2006)) and five
classes (pain, asphyxia, hunger, deaf and normal (Wahid et al., 2016)). A wide variety of
machine learning approaches has been evaluated, regrouping classical methods such as SVM
(Barajas-Montiel and Reyes-García, 2006; Orlandi et al., 2016), KNN (Rosales-Pérez et al.,
2015), Random Forest (RF) (Rosales-Pérez et al., 2015; Orlandi et al., 2015, 2016), HMM
(Lederman et al., 2008) or Neural Networks (Schönweiler et al., 1996; Orozco-García and
Reyes-García, 2003; Suaste-Rivas et al., 2004; Ortiz et al., 2004; Reyes-Galaviz et al., 2004,
2005; Galaviz and García, 2005; Hariharan et al., 2011; Wahid et al., 2016). Classification
results were efficient since some studies reached results above 95% (Orozco-García and Reyes-
García, 2003; Reyes-Galaviz et al., 2004, 2005; Galaviz and García, 2005; Barajas-Montiel
and Reyes-García, 2006; Hariharan et al., 2011).

Deep learning was also investigated to classify cries into three categories: hungry, pain
and sleep (Chang and Li, 2016). Spectrogram of cries were computed by Fast Fourier
Transform (FFT) and used as input layer of a CNN. The method showed promising results
with 78.5% of accuracy.

3.2.6. Other sound assessment Several recent audio processing methods have been proposed
regarding non-cry signals and concerning either pre-linguistic vocalizations (including cooing)
(Fuller and Horii, 1986, 1988; Pokorny et al., 2016, 2018). Non-voice analyses were also
proposed in different contexts such as external noise detection (Raboshchuk et al., 2018a,b),
EEG sonification (Gomez et al., 2018) or lung sound assessment (Emmanouilidou et al.,
2017).

Cooing, manually selected, were analyzed by Fuller et al . in 30 infants ranging in age
from 2 to 6 months, where significant differences were found in F0 and Mean Spectral Energy
(MSE) with classical cries (fussy, hungry and pain) (Fuller and Horii, 1986, 1988). Pre-
linguistic vocalizations have also been studied in 7- to 12-month-old infants having received
the diagnosis of a neuro-developmental disorder (autism, Rett syndrome, fragile X syndrome)
by Pokorny et al . They processed retrospective home video recordings provided by the family
and made during family events, before the disorder was diagnosed. In (Pokorny et al., 2016),
a comparison between manual and automated segmentation of vocalizations, using machine

23

Acc
ep

ted
 M

an
us

cri
pt



learning (HMM, SVM and RF), led to only 38.0%, where errors came from confusions with
parental voices or voices from television. Later, they evaluated more than 6000 features to
differentiate typical and atypical early speech language of one infant with Rett syndrome.
Main differences were observed in auditory attributes such as timbre and pitch (Pokorny
et al., 2018).

For their part, Raboshchuk et al focused on the automatic detection of alarms and
external vocalizations (e.g. nurses, parents) in NICU. In (Raboshchuk et al., 2018a), alarms
were detected thanks to the knowledge of alarm characteristics (e.g. frequencies) integrated
to a GMM classifier. In (Raboshchuk et al., 2018b), several pre-processing approaches
were tested: spectral subtraction, non-negative matrix factorization and combination of
both. Best results were obtained with non-negative matrix factorization followed by spectral
subtraction.

Recently, marginal purposes were investigated through audio processing for example
to detect neonatal seizures from EEG or to detect lung sounds abnormalities. EEG signal
was converted into an audible audio signal (process is called sonification) in order to hear
relative frequency change when a seizure occurred (Gomez et al., 2018). It was shown
that sonification methods perform similarly well, with a smaller inter-observer variability
in comparison with visual interpretation. Lung audio recordings of 1000 children were also
studied (Emmanouilidou et al., 2017). First, noise suppression techniques were applied to
discard ambient sounds, sensors artifacts or crying. Notably, crying episodes were discarded
by the use of SVM classifier trained with spectrotemporal features. Finally, normal and
pathological lung sounds were classified through SVM classifier with an accuracy of 86.7%.

4. Discussion and Conclusion

This review showed that a lot of works have been published since several decades in the
domains of video and audio processing in paediatrics.

The review of video processing showed that video recordings have been mainly exploited
for motion analyses, in two major clinical contexts, general movement assessment and
neonatal seizures detection and characterization. These studies have shown that the quality
and quantity of movements are markers of the infant’s neurological health.

