Convenient Access to C10- and C11-(di)arylated dibenzo[b , f]azepines via Palladium-catalyzed $\mathbf{C}-\mathrm{H}$ Bonds Cleavages

Haoran Li, Thierry Roisnel, Jean-François Soulé, Henri Doucet

- To cite this version:

Haoran Li, Thierry Roisnel, Jean-François Soulé, Henri Doucet. Convenient Access to C10- and C11-(di)arylated dibenzo[b, f]azepines via Palladium-catalyzed C-H Bonds Cleavages. Advanced Synthesis and Catalysis, 2019, 361 (4), pp.791-802. 10.1002/adsc.201801366 . hal-01988048

HAL Id: hal-01988048 https://univ-rennes.hal.science/hal-01988048

Submitted on 31 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Convenient access to C10- and C11-(di)arylated dibenzo[b,f]azepines via palladium-catalyzed C-H bonds cleavages

Haoran Li, ${ }^{\text {a }}$ Thierry Roisnel, ${ }^{\text {a }}$ Jean-François Soulé, ${ }^{\text {a* }}$ and Henri Doucet ${ }^{\text {a* }}$
a Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
Tel: +(33) 0223236384, E-mail: jean-francois.soule@univ-rennes1.fr; henri.doucet @univ-rennes1.fr

Received:
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201\#\#\#\#\#\#.

Abstract

Conditions allowing the C10- and C11-arylations of dibenzo $[b, f]$ azepines via successive palladium-catalyzed reactions are reported. Using aryl bromides as the aryl source, the C 10 -arylation of dibenzo $[b, f]$ azepines is very selective. Then, using benzenesulfonyl chlorides as the aryl source, the second arylation at C11-position is achieved

affording non-symmetrical C10,C11-diarylated dibenzo $[b, f]$ azepines. Both reactions tolerate a variety of substituents on the aryl source.

Keywords: Palladium; Arylation; Azepines; C-C bond formation; C-H bond cleavage

Introduction

Azepine derivatives, and among them 5 H dibenzo $[b, f]$ azepines represent an important class of compounds in pharmaceutical and organometallic chemistry. ${ }^{[1]}$ Carbamazepine is employed in the treatment of epilepsy and neuropathic pain and is on the World Health Organization's list of essential medicines; whereas, Opipramol is an anxiolytic and antidepressant drug (Figure 1). Moreover, the phosphoramidite derivative \mathbf{L} (Figure 1) exhibits important properties as ligand in enantioselective catalysis. ${ }^{[2]}$ Consequently, the development of fast and reliable methods for the preparation of substituted dibenzo $[b, f]$ azepines represent an important research topic.

Figure 1. Dibenzo $[b, f]$ azepines as units in drugs and ligands.

Dibenzo $[b, f]$ azepine is a commercially available compound at an affordable price, which can be prepared by simple heating of 1 -phenylindole at $100{ }^{\circ} \mathrm{C} .{ }^{[3]}$ Conversely, the preparation of dibenzo $[b, f$ azepines bearing (hetero)aryl-substituents
at C10-position is very challenging. They can be prepared via $\mathrm{Au}(\mathrm{I})$-catalyzed cycloisomerization reaction, but the preparation of the starting materials requires several steps (Scheme 1, a). ${ }^{[4]}$ A single example of Suzuki coupling using a 10 bromodibenzo[b,f]azepine, prepared in two steps from a dibenzo $[b, f]$ azepine has also been reporte (Scheme 1, b). ${ }^{[5]}$ Moreover, the access to dibenzo[$b, f]$ azepines containing a boron-substituent at C10-position has not yet been reported. Therefore, the arylation of the $\mathrm{C}-\mathrm{H}$ bonds at $\mathrm{C} 10-$ and $\mathrm{C} 11-$ positions of dibenzo $[b, f]$ azepines, would represent a very attractive pathway to prepare such (di)arylated dibenzo $[b, f]$ azepines.

Since two decades, the Pd-catalyzed arylation of aromatic compounds ${ }^{[6]}$ and of linear alkenes, ${ }^{[7]}$ has emerged as very effective and versatile tool for the simpler access to a wide variety of arylated compounds. Conversely, the Pd-catalyzed arylation of cyclic alkenes has attracted less attention. With cyclic alkenes, the classical Heck type β-H elimination step is not possible as the hydrogen which should be involved in the β-hydride elimination process, is a_{n} with respect to the $\mathrm{Pd}-\mathrm{C}$ bond. ${ }^{[7]}$ With these substrates, a syn β-hydride elimination has been observed in some cases. ${ }^{[8]}$ However, to our knowledge, the arylation of dibenzo $[b, f]$ azepines via a C-H bond cleavage and the synthesis of C10,C11diarylated dibenzo $[b, f]$ azepines has not been reported yet. Therefore, the discovery of effective procedures allowing the access, via $\mathrm{C}-\mathrm{H}$ bond cleavages, to C10/C11-diarylated dibenzo[b,f]azepines using easily available catalysts and aryl sources tolerant to a wide range of functional groups is still needed.

Scheme 1. Access to C10- and C11-arylated azepines.

Herein, we report i) on the influence of the reaction conditions in the Pd-catalyzed arylation at $\mathrm{C} 10-$ position of dibenzo[b,f]azepines, ii) on the substrate scope of this reaction, and iii) on the programmed synthesis of C10,C11-diarylated dibenzo[b,f]azepines via sequential Pd -catalyzed $\mathrm{C}-\mathrm{H}$ bond cleavages (Scheme 1, bottom).

Results and Discussion

We initially examined the influence of the nature of the base for the arylation of 5propyldibenzo $[b, f]$ azepine, based on conditions that we had previously employed for the direct arylation of (hetero)aromatics. ${ }^{[9]}$ The use of $2 \mathrm{~mol} \%$ $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$ as catalyst ${ }^{[10]}$ [dppb: 1,4bis(diphenylphosphino)butane], KOAc as base in DMA with 1.2 equiv. of 5-propyldibenzo $b, f]$ azepine and 1 equiv. of 4-bromochlorobenzene as the aryl source resulted in the selective formation of the mono-arylation product $\mathbf{1 a}$ in moderate yield (Table 1 , entry 1). The structure of 1a was confirmed by Xray analysis. The use of $\mathrm{CsOAc}, \mathrm{NaOAc}$, or carbonates as bases did not allow to improve the yield in 1a (Table 1, entries 2-7). On the other hand, the use of 1 equiv. of 5-propyldibenzo $[b, f]$ azepine and 1.5 equiv. of 4-bromochlorobenzene provided 1a in 81% yield (70% isolated) without formation of the diarylated 5-propyldibenzo $[b, f]$ azepine $\mathbf{1 b}$ according to the GC/MS analysis of the crude mixture. Reactions performed in 1,4-dioxane or xylene gave the coupling product $\mathbf{1 a}$ in very low yields; whereas the polar solvents DMF and NMP afforded 1a in 50\% and 74% yields, respectively (Table 1, entries 11-14). A lower catalyst loading of $0.5 \mathrm{~mol} \%$ or the use of $\mathrm{Pd}(\mathrm{OAc})$ and $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ as catalysts also afforded 1a in lower yields (Table 1, entry 15-17).

Table 1. Influence of the reaction conditions for Pdcatalyzed direct arylation of 5-propyldibenzo[$b, f]$ azepine with 4-bromochlorobenzene.

entry	catalyst (mol \%)	base	solvent	yield in 1a (\%)
1	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	KOAc	DMA	56
2	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	CsOAc	DMA	17
3	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	NaOAc	DMA	37
4	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	DMA	5
5	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	DMA	13
6	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMA	44
7	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMA	2
8	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	KOAc	DMA	$\begin{aligned} & 81^{\mathrm{a}} \\ & (70) \end{aligned}$
9	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	KOAc	DMA	$66^{\text {b }}$
10	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	KOAc	DMA	$72^{\text {c }}$
11	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	KOAc	1,4dioxane	$15^{\text {a,d }}$
12	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	KOAc	DMF	$50^{\text {a }}$
13	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	KOAc	NMP	$74{ }^{\text {a }}$
14	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	KOAc	xylene	$<5^{\text {a }}$
15	$\begin{aligned} & \mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb}) \\ & (0.5) \end{aligned}$	KOAc	DMA	$31^{\text {a }}$
16	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(5)$	KOAc	DMA	$68^{\text {a }}$
17	$\mathrm{Pd}(\mathrm{OAc})_{2}(5)$	KOAc	DMA	$32^{\text {a }}$
18	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	KOAc	DMA	$82^{\text {a,e }}$

Conditions: 5-propyldibenzo[b,f]azepine (1.2 mmol), 4bromochlorobenzene (1 mmol), base (2 mmol), argon, 15 $150{ }^{\circ} \mathrm{C}$, GC and NMR yields, yield in parenthesis is isolated. a) 5-propyldibenzo[b,f]azepine (1 mmol), 4bromochlorobenzene (1.5 mmol). b) 5propyldibenzo $\left[b_{2} f\right]$ azepine (1 mmol), 4bromochlorobenzene (1.2 mmol). c) 5propyldibenzo $[b, f]$ azepine (1 mmol), 4bromochlorobenzene (2 mmol). ${ }^{\mathrm{d})} 110{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{e})} 48 \mathrm{~h}$.

