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ABSTRACT: The design of a coordination complex which 
involves a ligand combining both a tetrathiafulvalene core and 
helicene fragment was achieved thanks to the reaction between 
the new 2-{1-[2-methyl[6]helicene]-4,5-[4,5-bis(propylthio)-
tetrathiafulvalenyl]-1H-benzimidazol-2-yl}pyridine ligand (L) 
and the Dy(hfac)3⋅2H2O metallo precursor. Magnetic investiga-
tions showed a field-induced Single-Molecule Magnet (SMM) 
behavior under an applied magnetic field of 1000 Oe for 
[Dy(hfac)3(L)]⋅0.5CH2Cl2 while experimental oriented single 
crystal magnetic measurements allowed for the determination of 
the magnetic anisotropy orientation. The magnetic behavior was 
rationalized based on ab initio CASSCF/SI-SO calculations. This 
redox-active chiral field-induced SMM paves the route for design-
ing switchable multi-properties SMMs. 

Chemists are working hand in hand with physicists to 
design Single-Molecule Magnets (SMMs) displaying magnetic 
bistability at temperatures as high as possible. Recently a mono-
nuclear DyIII-SMM highlighted a blocking temperature of 60 K1-3 
jump-starting this kind of molecular objects suitable for potential 
applications in high-density data storage, quantum computing and 
spintronics.4-6 One more challenge is to combine the SMM behav-
ior with others chemical, optical or physical properties such as 
ferroelectricity, redox-activity/conductivity, luminescence, non-
linear optics, chirality/chiroptical activity in order to open the 
route to more potential applications.7-9 In the specific case of 
chiral SMMs, the chirality can come from highly optically-active 
ligands such as [n]helicenes,10,11 which are organic molecules 
with π-conjugated helical backbone made of ortho-fused aromatic 
rings with configurational stability for n ≥ 5.12 Subsequently the 
[n]helicenes can be decorated by an electroactive unit such as 
organometallic,13 quinone,14 pyridinium15 and tetrathiafulvalene16 
(TTF) derivatives. The latter TTF core is a well-known electroac-
tive fragment mainly used to design conducting materials ranging 
from semiconductors to superconductors.17,18 Its functionalization 
with a plethora of accepting groups allowed the TTF-based lig-
ands to participate in the development of fluorescence switches,19 
photovoltaic cells,20 coordination of transition metals21 and finally 

coordination of 4f elements. In particular, the combination of 
lanthanide ions with TTF-based ligands permitted to reach new 
classes of multi-properties compounds with redox-active lumines-
cent SMM behaviour.7,22 To the best of our knowledge, no chiral 
SMM with a redox activity easily chemically accessible in com-
mon organic solvents has been reported to date. To reach such 
objective, we propose i) to combine both electro-active TTF and 
carbo[6]helicene in a unique ligand and ii) to coordinate such 
ligand to magnetically anisotropic DyIII ion.  

 

Figure 1. (Left) molecular structure of [Dy(hfac)3(L)]⋅0.5CH2Cl2, 
the hydrogen atoms and dichloromethane molecule of crystalliza-
tion were omitted for clarity. Selected bond lengths (Å): Dy1-N1, 
2.466(5); Dy1-N2, 2.562(5); Dy1-O1, 2.330(4); Dy1-O2, 
2.366(4); Dy1-O3, 2.332(4); Dy1-O4, 2.351(4); Dy1-O5, 
2.372(4); Dy1-O6, 2.323(4); C9-C10, 1.343(7); carbon (C, gray); 
fluorine (F, green). (Right) crystal packing of [Dy(hfac)3(L)] 
highlighting the π-π interactions along the a axis between the 
TTF-based molecular skeletons and the helicenic moieties (space-
fill representation). 

The functionalization of the molecular skeleton 4,5-
bis(propylthio)-tetrathiafulvalenyl]-1H-benzimidazol-2-
yl}pyridine23 with the 2-bromomethyl[6]helicene24 in its racemic 
form (85% yield, see S.I.) led to the 2-{1-[2-methyl[6]helicene]-
4,5-[4,5-bis(propylthio)-tetrathiafulvalenyl]-1H-benzimidazol-2-
yl}pyridine (L) ligand which reacted with the precursor 
Dy(hfac)3⋅2H2O (hfac- = 1,1,1,5,5,5-hexafluoroacetylacetonate 
anion) to give the mononuclear complex 
[Dy(hfac)3(L)]⋅0.5CH2Cl2. 