If recent improvements in digital video processing allowed an increasing automation,
most of the above-mentioned studies need to be manually initialized in order to select
the considered region (whole baby or limbs). Promising results were recently obtained by
CNN but the method was only applied on a controlled environment setup (Dossso et al.,
2018). Furthermore, most of the proposed methods extracted global motion information (i.e.
without identifying each limb contribution). This may be improved by exploiting methods
developed in adults using more precise body descriptors, such as kinematic or shape models
(Poppe, 2007).
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Video-based respiration and heart rate estimation techniques showed interesting results.
However, these techniques only work when the baby is not moving. Nowadays, the most
valuable application in term of infant monitoring may be the automatic detection of apneas
that generally do not occur when the baby is moving. Similarly, face analysis can’t yet
be integrated into a monitoring system since none of the proposed techniques are robust
to occlusions that can happen in NICU, either from the baby itself or from external adult
manipulations.

Another limitation is related to the video recordings duration and the constrained
acquisition setups. Indeed, for most of the studies, recordings only contained periods
of interest and the infants were placed in some specific conditions in order to ensure an
appropriate acquisition. Furthermore, infants were generally not covered, with appropriate
lightening conditions and no external interventions. On the other hand, long video recordings
may include medical staff or parents’ presence in the image that had to be detected and
eliminated to discard non-suitable periods. This problem has been recently addressed in
(Cabon et al., 2017). Similarly, absences of the newborn in the bed will have to be detected
to avoid the analysis of irrelevant periods. A recent study, based on motion analysis, showed
encouraging results in that way (Long et al., 2018).

The review of acoustic analyses shown that most of the studies was devoted to cries.
Initially focused on pain-induced cries, more recent studies considered also spontaneous
cries. Processing, most of the time based on frequency features, allowed to distinguish
normal and pathological cries but also to classify different types of cries. They were also
explored for premature newborns to identify differences in their neurophysiological maturity.
A few papers dealing with the processing of pre-linguistic vocalizations, NICU alarms, EEG
sonification and lung sound classification were also identified.

As for video, long audio recordings are parasitized by different sources such as nurse or
parents’ voices, alarms of monitoring devices, ventilation noise, etc. Although some authors
worked on audio recordings performed in such environment, the automatic recognition of
pathologic cries in NICU still remains difficult. In fact, only a few recent studies showed
around 90% of accuracy in cry segmentation but no classification was proposed from there
(Abou-Abbas et al., 2017b; Naithani et al., 2018; Ferretti et al., 2018).

Additionally, baby sounds other than cries, like coughing but also vowel sounds, were
slightly or not investigated. And yet, they are concomitant with many diseases (Hirschberg,
1980) and may be an indicator of maturation (Thach, 2007) and of vocal development
(Caskey et al., 2011). In fact, authors usually discarded them or included them with other
sounds without making distinction (e.g. as expiratory sounds).

It is also important to notice that joint audio and video processing was not yet envisaged
at this time. Only one study integrating audio and video processing, was, to our knowledge,
published in (Orlandi et al., 2015), where a contactless system for Audio-Video Infant
Monitoring (AVIM) was proposed. The analysis of movements was semi-automatic since
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the user had to select points to track on the video frame whereas cry analysis was performed
automatically after a manual suppression of interfering sounds. Nevertheless, audio and video
were processed separately. Obviously, a combination of these two components could broaden
the scope of applications in early clinical diagnosis of several pathologies. Moreover, it could
be helpful in automatic sleep analysis, where both motion and baby sounds are important
behavioral descriptors.

On the other hand, this review being dedicated to audio- and video-based systems, other
acquisition systems have not been included. Briefly, the use of infrared thermography has
been investigated to measure the skin temperature of newborns (Anderson et al., 1990;
Heimann et al., 2013; Abbas and Leonhardt, 2014) or the respiratory rate and timing
(Goldman, 2012). Another example is the use of depth cameras (e.g. Microsoft Kinect)
to analyze infants’ movements (Olsen et al., 2014; Marschik et al., 2017).

Finally, if a lot of works have dealt and continue to deal with the automated processing
of video and audio in paediatrics, a fully-automated efficient system does not exist. It will
have to tackle above-mentioned difficulties by integrating robust processing methods to cope
with unconstrained and long-term acquisition time such as encountered with monitoring
systems in NICU.
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