Next, the scope of the C10-arylation of 5propyldibenzo[b,f]azepine using $2 \mathrm{~mol} \%$ $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$ catalyst, KOAc base in DMA with
various aryl bromides was investigated (Scheme 2). With 4-bromonitrobenzene, a low yield in 2 was obtained due to the formation of several unidentified degradation products. Moderate yields in $\mathbf{3}$ and 4 were obtained using 4-trifluoromethyl- and 4-fluorosubstituted aryl bromides, and a cyanomethyl substituent on the aryl bromide afforded 5 in only 30% yield. Conversely, from bromobenzene, 4bromotoluene, 4-tert-butylbromobenzene, 4bromobiphenyl and 4-bromoanisole, the target products 6-10 were obtained in 74-93\% yields. The lower yields obtained with electron-poor aryl bromides are consistent with the previous report of Hallberg et al. on the arylation of disubstituted alkenes via Heck reaction. ${ }^{[11]}$ The structures of product 2 and 7 were confirmed by X-ray analysis. From the electron-rich 4-bromo- N, N-dimethylaniline, the expected product 11 was isolated in 65% yield. The direct use of unprotected anilines would be useful in organic synthesis as it allows to avoid the protection/deprotection sequence. The reaction of 4bromoaniline with 5-propyldibenzo[b,f]azepine afforded the desired C10-arylated dibenzo[$b, f]$ azepine 12 in a moderate yield. However, it should be mentioned that under these reaction conditions, no significant amount of the product arising from Buchwald-Hartwig amination reaction was detected. Then, we examined the reactivity of a few metasubstituted aryl bromides. Moderate to high yields in 13-16 were obtained from chloro-, methyl-, methoxyand amino-substituted aryl bromides. The use of more congested 2-bromotoluene provided the desired product 17 in 54% yield. Polyaromatics such as fluorenes continue to attract the attention of synthetic organic chemists, owing to their inherent physical properties. The reaction of 2-bromonaphthalene and 2-bromofluorene with 5-propyldibenzo $[b, f]$ azepine, under the same reaction conditions, afforded the target products $\mathbf{1 9}$ and $\mathbf{2 0}$ in 77% and 78% yields, respectively. Pyridines are important motifs embedded in many pharmaceutical compounds and functional materials. Therefore, the coupling of 2-bromo-6-(trifluoromethyl)pyridine and 3bromopyridine with 5-propyldibenzo[b,f]azepine was also studied. The desired compounds 21 and 22 were obtained in 38% and 36% yield, respectively. Furthermore, using 1,2-dibromobenzene as the aryl source, the formation of the pentacyclic compound 23 was obtained via two successive $\mathrm{C}-\mathrm{H}$ bonds cleavages.
We have recently reported that the Pd-catalyzed direct arylation using $\mathrm{ArSO}_{2} \mathrm{Cl}$ as aryl source ${ }^{[12-15]}$ is attractive in some cases, as the reaction likely proceed via a different mechanism ${ }^{[16]}$ than with aryl halides and tolerates C-halo bonds. Based on our previous results on Pd-catalyzed desulfitative coupling with $\mathrm{ArSO}_{2} \mathrm{Cl}^{[16]}$ the reaction of 5propyldibenzo $[b, f]$ azepine with 4bromobenzenesulfonyl chloride was studied. In the presence of $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and $\mathrm{Li}_{2} \mathrm{CO}_{3}$ base at $140^{\circ} \mathrm{C}$, the target product 24 was obtained in
only 37% yield, but without cleavage of the $\mathrm{C}-\mathrm{Br}$ bond, allowing further transformations.
 propyldibenzo $[b, f]$ azepine with ArBr .

The influence of 5 -substituents
of dibenzo[$b, f]$ azepine was also investigated (Scheme 3). Under the same reaction conditions as for C10arylation of 5-propyldibenzo $[b, f]$ azepine with aryl bromides, but using a benzyl substituent instead of propyl substituent, we obtained the desired arylated benzo $[b, f]$ azepines $25-30$ in $51-90 \%$ yields. The benzyl substituent was stable under these reaction conditions. The structure of $\mathbf{2 6}$ was confirmed by Xray analysis. An isopropyl substituent at 5 -position of dibenzo $[b, f]$ azepine was also tolerated affording the products $\mathbf{3 1 - 3 4}$ in $50-85 \%$ yields. Conversely, from 5 -phenyldibenzo $[b, f]$ azepine, product 35 was obtained in only 15% yield, and with dibenzo $[b, f]$ azepine, and $1-(5 \mathrm{H}$-dibenzo $[b, f]$ azepin- 5 -yl)ethan-1-one, no formation of the coupling products 36 and 37 was observed, and the starting materials
were recovered. The result obtained with dibenzo $[b, f]$ azepine, might be due to the poisoning of the catalyst arising from a deprotonation of the nitrogen atom; whereas, the non-reactivity of 1-(5Hdibenzo $[b, f]$ azepin-5-yl)ethan-1-one is likely due to electronic factors.

R^{1}	Product	Yield (\%)
H	$\mathbf{2 5}$	76
$4-\mathrm{CN}$	$\mathbf{2 6}$	18
$4-\mathrm{CF}_{3}$	$\mathbf{2 7}$	51
$4-\mathrm{Me}$	$\mathbf{2 8}$	82
$4-\mathrm{MeO}$	$\mathbf{2 9}$	65
$3-\mathrm{Me}$	$\mathbf{3 0}$	90

R^{1}	Product	Yield (\%)
H	$\mathbf{3 1}$	85
4-Me	$\mathbf{3 2}$	84
4-F	$\mathbf{3 3}$	50
3-Me	34	84

Scheme 3. Palladium-catalyzed direct C 10 -arylation of dibenzo $[b, f]$ azepines bearing various substituents at position 5 with ArBr .

As described in table 1 and scheme 2, the formation of $\mathrm{C} 10, \mathrm{C} 11$-diarylated aryldibenzo $[b, f]$ azepines was never observed, even in the presence of 2 equiv. of the aryl bromide (Table 1, entry 10). Based on our previous results on the arylation of fulvenes and acenaphthylenes, ${ }^{[17]}$ a higher reactivity of $\mathrm{ArSO}_{2} \mathrm{Cl}$ vs aryl halides for the Pd-catalyzed C11-arylation of 10aryldibenzo $[b, f]$ azepines was expected. Moreover, the use of $\mathrm{ArSO}_{2} \mathrm{Cl}$ as aryl source for access to such diarylated azepines is attractive as many of them are easily available at an affordable cost and as they are easy to handle. Indeed, the reaction of 5-propyl-10-(p-tolyl)dibenzo $[b, f]$ azepine 7 with $\mathrm{PhSO}_{2} \mathrm{Cl}$ in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and $\mathrm{Li}_{2} \mathrm{CO}_{3}$ base at $140^{\circ} \mathrm{C}$ afforded the target product 38 in 56% yield (Scheme 4). The reaction tolerated both electron-withdrawing and -donating groups on the benzenesulfonyl chloride such as fluoro,
trifluoromethyl, tert-butyl and methoxy, affording the non-symmetrical 10,11-diaryldibenzo[b, f]azepines 39-47 in moderate yields; whereas, more congested o-toluenesulfonyl chloride was unreactive. The structure of product 45 was unambiguously assigned by X-ray analysis. It should be mentioned that the reaction of 5-propyldibenzo $[b, f]$ azepine with 3 equiv. of benzenesulfonyl chlorides bearing para-chloro or trifluoromethyl substituents, under the same conditions, afforded the mono-arylated products 1a and 3 in quite low yields with unidentified sideproducts; whereas, no formation of di-arylated dibenzo $[b, f]$ azepines was detected by GC/MS analysis of the crude mixtures.

R^{1}	Product Yield (\%)	
$4-\mathrm{F}_{2}$	$\mathbf{4 5}$	22
$4-\mathrm{CF}_{3}$	$\mathbf{4 6}$	30
$3-\mathrm{CF}_{3}$	$\mathbf{4 7}$	38
$2-\mathrm{Me}$	$\mathbf{4 8}$	0

$\begin{array}{lllll}4-\mathrm{tBu} & \mathbf{4 1} & 40 & 3-\mathrm{CF}_{3} & 47 \\ 4-\mathrm{MeO} & 42 & 33 & 2-\mathrm{Me}^{48} & \mathbf{4 8} \\ 4 & 0\end{array}$
$3-\mathrm{CF}_{3} 43$

X-ray structure of 45

Scheme 4. Palladium-catalyzed direct C11-arylation of 10aryl dibenzo $[b, f]$ azepines with $\mathrm{ArSO}_{2} \mathrm{Cl}$.

Finally, from a dibenzo[$b, f]$ azepine bearing a 2bromobenzyl moiety at 5-position, the formation of the pentacyclic compound 49 was obtained in moderate yield using $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$ catalyst associated to KOAc base via intramolecular $\mathrm{C}-\mathrm{H}$ bond arylation (Scheme 5).

Scheme 5. Intramolecular palladium-catalyzed direct arylation for access to a benzoazepinophenanthridine.