Single-crystal X-ray diffraction confirms that this com-
pound crystallizes in the triclinic space group P-1 (N°2) (Table 
S1). The molecular structure attests the success of the alkylation 
of the TTF-based molecular skeleton by the 2-methylene-
carbo[6]helicene derivative (Figures 1 and S1). The DyIII ion is 
coordinated to the bischelating 1H-benzimidazol-2-yl}pyridine 
(bzip) moiety and to the three hfac- anions in a N2O6 surrounding. 
In a strict structural point of view, the first neighboring atoms 
create a D2d symmetry polyhedron (Table S2, SHAPE analysis25). 
The neutrality of the ligand L is confirmed by the C9=C10 central 
bond length of 1.343(7) Å. The benzimidazol-tetrathiafulvalene 
fragment is planar while the planes formed by the benzimidazole 
and pyridine moieties have a twist angle of 18.0(2)° resulting 
from the steric hindrance of the [6]helicene arm and optimized π-
π interactions between the terminal benzene ring of the helicene 
and the bzip coordinated fragment. A quick overview of the litera-
ture on this kind of TTF-based ligands shows a zero twist angle 
when no alkylation is realized (amine, NH)26 and for methyl-2-
pyridine,27 4-methylpyridine-N-oxide,27 4,4’-dimethyl-2,2’-
bipyridine28 as alkylating arms while a twist angle of 12.2(3)° is 
measured for a bulkier arm such as 2,6-di(pyrazol-1-yl)-4-
methylpyridyl29. The crystal packing highlights the formation of a 
one-dimensional network of stacked L along the a axis which is 
formed by intramolecular π-π interactions between the helicene 
and bzip fragments and intermolecular π-π interactions between 
two “head-to-tail” ligands (Figure 1). The shortest intermolecular 
Dy-Dy distance is equal to 9.529 Å. 

The redox properties of the ligand L and the complex 
[Dy(hfac)3(L)]⋅0.5CH2Cl2 are investigated by cyclic voltammetry 
(Figure S2, Table S3). The cyclic voltammogram for the free 
ligand shows two mono-electronic oxidations at 0.53 V for the 
first oxidation and 0.93 V for the second oxidation, corresponding 
to the formation of a radical cation and a dication TTF fragment, 
respectively.23,26-29 The coordination of the Dy(hfac)3 fragment 
has almost no significant effect on the oxidation potentials (0.55 
V and 0.94 V) as observed for similar compounds.26-29 The elec-
trochemical properties attest that the reversibility of the oxidation 
potentials and the redox-activity of the ligand are conserved after 
complexation. 

The temperature dependence of χMT for a powdered 
sample of [Dy(hfac)3(L)]⋅0.5CH2Cl2 shows a room temperature 
value of 14.06 cm3 K mol-1 in agreement with isolated DyIII ion 
(Figure 2a). On cooling, χMT decreases monotonically down to 
12.17 cm3 K mol-1 at 2 K. The first magnetization at 2 K high-
lights a classic behavior in the field range of 0-50 kOe for such 
isolated DyIII ion (inset Figure 2a). The same sample shows fre-
quency dependence in zero external dc field (Figures 2b and S3) 
but with a maximum of the χM’’ vs. ν curve (ν the frequency of 
the ac oscillating field) that falls out of the frequency range of the 
experimental window. The application of an external dc field 
cancels the Quantum Tunneling of the Magnetization (QTM) and 
the maximum of the χM’’ vs. ν curve shifts to lower frequency 
(Figure 2b). The 1000 Oe value was chosen as the optimum field 
since the relaxation is slowest and more intense (Figure 2b). In 
such applied field, the out-of-phase component of χM was ob-
served in the temperature range of 2-8 K (Figures 2c and S4). The 
frequency dependence of the ac susceptibility can be analyzed in 
the framework of the extended Debye model both for field and 
temperature variations. The temperature dependence of the relaxa-
tion time at 1000 Oe is extracted from the extended Debye model 
between 2.0 and 6.0 K (Table S4). The Arrhenius plot of the 
relaxation time is well fitted by a Raman relaxation process 
τ=C×Tn with C=2.4(4)×10-2 and n=5.5(1) (Figure 2d)29. Theoreti-
cally, the expected value of the n exponent for Kramers ions is 9 
and can be decreased down to 4, depending on the energies of the 

ground state doublets.30,31 Recently is was shown that such expo-
nent could reach a value close to 2 due to the presence of both 
acoustic and optic phonons in specific ligand environments.32 The 
Cole-Cole33 plots normalized to their isothermal value are repre-
sented in Figure S5. The DyIII ion lies in a N2O6 environment with 
the two nitrogen atoms coming from a bischelating imidazol-2-yl-
pyridine derivative while the six oxygen atoms come from three 
hfac- anions. Thus the extracted dynamic parameters for the com-
plex [Dy(hfac)3(L)]⋅0.5CH2Cl2 can be compared with examples in 
which the common TTF-based skeleton is alkylated with different 
chemical arms. 

Figure 2. (a) Thermal variation of χMT for. In inset, first magneti-
zation. Calculated curves are in red. (b) Scan field of the frequen-
cy dependence of χM’’ of at 2 K. (c) Frequency dependence of 
χM” between 2 and 8 K at 1000 Oe. (d) Temperature variation of 
the relaxation time measured in an external field of 1000 Oe with 
the best-fitted curve (red line) in the temperature range of 2-6 K.  