Although the mechanism of the C10-arylation of dibenzo $[b, f]$ azepines is not yet elucidated, on the basis of the previous reports, ${ }^{[7]}$ a catalytic cycle can be proposed (Scheme 6). The first step is probably the oxidative addition of ArBr to a $\mathrm{Pd}(0)$ species to afford the Pd(II) intermediate A. In 2004, de Vries et al. demonstrated that, at elevated temperature, when ligand-free $\mathrm{Pd}(\mathrm{OAc})_{2}$ is employed as catalyst precursor in a polar solvent such as NMP in the presence of a base, soluble palladium(0) colloids or nanoparticles, which are very efficient to promote Suzuki reaction, are formed. ${ }^{[18]}$ Then, \mathbf{A} affords \mathbf{B} due to the presence a large amount of AcOK in the reaction mixture. Coordination of the $\mathrm{C}=\mathrm{C}$ bond of the dibenzo $[b, f]$ azepine derivative gives \mathbf{C}; then, insertion of the $\mathrm{C}=\mathrm{C}$ bond into the $\mathrm{Ar}-\mathrm{Pd}$ bond affords D. An external base such as AcO^{-}might promote the C-H bond cleavage and releases the C10arylated dibenzo $[b, f]$ azepine with regeneration of $\operatorname{Pd}(0)$.
Although the mechanism for C11-arylation was not elucidated, the higher reactivity of $\mathrm{ArSO}_{2} \mathrm{Cl}$ as aryl sources for such arylations is likely due to a $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ mechanism instead of a $\mathrm{Pd}(0) / \mathrm{Pd}(\mathrm{II})$ mechanism. ${ }^{[15,16]}$ The first step of the catalytic cycle would be the oxidative addition of $\mathrm{ArSO}_{2} \mathrm{Cl}$ to $\mathrm{Pd}(\mathrm{II})$ affording a $\mathrm{Pd}(\mathrm{IV})$ intermediate. Such oxidative addition of $\mathrm{ArSO}_{2} \mathrm{Cl}$ on $\mathrm{Pd}(\mathrm{II})$ have been reported to proceed at room temperature. ${ }^{[15 b]}$ After elimination of SO_{2}, and coordination of the $\mathrm{C}^{10}=\mathrm{C}^{11}$ bond of the dibenzo $[b, f]$ azepine derivative to palladium, an insertion of this double bond into the Ar-Pd bond occurs. Finally, reductive elimination affords the arylated product with regeneration of a $\mathrm{Pd}(\mathrm{II})$ species assisted by the base.

Scheme 6. Proposed mechanism for C10-arylation.

Conclusion

In summary, we have demonstrated that the Pdcatalyzed C-H bond arylation at C10-position of dibenzo $[b, f$ azepines can be performed using aryl bromides as aryl source in the presence of $2 \mathrm{~mol} \%$ of a Pd-catalyst. Moreover, we report here th unprecedented access to 10,11diaryldibenzo $[b, f]$ azepines. Using $\mathrm{ArSO}_{2} \mathrm{Cl}$ as th aryl source instead of aryl bromides, the arylation at C11-position of 10 -aryldibenzo[$b, f]$ azepine ${ }^{\text {c }}$ proceeded in moderate to good yields giving rise to the non-symmetrical 10,11diaryldibenzo $[b, f]$ azepines. The functional group tolerance of both reactions allows the easy tuning of the properties of these dibenzo[$b, f]$ azepines which might find applications in medicinal chemistry or as new ligands.

Experimental Section

General. All reactions were performed in Schlenk tubes under argon. DMA and DMF analytical grade were not distilled before use. Potassium acetate $99+$ was used. Commercial 5H-dibenzo[b,f]azepine (iminostilbene) (97\%) aryl bromides and benzenesulfonyl chlorides were useu without purification. ${ }^{1} \mathrm{H}(400 \mathrm{MHz}),{ }^{13} \mathrm{C}(100 \mathrm{MHz})$ spectra were recorded in CDCl_{3} solutions. Chemical shifts are reported in ppm relative to $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}: 7.26\right.$ and ${ }^{13} \mathrm{C}$: 77.16). Flash chromatography was performed on silica gel (230-400 mesh). 5-Propyldibenzo[$b, f]$ azepine and 5benzyldibenzo $[b, f]$ azepine were prepared from dibenzo $[b, f]$ azepine using a reported procedure. ${ }^{[19]}$

CCDC-1865812, 1865813, 1865815, 1865816, 1865817 and 1865818 contains the supplementary crystallographic data for this paper: compounds 26, 2, 45, 7, 6, and 1a, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

General procedure for the synthesis of 5isopropyldibenzo $[b, f]$ azepine and 5-(2bromobenzyl)dibenzo $[b, f]$ azepine: A Schlenk tube equipped with a magnetic stirring bar was charged with dibenzo $[b, f]$ azepine ($0.386 \mathrm{~g}, 2 \mathrm{mmol}$), NaH (reaction with 1-iodopropane) or $\mathrm{K}_{2} \mathrm{CO}_{3}$ (reaction with 2-bromobenzyl bromide) (3 mmol) and N, N-dimethylformamide (8 mL). The resulting mixture was cooled in an ice bath for 2 h , then 1-iodopropane or 2-bromobenzyl bromide were added and the mixture was warmed up to room temperature (reaction with 1 -iodopropane) or $90^{\circ} \mathrm{C}$ (reaction with 2 bromobenzyl bromide) for 16 hours. The azepine derivatives were obtained after evaporation of the solvent and purification on silica gel (heptane: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 75: 25$).

5-Isopropyldibenzo $[b, f]$ azepine: From 1-iodopropane ($0.510 \mathrm{~g}, 3 \mathrm{mmol}$), dibenzo $[b, f]$ azepine $(0.386 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{NaH}(0.072 \mathrm{~g}, 3 \mathrm{mmol})$ at $25{ }^{\circ} \mathrm{C}$, 5isopropyldibenzo[$b, f]$ azepine was obtained in 72% (0.338 g) yield as a green solid: $\mathrm{mp} 39-41^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H})$, 7.12 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.89 (s,2H), 3.97 (sept., $J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 148.3,135.8,131.2,129.1,128.7,127.6,124.6$, 48.6, 23.1. Elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}$ (235.33): C 86.77, H 7.28; found: C 86.90, H 7.35.

5-(2-Bromobenzyl)dibenzo $[b, f]$ azepine: \quad From 2bromobenzyl bromide $(0.624 \mathrm{~g}, 2.5 \mathrm{mmol})$, dibenzo $[b, f]$ azepine $(0.392 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.417 \mathrm{~g}$, 3 mmol) at $90{ }^{\circ} \mathrm{C}$, 5-(2-bromobenzyl)dibenzo[b,f]azepine was obtained in $52 \%(0.376 \mathrm{~g})$ yield as a green solid: mp $169-171{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H})$, 5.18 (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.6,136.8$, 133.9, 132.5, 132.4, 130.1, 129.3, 129.0, 128.3, 127.4, 123.7, 123.6, 120.6, 54.3. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrN}$ (362.27): C 69.63 , H 4.45 found: C 69.50 , H 4.65.

Preparation of the $\operatorname{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\right.$ dppb) catalyst: ${ }^{[10]} \mathrm{An}$ oven-dried 40 mL Schlenk tube equipped with a magnetic stirring bar under argon atmosphere, was charged with $\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(182 \mathrm{mg}, 0.5 \mathrm{mmol})$ and dppb $(426 \mathrm{mg}, 1$ $\mathrm{mmol}) .10 \mathrm{~mL}$ of anhydrous dichloromethane were added, then, the solution was stirred at room temperature for twenty minutes. The solvent was removed in vacuum. The yellow powder was used without purification. ${ }^{31} \mathrm{P}$ NMR ($81 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=19.3$ (s).

General procedure for the synthesis of 1-23 and 25-36: As a typical experiment, the reaction of the aryl bromide (1.5 mmol), dibenzo $[b, f]$ azepine derivative (1 mmol), KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$) at $150{ }^{\circ} \mathrm{C}$ during 15 h in DMA (5 $\mathrm{mL})$ in the presence of $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(12.2 \mathrm{mg}, 0.02$ mmol) under argon afford the corresponding arylation product after evaporation of the solvent and purification on silica gel. Solvent heptane: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 85: 15$ for 1-17; heptane: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 95: 5$ for 18-23 and 25-36.

General procedure for the synthesis of 24 and 37-46: As a typical experiment, the reaction of the benzenesulfonyl chloride (1.5 mmol), dibenzo $[b, f]$ azepine derivative (1 mmol), $\mathrm{Li}_{2} \mathrm{CO}_{3}(0.222,3 \mathrm{mmol})$ at $140^{\circ} \mathrm{C}$ during 15 h in 1,4-dioxane $(5 \mathrm{~mL})$ in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}$, 0.05 mmol) under argon, afford the corresponding arylation product after evaporation of the solvent and purification on silica gel. Solvent heptane: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 85: 15$ for 24; heptane:ethyl acetate 95:5 for 37-46.

10-(4-Chlorophenyl)-5-propyldibenzo[b,f]azepine (1a): From 4-bromochlorobenzene ($0.286 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol})$, 1 a was obtained in $70 \%(0.241 \mathrm{~g})$ yield as a yellow solid: mp 179 $181{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.32(\mathrm{~m}, 4 \mathrm{H})$, $7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (dd, $J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{td}, J=$
$7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dt}, J=12.4,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63$ (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.64$ (sext., $J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}): $\delta 152.5,152.2,142.9,142.3,135.4,133.3,133.2$, $130.8,130.2,130.1,129.4,129.1,128.5,128.4,123.2$, 123.0, 120.5, 119.3, 51.5, 20.8, 11.4. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}$ (345.87): C 79.87, H 5.83; found: C 80.08, H 5.68

10-(4-Nitrophenyl)-5-propyldibenzo[b,f]azepine

 From 4-bromonitrobenzene ($0.303 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 2$ was obtained in 15% (0.054 g) yield as a yellow solid: mp 182$184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dd}$, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H})$, $7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (td, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.66 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.8,152.7,150.5,147.2$, $142.2,134.8,133.0,132.9,130.2,129.9,129.6,129.5$, $129.3,123.8,123.6,123.3,120.9,119.6,51.7,20.9,11.5{ }^{\circ}$ Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ (356.43): C 77.51, H 5.66; found: C 77.40, H 5.39.5-Propyl-10-(4-
(trifluoromethyl)phenyl)dibenzo[b,f]azepine (3): From 4-(trifluoromethyl)bromobenzene ($0.337 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5-propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 3$ was obtained in $50 \%(0.190 \mathrm{~g})$ yield as a yellow solid: mp 189$191{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.56$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dd}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.00(\mathrm{~m}$, $3 \mathrm{H}), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.85 (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (dt, $J=12.4,7.4 \mathrm{~Hz}$, 1 H), 1.67 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.97$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.7,152.5,147.5,142.9$, 135.3, 133.3, 132.0, 130.3, 129.7, 129.4 (q, $J=32.0 \mathrm{~Hz}$, $129.3,129.2,128.9,125.4(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.3(\mathrm{q}, J=$ 271.9 Hz), 123.4, $123.2,120.7,119.5,51.7,20.9,11.5$ Elemental analysis: calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}$ (379.43): C 75.97, H 5.31; found: C 75.79, H 5.50.

10-(4-Fluorophenyl)-5-propyldibenzo [b,f]azepine

(4): From 4-bromofluorobenzene ($0.262 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 4$ was obtained in $71 \%(0.233 \mathrm{~g})$ yield as a yellow solid: mp 157$159{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39$ (dd, $J=8.6$, $5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (dt, $J=12.4,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63$ (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.66 (sext., $J=7.4 \mathrm{~Hz}$, 2 H), 0.96 ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 162.4(\mathrm{~d}, J=246.3 \mathrm{~Hz}), 152.5,152.2,143.2$, $140.0,135.8,133.6,130.7,130.5,130.4(\mathrm{~d}, J=7.8 \mathrm{~Hz})$, $129.5,129.1,128.6,123.3,123.1,120.6,119.4,115.3$ (d, J $=21.3 \mathrm{~Hz}$), 51.7, 21.0, 11.5. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{FN}$ (329.42): C 83.86, H 6.12; found: C 83.90, H 6.07.

2-(4-(5-Propyldibenzo [b, f]azepin-10-

yl)phenyl)acetonitrile (5): From 2-(4bromophenyl)acetonitrile $(0.294 \mathrm{~g}, 1.5 \mathrm{mmol})$ and 5 propyldibenzo $[b, f$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 5$ was obtained in 30% (0.105 g) yield as an orange solid: mp 97 $99^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dd}$, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}$, 1 H), 6.84 (dd, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (dt, $J=12.4,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.66$ (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.6,152.3,143.9,143.3,135.6$, $133.4,131.1,130.3,129.6,129.5,129.2,129.0,128.7$, $128.0,123.3,123.1,120.6,119.4,118.0,51.6,23.5,20.9$,
11.5. Elemental analysis: calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2}$ (350.47): C 85.68, H 6.33; found: C 85.48, H 6.48.

10-Phenyl-5-propyldibenzo[b,f]azepine (6): From bromobenzene $(0.235 \mathrm{~g}, \quad 1.5 \mathrm{mmol})$ and 5propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 6$ was obtained in $90 \%(0.280 \mathrm{~g})$ yield as an orange solid: mp $109-111{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.22$ ($\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.09 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.06-$ 7.00 (m, 2H), 6.97-6.90 (m, 2H), 3.89 (dt, $J=12.4,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67$ (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.70 (sext., $J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}): $\delta 152.6,152.2,144.2,144.0,136.0,133.7,130.7$, $130.5,129.5,129.0,128.9,128.5,128.4,127.4,123.2$, 123.1, 120.5, 119.3, 51.7, 21.0, 11.6. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}$ (311.43): C 88.71, H 6.80; found: C 88.69, H 6.89 .

5-Propyl-10-(p-tolyl)dibenzo[b,f]azepine (7): From 4bromotoluene $(0.256 \mathrm{~g}, 1.5 \mathrm{mmol})$ and 5propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 7$ was obtained in $93 \%(0.302 \mathrm{~g})$ yield as a yellow solid: mp 134$136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 2 \mathrm{H}), 3.88$ (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.43(\mathrm{~s}, 3 \mathrm{H}), 1.68$ (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $0.99(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.6,152.2$, $144.1,141.1,137.2,136.1,133.8,130.6,130.1,129.5$, $129.1,128.9,128.8,128.3,123.2,123.0,120.5,119.3,51.7$, 21.3, 21.0, 11.5. Elemental analysis: calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}$ (325.46): C 88.57, H 7.12; found: C 88.68, H 7.20.

10-(4-(tert-Butyl)phenyl)-5-propyldibenzo $[b, f]$ azepine

(8): From 4-tert-butylbromobenzene ($0.319 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5 -propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), \mathbf{8}$ was obtained in $80 \%(0.294 \mathrm{~g})$ yield as an orange solid: mp $109-111{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53-7.45(\mathrm{~m}$, 4 H), 7.40-7.26 (m, 3H), 7.22 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-$ $6.97(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dt}, J=$ $12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74$ (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$, 1.06 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $152.5,152.2,150.4,144.0,141.0,136.1,133.9,130.6$, $130.2,129.5,128.9,128.5,128.3,125.3,123.2,123.0$, $120.5,119.3,51.6,34.7,31.5,20.9$, 11.6. Elemental analysis: calcd (\%) for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}$ (367.54): C 88.24, H 7.95; found: C 88.52, H 8.07.

10-([1,1'-Biphenyl]-4-yl)-5-propyldibenzo[b,f]azepine

 (9): From 4-bromobiphenyl $(0.349 \mathrm{~g}, 1.5 \mathrm{mmol})$ and 5propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 9$ was obtained in $88 \%(0.340 \mathrm{~g})$ yield as a yellow solid: mp 143$145{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.25$ $(\mathrm{m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-6.97(\mathrm{~m}, 3 \mathrm{H}), 3.92(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71$ (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.74 (sext., $J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ${ }^{2}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 152.6,152.3,143.8,142.9,140.9,140.3,135.9$, $133.7,130.7,130.6,129.6,129.3,129.0,128.9,128.5$, $127.4,127.2,127.1,123.3,123.1,120.6$, 119.3, 51.6, 20.9, 11.6.: Elemental analysis: calcd (\%) for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}$ (387.53): C 89.88, H 6.50; found: C 89.99, H 6.34 .
10-(4-Methoxyphenyl)-5-propyldibenzo [b,f]azepine

(10): From 4-bromoanisole ($0.280 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol})$, 10 was obtained in $74 \%(0.252 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 164-$ $166^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (d, J $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{dt}$, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.67$ (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.2,152.5,152.1,143.7,136.5$,
136.1, 133.8, 130.6, 130.0, 129.7, 129.4, 128.9, 128.3, 123.2, 123.0, 120.5, 119.3, 113.8, 55.4, 51.6, 21.0, 11.5. Elemental analysis: calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}$ (341.45): C 84.42, H 6.79; found: C 84.50 , H 6.54 .

N, N-dimethyl-4-(5-propyldibenzo[b,f]azepin-10-

yl)aniline (11): From 4-bromo- N, N-dimethylaniline (0.300 $\mathrm{g}, 1.5 \mathrm{mmol}$) and 5 -propyldibenzo $[b, f]$ azepine ($0.235 \mathrm{~g}, 1$ $\mathrm{mmol}), 11$ was obtained in $65 \%(0.230 \mathrm{~g})$ yield as a yellow solid: mp 134-136 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{td}, J=$ $7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{dt}, J=$ $12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.05 (s, 6 H), 1.70 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.02 (t, $J=7.4$ Hz, 3 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.5,152.1,150.1,144.1$, $136.3,134.1,132.0,130.7$, 129.6, 129.3, 128.8, 128.4, $127.9,123.1,122.9,120.4,119.1,112.2,51.6,40.7,20.9$, 11.5. Elemental analysis: calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2}$ (354.50). C 84.70, H 7.39; found: C 84.47, H 7.10.

4-(5-Propyldibenzo $[b, f]$ azepin-10-yl)aniline (12): From 4-bromoaniline $(0.258 \mathrm{~g}, \quad 1.5 \mathrm{mmol})$ and 5 propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 12$ was obtained in 31% (0.101 g) yield as a yellow solid: mp 151 $153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.20(\mathrm{~m}, 4 \mathrm{H})$, $7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.89(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.86(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{bs}, 2 \mathrm{H}), 3.63(\mathrm{dt}$, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.66 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): § 152.5 , $152.1,145.9,144.0,136.2,134.3,134.0,130.7$, 129.9, $129.3,128.8,128.7,128.1,123.1,123.0,120.4,119.2$, $114.9,51.6,21.0,11.6$. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2}$ (326.44): C 84.63, H 6.79; found: C 84.79 , H 6.71 .

10-(3-Chlorophenyl)-5-propyldibenzo[b,f]azepine (13): From 3-bromochlorobenzene ($0.286 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5propyldibenzo $[b, f]$ azepine $\left(0.235 \mathrm{~g},{ }^{1} \mathrm{mmol}\right)$, $\mathbf{1 3}$ was obtained in $53 \%(0.182 \mathrm{~g})$ yield as an orange solid: $\mathrm{mp} 8^{7}$ $84^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}$, $5 \mathrm{H}), 7.17$ (dd, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=7.9,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98$ (s, 1H), 6.91 (td, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (dd, J $=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dt}$, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.66$ (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}$ $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.6$, $152.4,145.8,142.9$, $135.4,134.3,133.4,131.5,130.3$, 129.6 (m), 129.2, 128.9, 128.8, 127.5, 127.2, 123.4, 123.2, 120.6, 119.4, 51.7, 21.0, 11.6. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}$ (345.87): C 79.87, H 5.83; found: C 80.01, H 5.98.

5-Propyl-10-(m-tolyl)dibenzo $[b, f]$ azepine (14): From 3bromotoluene $(0.256 \mathrm{~g}, 1.5 \mathrm{mmol})$ and 5 propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 14$ was obtained in $88 \%(0.286 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 84-$ $86{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.32(\mathrm{~m}, 5 \mathrm{H})$, 7.31-7.20 (m, 3H), 7.12-7.06 (m, 3H), 7.04-6.98 (m, 2H), 3.95 (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (dt, $J=12.4,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.78$ (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.07 (t, $J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.5$, 152.2 , $144.3,144.0,137.9,136.1,133.8,130.6,130.5,129.6$, $129.5,128.9,128.4,128.3,128.2,126.1,123.2,123.0$, $120.5,119.3,51.7,21.6,20.9,11.6$. Elemental analysis: calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}$ (325.46): C 88.57, H 7.12; found: C 88.41, H 7.02 .