In these compounds and others of the litterature,34 the 
effective energy barrier range from 18 K to 57 K. Nevertheless, 
starting from the same coordination polyhedron symmetry and 
N2O6 environment, it is clear that the nature of the alkylated group 
and/or the positions of the hfac- anions (which can depend on the 
steric hindrance of the alkylated group) have a crucial importance 
on the value of the energy barrier. Since the complex 
[Dy(hfac)3(L)]⋅0.5CH2Cl2 crystallizes in the triclinic P-1 space 
group and considering an effective spin ½ at low temperature, the 
orientation of the g-tensor can be determined by measuring the 
magnetization of a single crystal in the three perpendicular planes 
(Figure S6). This oriented single crystal measurements revealed 
an uniaxial magnetic anisotropy with a Landé factor of 19.6 (20 
expected for a pure MJ=±15/2 ground state) with the orientation 
of the main magnetic axis along the most negatively charged 
direction of the coordination surrounding i.e. perpendicular to the 
plane containing the nitrogen atoms (Figure 3).  
SA-CASSCF/SI-SO calculations were performed on 
[Dy(hfac)3(L)] to rationalize the observed magnetic properties 
(see computational details). Energy spectra and g tensors for the 
eight Kramer’s doublets of the ground 6H15/2 multiplet of the DyIII 
ion are given in Table S5. The calculations confirm the axial 
character of the magnetic anisotropy tensor of the ground Kra-
mer’s doublet with a large gz value of 19.09 for the DyIII center 
and almost negligible gx and gy values. The decomposition in 
terms of pure |J=15/2> spin wavefunctions shows that the ground 
state has a majority (88%) |±15/2> character with a non-negligible 
(10%) |±11/2> component with a first excited state lying at more 
than 75 K above the ground state. Such discrepancy with the 
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hypothetic energy barrier coming from an Orbach process (21.1 
K) supports the only operative Raman relaxation process in 
[Dy(hfac)3(L)]⋅0.5CH2Cl2. The calculated ground-state easy axis 
(Figure 3) for the DyIII ion is oriented perpendicular to the plane 
formed by the {tetrathiafulvalenyl-1H-benzimidazol-2-
yl}pyridine moiety in agreement with experiment.35  

 

Figure 3. (a) Representation (two different orientations) of the 
ground state total molecular electrostatic potential around the 
DyIII ion. The black and red lines correspond to experimental and 
theoretical main anisotropy axes, respectively. (b) Computed 
magnetization blocking barriers. Numbers provided on each arrow 
are the mean absolute values for the corresponding matrix ele-
ments of the magnetic transition dipole moment. 

This orientation is further supported by the representa-
tion of the molecular electrostatic potential around the DyIII ion 
using the home-made CAMMEL program (Calculated Molecular 
Multipolar Electrostatics; the description of the code is detailed in 
the Supporting Information). The total electrostatic potential is 
represented for the ground state along with both experimental and 
calculated axes in Figure 3a. As one can see, the most negative 
potential, containing the calculated magnetic axis, appears along 
the plane containing the two hfac- ligands and perpendicular to the 
TTF plane. Moreover, the multipolar expansion of the total mo-
lecular electrostatic potential (Figures S7-S9) shows that quadru-
polar contributions seem to be preponderant, as already observed 
in previous studies.36,37 Regarding the static magnetic properties, 
this electronic structure leads to a calculated magnetization at 2 K 
in good agreement with the experimental M vs H and to a quanti-
tative agreement in the thermal dependence of the χMT product 
(Figure 2), with some small discrepancy at low temperatures that 
may be due to possible intermolecular dipolar interactions. The 
computed magnetization blocking barrier is reported in Figure 3b. 
Even though main relaxation mechanisms probably involve higher 
excited states (up to the third), calculations also support quantum 
tunneling relaxation mechanisms (QTM) within the ground state 
doublet. However, these transition moments allow only a qualita-
tive evaluation of the magnetization barrier, since not all contribu-
tions (e.g. spin-phonon coupling) are included.38-40 

In conclusion, a redox-active chiral field-induced SMM, 
[Dy(hfac)3(L)]⋅0.5CH2Cl2, has been successfully synthesized by 
combination of a redox-active TTF-based skeleton and a 
[6]Helicene derivative followed by the coordination reaction of 
the Dy(hfac)3 precursor. This complex exhibits field-induced 
SMM behavior. This compound paves the route to the redox 
modulation of the electronic circular dichroism ECD signal and 
SMM behavior. To reach such aim, the synthesis of pure enanti-
omers of [Dy(hfac)3(L)]⋅0.5CH2Cl2 and the oxidation of L are in 
progress. 
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A redox-active chiral Field-Induced Single-Molecule Magnet was achieved through the coordination reaction of the 
[Dy(hfac)3] precursor to a ligand which combines a redox-active tetrathiafulvalene core and a chiral carbo[6]-helicene frag-
ment. This multi-properties system was characterized using X-ray crystallography, magnetism and ab initio calculations. 
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