10-(3-Methoxyphenyl)-5-propyldibenzo[b,f]azepine

(15): From 3-bromoanisole ($0.280 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5propyldibenzo[$b, f]$ azepine $(0.235 \mathrm{~g}$, 1 mmol$)$, 15 was obtained in 78% (0.266 g) yield as an orange solid: mp 61$63{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.25(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-$
$7.03(\mathrm{~m}, 5 \mathrm{H}), 7.01-6.92(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.04 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.6,152.5,152.1,145.4,144.0$, $135.8,133.6,130.7,130.5,129.5,129.3,129.0,128.5$, 123.2, 123.0, 121.5, $120.5,119.3,114.8,112.7,55.3,51.6$, 20.9, 11.5. Elemental analysis: calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}$ (341.45): C 84.42, H 6.79; found: C 84.29, H 6.78.

3-(5-Propyldibenzo $[b, f]$ azepin-10-yl)aniline (16): From 3-bromoaniline $(0.258 \mathrm{~g}, \quad 1.5 \mathrm{mmol})$ and 5propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 16$ was obtained in $50 \%(0.163 \mathrm{~g})$ yield as a yellow solid: mp 105$107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.17(\mathrm{~m}, 4 \mathrm{H}$), $7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-$ $6.83(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.64 (bs, 2H), 1.68 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 0.98 (t, $J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.5,152.1$, $146.4,145.1,144.3,136.0,133.7,130.7,130.3,129.5$, $129.2,128.9,128.4,123.2,123.0,120.4,119.5,119.3$, $115.7,114.3,51.7,20.9,11.6$. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2}$ (326.44): C 84.63, H 6.79; found: C 84.64, H 6.86.

5-Propyl-10-(o-tolyl)dibenzo[b,f]azepine (17): From 2bromotoluene $(0.256 \mathrm{~g}, 1.5 \mathrm{mmol})$ and 5propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol})$, 17 was obtained in $54 \%(0.176 \mathrm{~g})$ yield as a yellow solid: mp 143$145{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.33(\mathrm{~m}, 1 \mathrm{H})$, 7.29-7.17 (m, 5H), 7.15 (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.09 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J$ $=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.76-$ $1.53(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 151.8,151.5,143.6,136.7,136.2,133.6,131.9$, $130.2,130.0,129.6,129.0,128.9,128.6,127.6,125.9$, $123.4,123.1,120.2,119.5,52.1,21.1,20.1,11.9$. Elemental analysis: calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}$ (325.46): C 88.57, H 7.12; found: C 88.67, H 7.25.

10-(Benzo[d][1,3]dioxol-5-yl)-5-

propyldibenzo[b,f]lazepine (18): From 5bromobenzo $[d][1,3]$ dioxole $(0.302 \mathrm{~g}, 1.5 \mathrm{mmol})$ and 5propyldibenzo[$b, f]$ azepine ($0.235 \mathrm{~g}, 1 \mathrm{mmol})$, 18 was obtained in $61 \%(0.216 \mathrm{~g})$ yield as a yellow solid: mp 122$124^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.23(\mathrm{~m}, 2 \mathrm{H})$, $7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.93(\mathrm{~m}, 6 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.02(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dt}$, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.69 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.00(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.5$, 152.1, 147.7, 147.1, 143.7, 138.2, 135.9, 133.6, 130.6, $130.0,129.4,129.0,128.4,123.2,123.0,122.4,120.4$, 119.3, 109.5, 108.2, 101.2, 51.6, 20.9, 11.5. Elemental analysis: calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{2}$ (355.44): C 81.10, H 5.96; found: C 81.15 , H 6.08 .

10-(Naphthalen-2-yl)-5-propyldibenzo[b,f]azepine (19): From 2-bromonaphthalene ($0.311 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 19$ was obtained in $77 \%(0.278 \mathrm{~g})$ yield as an orange solid: mp $149-151{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{~s}, 1 \mathrm{H})$, 7.98-7.87 (m, 3H), $7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}$, $2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.93(\mathrm{~m}, 2 \mathrm{H}), 3.95$ (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.79 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.6,152.3,144.2,141.4$, 135.9, 133.6, 133.5, 132.8, 131.3, 130.6, 129.6, 129.1, $128.5,128.2,127.9,127.8,127.4$ (m), 126.3, 126.0, 123.3, 123.1, 120.6, 119.4, 51.7, 21.0, 11.6. Elemental analysis: calcd (\%) for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}$ (361.49): C 89.71, H 6.41; found: C 89.95, H 6.48.

10-(Fluoren-3-yl)-5-propyldibenzo[b,f]azepine
From 2-bromofluorene ($0.367 \mathrm{~g}, \quad 1.5 \mathrm{mmol}$) and 5propyldibenzo[b,f]azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 20$ was
obtained in $78 \%(0.311 \mathrm{~g})$ yield as a yellow solid: mp 219$221{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.77(\mathrm{~m}, 2 \mathrm{H})$, $7.62(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}$, 1 H), 3.66 (dt, $J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.69 (sext., $J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 0.99$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta(52.5,152.2,144.5,143.7,143.5,142.7,141.6$, $141.2,136.2,133.8,130.7,130.5,129.6,129.0,128.4$, $127.9,126.9,126.8,125.5,125.2,123.3,123.1,120.5$, 120.0, 119.7, 119.3, 51.7, 37.1, 21.0, 11.6. Elemental analysis: calcd (\%) for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}$ (399.54): C 90.19, H 6.31; found: C 90.00, H 6.14.

5-Propyl-10-(6-(trifluoromethyl)pyridin-2-

yl)dibenzo $[b, f]$ azepine (21): From 2-bromo-6(trifluoromethyl)pyridine ($0.339 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5propyldibenzo[b,f]azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 21$ was obtained in $38 \%(0.144 \mathrm{~g})$ yield as a yellow solid: mp 105 $107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.74(\mathrm{~m}, 2 \mathrm{H})$, 7.59 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-$ $7.25(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.94(\mathrm{~m}, 4 \mathrm{H})$, $3.83(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dt}, J=12.4,7.4 \mathrm{H} 2$, 1 H), 1.63 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 0.92 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.2,153.0,152.9,148.0$ (q, $J=35.0 \mathrm{~Hz}$), 140.8, 137.5, 134.7, 133.9, 132.9, 130.7, 129.6, 129.2, 126.2, 123.6, 123.2, 121.0, 119.2, 118.6 (q, J $=2.9 \mathrm{~Hz}$), $51.6,20.9,11.5$. Elemental analysis: calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2}$ (380.41): C 72.62, H 5.03; found: C 72.80, H 4.87.

5-Propyl-10-(pyridin-3-yl)dibenzo[b,f]azepine
(22): From 3-bromopyridine $(0.237 \mathrm{~g}, \quad 1.5 \mathrm{mmol})$ and 5propyldibenzo[b.f]azepine ($0.235 \mathrm{~g}, 1 \mathrm{mmol}), 22$ was obtained in $36 \%(0.112 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 89-$ $91{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.72$ (bs, 1 H), 8.58 (bs, 1H), 7.71 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35-7.34 (m, 3H), 7.19 (dd, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.07-$ $7.00(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=7 . \varepsilon$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dt}, J=$ $12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.64$ (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.7$, 152.6 , $149.7,148.6,140.8,139.5,136.2,135.1,133.2$, 132.1, $130.1,129.7,129.4,129.0,123.5,123.3,123.2,120.8$ 119.5, 51.7, 20.9, 11.5. Elemental analysis: calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2}(312.42)$: С 84.58 , H 6.45 ; found: C $84.30, \mathrm{H}$ 6.68.

13-Propylbenzo[f]fluoreno[1,9-bc]azepine (23): From 1,2-dibromobenzene $(0.357 \mathrm{~g}, \quad 1.5 \mathrm{mmol})$ and 5propyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol})$, during 72 h , 23 was obtained in $50 \%(0.155 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 114-116^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 8.47(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.44(\mathrm{~m}$, $3 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.90$ (sext., $J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 140.3,140.0,133.0,132.4,129.6,128.5,128.2$ 127.9, 127.0, 125.2, 123.7, 123.1, 121.9, 121.4, 120.8, $113.6,113.0,112.5,106.5,48.5$, 18.9, 11.2 Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}$ (309.41): C 89.28, H 6.19 found: C 89.20, H 5.94.

10-(4-Bromophenyl)-5-propyldibenzo[b,f]azepine (24): From 4-bromobenzenesulfonyl chloride $(0.383 \mathrm{~g}$, 1.5 $\mathrm{mmol})$, 5-propyldibenzo $[b, f]$ azepine ($0.235 \mathrm{~g}, 1 \mathrm{mmol}$), and $\mathrm{Li}_{2} \mathrm{CO}_{3}(0.222,3 \mathrm{mmol})$ in 1,4 -dioxane at $140{ }^{\circ} \mathrm{C}$ during 15 h , in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05$ mmol) under argon, after evaporation of the solvent and purification on silica gel, the arylation product 24 was obtained in 37% (0.144 g) yield as a yellow solid: mp 184$186^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.51(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{dd}$, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H})$, 6.92 (td, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dt}, J=12.4,7.4$
$\mathrm{Hz}, 1 \mathrm{H}$), 1.64 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.6,152.4,143.0$, $142.9,135.5,133.4,131.4,131.0,130.6,130.3,129.6$, 129.2, 128.7, 123.3, 123.2, 121.5, 120.6, 119.4, 51.7, 20.9, 11.5. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrN}$ (390.32): C 70.78, H 5.16; found: C 71.02, H 5.04.

5-Benzyl-10-phenyldibenzo $[b, f]$ azepine (25): From bromobenzene $(0.235 \mathrm{~g}, \quad 1.5 \mathrm{mmol})$ and 5benzyldibenzo $[b, f]$ azepine $(0.283 \mathrm{~g}, 1 \mathrm{mmol}), 25$ was obtained in $76 \%(0.273 \mathrm{~g})$ yield as an orange solid: mp 72 $74{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.01(\mathrm{~m}, 9 \mathrm{H}), 6.94(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ $(\mathrm{d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.3$, $151.8,144.3$, 143.9, 138.2, 135.9, 133.6, 130.6, 130.4, $129.4,128.9,128.8,128.4,128.3,128.2,128.1,127.5$, $126.9,123.4,123.3,120.4,119.4,54.3$. Elemental analysis: calcd (\%) for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}$ (359.47): C $90.21 \mathrm{H} \mathrm{5.89;} \mathrm{found:} \mathrm{C}$ 90.14, H 5.99 .

4-(5-Benzyldibenzo $[b, f$]azepin-10-yl)benzonitrile (26): From 4-bromobenzonitrile ($0.273 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5benzyldibenzo $[b, f]$ azepine ($0.283 \mathrm{~g}, 1 \mathrm{mmol}), 26$ was obtained in $18 \%(0.069 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 232-$ $234{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.31-7.12(\mathrm{~m}, 9 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{td}, J)$, $7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.5,152.3,148.5,142.7,138.1,134.9$, $132.9,132.6,132.4,130.0,129.8,129.5,129.4,129.2$, $128.4,128.2,127.2,123.7,123.6,120.9,119.8,119.1$, 111.1, 54.4. Elemental analysis: calcd ($\%$) for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{2}$ (384.48): C 87.47, H 5.24; found: C 87.41, H 5.35.

5-Benzyl-10-(4-

(trifluoromethyl)phenyl)dibenzo[b,f]azepine (27): From 4-(trifluoromethyl) bromobenzene ($0.337 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5-benzyldibenzo $[b, f]$ azepine ($0.283 \mathrm{~g}, 1 \mathrm{mmol}$), 27 was obtained in $51 \%(0.218 \mathrm{~g})$ yield as an orange solid: mp $115-117{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33-7.09(\mathrm{~m}, 9 \mathrm{H}), 7.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.95$ ' $\left(\mathrm{d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$) ${ }^{13}{ }^{1} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 152.5,152.2,147.5,143.1,138.2,135.4,133.2$, 132.0, 130.2, 129.7, 129.5 (q, $J=32.0 \mathrm{~Hz}$), 129.3, 129.1, $129.0,128.4,128.2,127.2,125.5(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.5(\mathrm{q}$, $J=272.0 \mathrm{~Hz}$), 123.7, 123.6, 120.7, 119.7, 54.4. Elemental analysis: calcd (\%) for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}$ (427.47): C $78.67, \mathrm{H}$ 4.72; found: C 78.60, H 5.02.

5-Benzyl-10-(p-tolyl)dibenzo[b,f]azepine (28): From 4bromotoluene $(0.256 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $5-$ benzyldibenzo $[b, f]$ azepine $(0.283 \mathrm{~g}, 1 \mathrm{mmol}), 28$ was obtained in $82 \%(0.306 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 73-$ $75{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 10 \mathrm{H}), 7.10(\mathrm{~s}$, $1 \mathrm{H}), 7.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.4,151.9,144.3$, 141.1 , $138.4,137.4,136.1,133.8,130.5,130.2,129.5,129.2$, $128.9,128.7,128.4,128.3,128.2,127.0,123.4,123.3$, $120.5,119.5,54.4,21.3$. Elemental analysis: calcd (\%) for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}$ (373.50): C 90.04, H 6.21 ; found: C 90.18, H 5.89.

5-Benzyl-10-(4-methoxyphenyl)dibenzo [b,f]azepine

(29): From 4-bromoanisole ($0.280 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5benzyldibenzo $[b, f]$ azepine ($0.283 \mathrm{~g}, 1 \mathrm{mmol})$, 29 was obtained in $65 \%(0.253 \mathrm{~g})$ yield as an orange solid: mp 56 $58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.15(\mathrm{~m}, 8 \mathrm{H}), 7.14(\mathrm{~s}$, $1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 159.3,152.3,151.8,143.9$, $138.3,136.5,136.1,133.8,130.5,129.9,129.7,129.4$,
$128.9,128.3$ (*2), 128.2, 127.0, 123.4, 123.3, 120.4, 119.4, 113.8, 55.5, 54.4. Elemental analysis: calcd (\%) for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}$ (389.50): C 86.34, H 5.95; found: C 86.57, H 5.80 .
 benzyldibenzo $[b, f]$ azepine $(0.283 \mathrm{~g}, 1 \mathrm{mmol}), 30$ was obtained in 90% (0.336 g) yield as a yellow solid: mp 163$165^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35-7.13(\mathrm{~m}, 12 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 152.4,151.8,144.5,144.0,138.4,138.0,136.2$, $133.8,130.6,130.5,129.6,129.5,128.9,128.4,128.3$ (m), $128.2,126.0,123.5,123.4,120.5,119.5,54.4,21.7$. Elemental analysis: calcd (\%) for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}$ (373.50): C 90.04, H 6.21 ; found: C 90.01, H 5.99.

5-Isopropyl-10-phenyldibenzo[b,f]azepine (31): From bromobenzene $(0.235 \mathrm{~g}, \quad 1.5 \mathrm{mmol})$ and 5isopropyldibenzo[b,f]azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol})$, 31 was obtained in $85 \%(0.264 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 97-$ $99{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.55-7.49 (m, 2H), 7.47-7.28 (m, 7H), 7.28-7.22 (m, 1H), 7.17-7.10 (m, 2H), 7.05-7.00 (m, 2H), 4.19 (sept., $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.5,149.9$, $143.7,143.5,137.1,135.5,130.3,129.5,129.3$, 129.0, $128.9,128.5,128.2,127.5,126.2,125.5,124.1,47.5,23.1$, 22.9. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}$ (311.43): C 88.71, H 6.80; found: C 88.97, H 7.03.

5-Isopropyl-10-(p-tolyl)dibenzo[b,f]azepine (32): From 4-bromotoluene $(0.256 . \mathrm{g}, 1.5 \mathrm{mmol})$ and 5 isopropyldibenzo[b,f]azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 32$ was obtained in $84 \%(0.273 \mathrm{~g})$ yield as a yellow solid: mp 98 $100{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H})$, 7.33-7.17 (m, 7H), 7.12-7.06 (m, 2H), 7.01-6.95 (m, $2 \mathrm{H}), 4.14$ (sept. $, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.5,149 . \delta$, $143.3,140.8,137.3,137.2,135.6,130.3,129.3,129.1$, 129.0, 128.9, 128.1, 126.3, 125.5, 124.2, 124.1, 47.5, 23.2 22.9, 21.3. Elemental analysis: calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}$ (325.46): C 88.57, H 7.12; found: C 88.42 H 7.40 .

10-(4-Fluorophenyl)-5-isopropyldibenzo [b,f]azepine
(33): From 4-bromofluorobenzene ($0.262 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5-isopropyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol}), 33$ was obtained in $50 \%(0.164 \mathrm{~g})$ yield as an orange solid: mp $162-164{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.37$ (m $2 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.05$ (m, 4H), $6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.16 (sept., $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.13 (d, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13}$. C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.5$ (d, $J=246.4 \mathrm{~Hz}$), 150.5 , $149.9,142.4,139.7$ (d, $J=3.3 \mathrm{~Hz}$), 136.9, 135.3 , 130.6 (d, $J=8.0 \mathrm{~Hz}), 130.1,129.5,129.2,129.0,128.3,126.0,125.2$, 124.2, 124.1, 115.3 (d, $J=21.3 \mathrm{~Hz}$), 47.5, 23.1, 22.9. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{FN}$ (329.42): C 83.86, H 6.12; found: C 83.91, H 6.26.

5-Isopropyl-10-(m-tolyl)dibenzo $[b, f]$ azepine (34): From 3-bromotoluene $(0.256 \mathrm{~g}, 1.5 \mathrm{mmol})$ and 5isopropyldibenzo $[b, f]$ azepine $(0.235 \mathrm{~g}, 1 \mathrm{mmol})$, 34 wa obtained in $84 \%(0.273 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 119-$ $121{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.15(\mathrm{~m}, 9 \mathrm{H})$, 7.12-7.07 (m, 2H), 7.03-6.97 (m, 2H), 4.16 (sept., $J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.4,149.8,143.7,143.6,138.0$, $137.2,135.6,130.3,129.6,129.4,129.3,128.8,128.4$, $128.3,128.2,126.3,126.2,125.5,124.1$ (m), 47.5, 23.1, 23.0, 21.7. Elemental analysis: calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}$ (325.46): C 88.57, H 7.12; found: C 88.60 H 7.01.

5,10-Diphenyldibenzo[b,f] $\underset{\text { brozepine }}{\text { (35): }}$ From bromobenzene $(0.235 \mathrm{~g}$, 1.5 mmol$)$ and 5 phenyldibenzo $[b, f]$ azepine $(0.269 \mathrm{~g}, 1$ mmol $), 35$ was obtained in $15 \%(0.052 \mathrm{~g})$ yield (90% purity) as a yellow solid: mp 208-210 ${ }^{\circ} \mathrm{C} .{ }^{9} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
7.55-7.15 (m, 13H), $7.03(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H})$, $6.67(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.9$, 145.1, 144.2, 143.2 , $143.0,138.5,136.9,131.9,130.8,130.4,130.2,130.1$, $129.4,129.0,128.8,128.7,128.4,127.7,127.1,126.9$, 118.0, 111.9.

10-Phenyl-5-propyl-11-(p-tolyl)-dibenzo[b,f]azepine

 (38): From benzenesulfonyl chloride ($0.265 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5-propyl-10-(p-tolyl)dibenzo[$b, f]$ azepine $7(0.325 \mathrm{~g}, 1$ mmol), $\mathbf{3 8}$ was obtained in $56 \%(0.224 \mathrm{~g})$ yield as a yellow solid: mp 163-165 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.23-6.98(\mathrm{~m}, 13 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.22$ (s, 3H), 1.74 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.0,152.9,143.4,141.8,141.7$, $140.3,136.6,136.3,135.5,130.8,130.7,130.6,130.5$, $128.2,128.1,127.5,126.1,123.1,123.0,118.9,118.8,51.1$, 21.3, 21.1, 11.8. Elemental analysis: calcd (\%) for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}$ (401.55): C 89.73, H 6.78; found: C 89.80, H 6.59 .
10-(4-Fluorophenyl)-5-propyl-11-(p -

tolyl)dibenzo[b,f]azepine (39): From 4fluorobenzenesulfonyl chloride ($0.292 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5-propyl-10-(p-tolyl)dibenzo $[b, f]$ azepine $7(0.325 \mathrm{~g}, 1 \mathrm{mmol})$, 39 was obtained in 54% (0.226 g) yield as a yellow solid: mp 189-191 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22-7.16$ $(\mathrm{m}, 2 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.93$ (m, 3H), 6.90-6.79 (m, 4H), $3.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.24$ (s, 3 H), 1.74 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.12(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.0$ (d, $J=244.8$ $\mathrm{Hz}), 153.1,152.9,142.5,140.7,140.1,139.3,136.3,136.2$, 135.7, $132.1(\mathrm{~d}, J=7.8 \mathrm{~Hz}$), 130.7, 130.6, 130.3, 128.4, $128.2,123.1,123.0,119.0,118.9,114.5$ (d, $J=21.2 \mathrm{~Hz}$), 51.1, 21.3, 21.1, 11.8. Elemental analysis: calcd (\%) for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{FN}$ (419.54): C 85.89, H 6.25; found: C $85.69, \mathrm{H}$ 6.24 .

5-Propyl-10-(p-tolyl)-11-(4-

(trifluoromethvl)nhenvl)dibenzo[b.flazenine (40): From 4-(trifluoromethyl)benzenesulfonyl chloride ($0.366 \mathrm{~g}, 1.5$ mmol) and 5-propyl-10-(p-tolyl)dibenzo[$b, f]$ azepine 7 $(0.325 \mathrm{~g}, 1 \mathrm{mmol}), 40$ was obtained in $47 \%(0.220 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 175-177{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.00(\mathrm{~m}$, $3 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.86(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.76($ sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 153.3, 152.9, 147.1, 142.7, 140.4, 139.6, 136.1, 136.0, $135.6,131.0,130.8,130.5,130.3,128.5,128.4,128.2$ (q, J $=32.0 \mathrm{~Hz})$, $124.6(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.4(\mathrm{q}, J=271.9 \mathrm{~Hz})$, 123.2, 123.1, 119.1, 119.0, 51.1, 21.3, 21.1, 11.8. Elemental analysis: calcd $(\%)$ for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}(469.55)$: C 79.30, H 5.58; found: C 79.02, H 5.50.

10-(4-(tert-Butyl)phenyl)-5-propyl-11-(p-

tolyl)dibenzo[b,f]azepine (41): From 4-tertbutylbenzenesulfonyl chloride ($0.349 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5-propyl-10-(p-tolyl)dibenzo $[b, f]$ azepine $7(0.325 \mathrm{~g}, 1 \mathrm{mmol})$, 41 was obtained in 40% (0.183 g) yield as a yellow solid: mp 141-143 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22-7.02$ $(\mathrm{m}, 11 \mathrm{H}), 6.99(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}),{ }^{6} .90-6.83(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (s, 3H), 1.75 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.23 (s, 9H), 1.14 (t, J $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.1$, $152.9,148.7,141.7,141.6,140.5,140.3,136.8,136.6$, $135.4,130.9,130.8,130.6,130.2,128.1,128.0,127.9$, $124.3,123.0,118.8,118.7,51.0,34.4,31.4,21.2,21.1$, 11.8. Elemental analysis: calcd (\%) for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}$ (457.66): C 89.23, H 7.71; found: C 89.43, H 7.58 .

10-(4-Methoxyphenyl)-5-propyl-11-(ptolyl)dibenzo[b,f]azepine (42):

 methoxybenzenesulfonyl chloride (0.309 5-propyl-10-(p-tolyl)dibenzo[$b, f]$ azepine $\quad 7 \quad(0.325 \mathrm{~g}, 1$ $\mathrm{mmol}), 42$ was obtained in $33 \%(0.142 \mathrm{~g}$) yield as a yellow solid: $\mathrm{mp} 180-182{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ7.20-7.13 (m, 2H), 7.13-7.03 (m, 6H), 7.02-6.92 (m, 4H), 6.89-6.82 (m, 2H), $6.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.75$ (sext., $J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 157.7,153.0,141.9,141.3,140.5,136.8,136.6$, $136.0,135.5,131.7,130.8,130.7,130.4,128.3,128.0$, 123.1, 123.0, 118.8 (m), 112.9, 55.2, 51.0, 21.3, 21.1, 11.8 . Elemental analysis: calcd (\%) for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NO}$ (431.58): C 86.27, H 6.77; found: C 86.00, H 6.62 .

5-Propyl-10-(p-tolyl)-11-(3-(trifluoromethyl)phenyl)dibenzo[b.flazedine (43) From 3

 (trifluoromethyl)benzenesulfonyl chloride $(0.366 \mathrm{~g}, 1.5$ $\mathrm{mmol})$ and 5 -propyl-10-(p-tolyl)dibenzo $[b, f]$ azepine 7 ($0.325 \mathrm{~g}, 1 \mathrm{mmol}$), 43 was obtained in $42 \%(0.197 \mathrm{~g})$ yield as a yellow solid: mp $116-118^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.10(\mathrm{~m}$, $3 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.84-6.77(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.13$ $(\mathrm{s}, 3 \mathrm{H}), 1.68$ (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.2,152.9,144.0$, $143.0,140.3,139.6,136.1,136.0,135.7,133.9,130.7$, $130.5,130.3,129.6(\mathrm{q}, J=32.0 \mathrm{~Hz}), 128.5(\mathrm{~m}), 128.4$, $128.0,127.5$ (q, $J=3.8 \mathrm{~Hz}), 123.2(\mathrm{~m}), 122.9\left(\mathrm{q}, J=3 . \mathrm{Q}^{2}\right.$ $\mathrm{Hz})$, 119.2, 119.0, 51.1, 21.2, 21.0, 11.8. Elemental analysis: calcd (\%) for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}(469.55)$: C $79.30, \mathrm{H}$ 5.58; found: C 79.45, H 5.69.
10-(3,5-Bis(trifluoromethyl)phenyl)-5-propyl-11-(ptolyl)dibenzo[b,f]azedine (44): From 3,5

 bis(trifluoromethyl)benzenesulfonyl chloride $(0.468 \mathrm{~g}$, 1.5 $\mathrm{mmol})$ and 5 -propyl-10-(p-tolyl)dibenzo[$b, f]$ azepine 7 ($0.325 \mathrm{~g}, 1 \mathrm{mmol}$), 44 was obtained in $31 \%(0.167 \mathrm{~g})$ yield as a yellow solid: $\mathrm{mp} 154-156^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.59-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 3 \mathrm{H})$, 6.94-6.86 (m, 2H), 6.78 (dd, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (t, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.76$ (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $153.5,152.9,145.2,144.1,139.0,138.9,136.5,135.5$ 135.0, 130.8 (m), 130.7, 130.4, 130.3, 130.1, 128.9, 128.8, $128.7,123.4,123.3,123.2(\mathrm{q}, J=272.7 \mathrm{~Hz}$), 120.1 (sept., J $=3.8 \mathrm{~Hz}), 119.4,119.2,51.1,21.2,21.0$, 11.7. Elementaı analysis: calcd (\%) for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}$ (537.55): C $71.50, \mathrm{H}$ 4.69; found: C 71.35, H 4.68 .5-Benzyl-10-(4-fluoropheny)-11-(p -
tolyl)dibenzo[b,f]azepine (45): From 4fluorobenzenesulfonyl chloride ($0.292 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 5-benzyl-10-(p-tolyl)dibenzo[$b, f]$ azepine 28 ($0.373 \mathrm{~g}, 1$ $\mathrm{mmol}), 45$ was obtained in $22 \%(0.103 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 190-192{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.10(\mathrm{~m}$, $7 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.81$ $(\mathrm{m}, 4 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 161.3(\mathrm{~d}, J=245.1 \mathrm{~Hz}), 152.7,152.6,142.5$, 140.7, 140.0, 139.2, 139.1, 136.2, 136.1, 135.9, 132.2 (d, J $=7.8 \mathrm{~Hz}$), $130.8,130.7,130.4,128.5,128.4(\mathrm{~m}), 128.3$, 127.3, 123.4, 123.3, 119.1, 119.0, 114.5 (d, $J=21.2 \mathrm{~Hz}$), 53.9, 21.3. Elemental analysis: calcd (\%) for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{FN}$ (467.59): C 87.34, H 5.60; found: C 87.54, H 5.39.

5-Benzyl-10-(p-tolyl)-11-(4-

(trifluoromethvl)nhenvl)dibenzo[b.flazenine (46): From 4-(trifluoromethyl)benzenesulfonyl chloride ($0.366 \mathrm{~g}, 1.5$ mmol) and 5-benzyl-10-(p-tolyl)dibenzo[$b, f]$ azepine 28 $(0.373 \mathrm{~g}, 1 \mathrm{mmol}), 46$ was obtained in $30 \%(0.155 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 114-116{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45-7.11(\mathrm{~m}, 9 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.92$ $(\mathrm{m}, 3 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 3 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.8,152.7,146.9,142.7$, $140.4,139.5,138.6,136.2,136.0,135.6,131.0,130.8$, $130.6,130.3,128.6,128.5(\mathrm{~m}), 128.4,127.4,124.6(\mathrm{q}, J=$ $3.8 \mathrm{~Hz}), 124.4(\mathrm{q}, J=271.9 \mathrm{~Hz}), 123.5,123.4,119.2$, 119.1, 53.9 , 21.3. Elemental analysis: calcd (\%) for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}$ (517.60): C 81.22, H 5.06; found: C $81.00, \mathrm{H}$ 4.85 .

5-Benzyl-10-(p-tolyl)-11-(3-

(trifluoromethvl)nhenvl)dibenzo[b.flazenine (47): From 3-(trifluoromethyl)benzenesulfonyl chloride ($0.366 \mathrm{~g}, 1.5$ mmol) and 5-benzyl-10-(p-tolyl)dibenzo $[b, f]$ azepine 28 ($0.373 \mathrm{~g}, 1 \mathrm{mmol}$), 47 was obtained in 38% (0.196 g) yield as a yellow solid: mp $125-127{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.11$ $(\mathrm{m}, 10 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.92-6.82(\mathrm{~m}, 3 \mathrm{H}), 5.12(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $152.8,152.6,143.9,143.0,140.4,139.5,138.5,136.1$, $135.9,135.7,134.0,130.7,130.6,130.3,128.5,128.4(\mathrm{~m})$, $128.0,127.5$ (q, $J=3.8 \mathrm{~Hz}$), 127.4, 123.5, 123.1, 123.0, 119.2, 119.1, 53.9, 21.2. Elemental analysis: calcd (\%) for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}$ (517.60): C 81.22, H 5.06; found: C 80.97, H 4.96 .

11H-Benzo[6,7]azepino[3,2,1-de]phenanthridine (49): The reaction of 5-(2-bromobenzyl)dibenzo[b,f]azepine $(0.362 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{KOAc}(0.196 \mathrm{~g}, 2 \mathrm{mmol})$ at $150^{\circ} \mathrm{C}$ during 16 h in DMA (5 mL) in the presence of $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(12.2 \mathrm{mg}, 0.02 \mathrm{mmol})$ under argon afford product 49 after evaporation of the solvent and purification on silica gel in $28 \%(0.079 \mathrm{~g})$ yield as a yellow solid: mp 135-137 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.76-7.68 (m, 2H), 7.45-7.36 (m, 3H), 7.15-7.01 (m, 4H), $6.90(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.72(\mathrm{~m}, 3 \mathrm{H}), 4.79(\mathrm{~d}, J$ $=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.7,145.4,135.1,133.4,133.0,132.5$, $132.4,131.8,129.6,129.4,129.1,128.7,128.3,128.0$, 125.2, 124.5, 124.2, 123.7, 123.1, 121.4, 52.8. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}$ (281.36): C 89.65, H 5.37; found: C 89.47, H 5.39.

Acknowledgements

We thank China Scholarship Council for a fellowship to HL.

References

[1] L. J. Kricka, A. Ledwith, Chem. Rev. 1974, 74, 101123.
[2] a) C. Defieber, M. A. Ariger, P. Moriel, E. M. Carreira, Angew. Chem., Int. Ed. 2007, 46, 31393143; b) R. Mariz, A. Briceno, R. Dorta, R. Dorta, Organometallics 2008, 27, 6605-6613; c) M. Roggen, E. M. Carreira, Angew. Chem., Int. Ed. 2011, 50, 5568-5571; d) S. Krautwald, D. Sarlah, M. A. Schafroth, E. M. Carreira, Science 2013, 340, 10651068; e) D. A. Petrone, M. Isomura, I. Franzoni, S. L. Rossler, E. M. Carreira, J. Am. Chem. Soc. 2018, 140, 4697-4704.
[3] E.-C. Elliott, J. L. Maggs, B. K. Park, P. M. O'Neill, A. V. Stachulski, Org. Biomol. Chem. 2013, 11, 84268434.
[4] a) M. Ito, R. Kawasaki, K. S. Kanyiva, T. Shibata, Eur. J. Org. Chem. 2016, 5234-5237; b) M. Ito, D. Inoue, R. Kawasaki, K. S. Kanyiva, T. Shibata, Heterocycles 2017, 94, 2229-2246.
[5] A. Herrera, A. Grasruck, F. W. Heinemann, A. Scheurer, A. Chelouan, S. Friess, F. Seidel, R. Dorta, Organometallics 2017, 36, 714-720.
[6] For reviews on catalyzed C-H bond functionalization: a) L. Ackermann, R. Vicente, A. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792-9826; b) R. Rossi, F.

Bellina, M. Lessi, C. Manzini, Adv. Synth. Catal. 2014, 356, 17-117; c) A. Dey, S. Agasti, D. Maiti, Org. Biomol. Chem. 2016, 14, 5440-5453; d) T. Gensch, M. J. James, T. Dalton, F. Glorius, Angew. Chem. Int. Ed. 2018, 57, 2296-2306; e) X. Shi, A. Sasmal, J.-F. Soulé, H. Doucet, Chem. Asian J. 2018, 13, 143-157.
[7] a) A. H. M. de Vries, J. M. C. A. Mulders, J. H. M. Mommers, H. J. W. Henderickx, J. G. de Vries Org. Lett. 2003, 5, 3285-32880; b) The Mizoroki-Heck Reaction Ed. by M. Oestreich, 2009, John Wiley \& Sons; c) V. Coeffard, P. J. Guiry, Science of Synthesis, Cross Coupling and Heck-Type Reactions Vol. 3 2013, 303-344 Edited by G. A. Molander, J. P. Wolfe, M. Larhed.
[8] For Heck reaction with cyclic alkenes: a) R. Larock, B. Baker, Tetrahedron Lett. 1988, 29, 905-908; b) S. Hillers, S. Sartori, O. Reiser, J. Am. Chem. Soc. 199C, 118, 2087-2088; c) C. Hartung, K. Koehler, M. Beller, Org. Lett. 1999, 1, 709-711; d) L. Djakovitch, K. Koehler, J. Am. Chem. Soc. 2001, 123, 5990-5999; e) F. Berthiol, H. Doucet, M. Santelli, Tetrahedron Lett. 2003, 44, 1221-1225; f) L. Djakovitch, M. Wagner, C. G. Hartung, M. Beller, K. Koehler, J. Mol. Catal. A: Chemical 2004, 219, 121-130; g) C. Wu, J. Zhou, J. Am. Chem. Soc. 2014, 136, 650-652.
[9] L. Zhao, C. Bruneau, H. Doucet, ChemCatChem 2013, 5, 255-262.
[10] T. Cantat, E. Génin, C. Giroud, G. Meyer A. Jutand, J. Organomet. Chem. 2003, 687, 365-376.
[11] P. Nilsson, M. Larhed, A. Hallberg, J. Am Chem. Soc. 2001, 123, 8217-8225.
[12] K. Yuan, J.-F. Soulé, H. Doucet, ACS Catai. 2015, 5, 978-991.
[13] L. Wang, W. He, Z. Yu, Chem. Soc. Rev. 2013, 42, 599-621.
[14] a) M. Miura, H. Hashimoto, K. Itoh, M. Nomura, Tetrahedron Lett. 1989, 30, 975-976; b) M. Miura, H. Hashimoto, K. Itoh, M. Nomura, J. Chem. Soc., Perkin Trans. 1 1990, 2207-2211.
[15] a) X. Zhao, E. Dimitrijevic, V. M. Dong, J. Am. Chem. Soc. 2009, 131, 3466-3467; b) X. Zhao, V. M. Dong, Angew. Chem., Int. Ed. 2011, 50, 932-934.
[16] a) K. Yuan, H. Doucet, Chem. Sci. 2014, 5, 392396; b) R. Jin, K. Yuan, E. Chatelain, J.-F. Soulé, H Doucet, Adv. Synth. Catal. 2014, 356, 3831-3841.
[17] a) M. Brahim, H. Ben Ammar, V. Dorcet, J.-F. Soulé, H. Doucet, Org. Lett. 2017, 19, 2584-2587; b) X. Shi, T. Roisnel, J.-F. Soulé, H. Doucet, Org. Chem. Front. 2018, 5, 398-408.
[18] A. Alimardanov, L. Schmieder-van de Vondervoort, A. H. M. de Vries, J. G. de Vries, Adv. Synth. Catal. 2004, 346, 1812-1817.
[19] T. Ohta, N. Miyata, M. Hirobe, Chem. Pharm. Bull. 1981, 29, 1221-1230.

Convenient access to C10- and C11-(di)arylated dibenzo $[b, f]$ azepines via palladium-catalyzed C-H bonds cleavages

Adv. Synth. Catal. Year, Volume, Page - Page

Haoran Li, ${ }^{\text {a }}$ Thierry Roisnel, ${ }^{\text {a }}$ Jean-François
Soulé, ${ }^{\text {** }}$ and Henri Doucet ${ }^{\text {a* }}$

